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The inherent intermittency of high-penetrated renewable energy poses

economic and reliable issues of microgrid energy management. This study

proposes a two-layer predictive energy management system (PEMS) for high-

renewable multi-energy microgrid (MEM). In this MEM, geothermal, solar, and

wind energy is converted and conditioned for electricity, thermal, and gas

supplies, in which multi-energy complementarities are fully exploited based on

electrolytic thermos-electrochemical effects. The proposed microgrid multi-

energy management is a complicated and cumbersome problem because of

their increasingly tight energy couplings and uncertainties of renewable energy

sources (RESs). This intractable problem is thus processed by means of a two-

layer PEMS with different time scales, where the system operating costs are

minimized in the upper layer and the renewable fluctuations are coped with in

the lower layer. Simulation studies on a high-renewable MEM are provided to

indicate its effectiveness and superiority over a single time scale scheme.

Simulations results show that the operating cost can be reduced by 22.2%

with high RESs accommodation.
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1 Introduction

Due to the increase of environmental stress caused by global climate changes,

renewable energy sources (RESs) have attracted considerable attention (Xu et al.,

2019; Huang et al., 2021), and a microgrid is an effective way to integrate high

penetration of RESs. However, the system economical and reliability problems of a

microgrid are affected by fluctuant RESs (Wei et al., 2022). In order to compensate the

renewables fluctuations and supply and demand mismatch, energy storage systems (ESSs)

are generally equipped in microgrids for storing and exporting energy. Battery energy

storage (BES), as an effective and economical type of ESS, can provide energy flexibility for
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end-users based on various operational strategies (Jin et al., 2021;

Yang et al., 2021). Extensive studies on BESs in various wind and

solar microgrids focus on active power coordination (Bao et al.,

2020a), real-time charging/discharging management (Zhou et al.,

2017a; Zhou et al., 2017b), and long-term microgrid

management (Ju et al., 2017). Nevertheless, the battery service

life would considerably degrade during frequent charging and

discharging.

Power-to-gas (P2G) technology is another creative and

advanced ESS, which is explored by extensive researchers as a

promising and cost-effective solution to handle fluctuant RESs

(Clegg and Mancarella, 2015). Through the thermo-

electrochemical reactions in an electrolyzer, surplus power

from fluctuant RESs can be converted to gaseous energy

carriers, for example, methane and hydrogen (H2) are

subsequently stored in a gas storage tank. The hybrid

integration of P2G and BES can inherit the advantages of two

ESSs in terms of operational costs, power and energy density, and

flexibility, which is a cost-effective and highly reliable solution to

accommodate fluctuant RESs.

With the increasing utilization of hybrid ESS and combined

heat and power (CHP), the electric microgrid gradually

transforms toward a multi-energy microgrid (MEM) to

simultaneously provide electricity, thermal, and gas energy

supplies. By buying from market or producing from P2G,

natural gas is used in Xu et al. (2014) and Long et al. (2018)

to meet multi-energy demand and offset the fluctuations of wind

and solar energy. Biogas, as a renewable substitute gas (Yang

et al., 2020; Wu et al., 2021), can be converted via CHP and direct

utilization to provide electricity, heating, and lighting services,

which is formed for remote areas.

In order to cope with the economic issues and environmental

pollution, the utilization of 100% renewables have received the

attention of extensive researchers and investment opportunities

from operators because of its carbon neutrality and cost

reduction performance (Bao et al., 2020b; Bao et al., 2020c;

Jin et al., 2020). Based on the energy hub concept, the biogas,

solar, and wind 100% renewables (Zhou et al., 2018; Xu et al.,

2021; Zhang et al., 2021) are formulated as a MEM for multi-

energy carriers, including electricity, thermal, and biogas. Since it

can be predicted easily, hydro energy is integrated in Dasgupta

et al. (2020), Neto et al. (2020), and Li et al. (2022) to provide

local complementarity of solar and wind energy. Based on the

P2G technology, ammonia is formed with solar and wind as a

100% renewable MEM (Xu et al., 2021) for coupled electricity,

heat, and H2 supplies. Geothermal energy, as a potential RES, can

provide multi-energy services, and high-temperature water can

be directly fed in a geothermal-to-hydrogen (GTH) electrolyzer

for electrolytic gas production (Xu et al., 2020). Extensive efforts

by Tasnin and Saikia (2018) and Yilmaz (2020) have explored

several different geothermal source combined heat and power

systems (GSCHPs) and developed general thermo-economic

property. Wind, solar , and geothermal energy are proposed

for electrical and multi-energy supplies in Jordehi et al. (2021)

and Xu et al. (2022). However, the multi-time scale energy

management based on complementary couplings of

geothermal, solar. and wind RESs to cope with their inherent

intermittency and undispatchability is not involved yet.

In this study, a two-layer predictive energy management

system (PEMS) is proposed for geothermal, solar, and wind

MEM. Table 1 summarized the differences of typical works.

The contributions of the study are as follows:

TABLE 1 Differences in the proposed approach.

References Type 100%
renewables

Multi-
energy

P2G with
efficiency
improvement

Multi-time
scale

Multi-
energy
forecasting

Ju et al. (2017) System
level

✓ ✕ ✕ ✓ ✕

Xu et al. (2014) Device
level

✕ ✓ ✕ ✓ ✕

Long et al. (2018), Dasgupta et al. (2020) System
level

✓ ✕ ✕ ✕ ✕

Zhou et al. (2018) System
level

✓ ✓ ✕ ✓ ✕

Wu et al. (2021), Xu et al. (2021), Zhou et al. (2018), Li
et al. (2022), Xu et al. (2021)

System
level

✓ ✓ ✕ ✕ ✕

Xu et al. (2020) Device
level

✓ ✓ ✕ ✕ ✕

Xu et al. (2022) System
level

✓ ✓ ✓ ✕ ✕

Proposed System
level

✓ ✓ ✓ ✓ ✓
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1) Geothermal, solar, and wind 100% renewable

complementarities is proposed to form a MEM, where the

input community renewables are efficiently conditioned/

converted for output multi-energy supplies. Compared to

other electrical microgrids with constant P2G efficiency,

thermodynamic behaviors of GTH under fluctuant solar

and wind energy feedback are fully analyzed based on a

resistor-capacitor network to exploit the 100% renewable

multi-energy complementarities. A multi-energy coupling

matrix is formulated to systematically express the multi-

energy integrated processes.

2) A novel two-layer PEMS is proposed for geothermal, solar,

and wind MEM where the system operating costs are

minimized in the upper layer and multi-energy supply and

demand uncertainties are minimized in the lower layer.

Compared to previous PEMS with single time scale, such

PEMS allows the optimization of multi-time scale interactive

multi-energy couplings for cost-effective enhancement.

3) A short-term multi-energy supply and demand forecasting

method is developed based on multi-factor fusion. Instead of

only using the supply and demand data in previous

literatures, the meteorological factors are also considered,

which are extracted based on copula theory to identify

their importance and subsequently used to facilitate multi-

energy supply and demand forecasting in the extreme

gradient boosting (XGBoost) algorithm.

The rest of this article is organized as follows. The problem

formulation of multi-energy microgrid is presented in Section 2.

In Section 3, the framework of two-layer management system is

formulated. Comparative simulation studies under several

different schemes are implemented in Section 4 to

demonstrate the superiority of the proposed method. Finally,

the study is concluded in Section 5.

2 Problem formulation

The geothermal, solar, and wind microgrid energy

management involves not only the individual management of

multi-energy carriers but also their multi-time scale interactive

multi-energy couplings. While the solar and energy can be

directly delivered to multi-energy consumers, geothermal

energy can be utilized properly to take complementarity into

consideration by tapping abundant high-temperature

geothermal water to produce clean hydrogen. The thermo-

electrochemical reaction performed in the GTH electrolyzer is

a fast dynamic process in comparison to other conversion and

storage devices (Xu et al., 2020). In such cases, it may be

uneconomic to coordinate all the microgrid devices in a single

scale because of their different response and degradation cost

characteristics. Also, hybridization of geothermal, solar, and

wind renewables need to consider individual variability in

energy supplies and operational availability. Therefore, the

geothermal, solar, and wind microgrid management cannot be

easily solved using traditional approaches owing to uncertainties

of multi-energy supply and demand, multi-energy couplings, and

multi-time scale coordination.

To utilize the geothermal, solar, and wind multi-energy

complementarities, this study aims to 1) model and explore the

multi-energy complementarities and 2) solve the microgrid multi-

energy management problem in a multi-time scale way.

2.1 Multi-energy microgrid structure

Figure 1 shows a geothermal, solar, and wind MEM for multi-

energy supply and demand based on the energy hub concept. The

proposed MEM functions as a crucial bridge between RESs at the

input port and energy-consuming. In this microgrid framework, the

FIGURE 1
Geothermal, solar, and wind MEM.
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hybrid renewable energy is first integrated into photovoltaic thermal

system (PVT), wind turbine (WT), electrolyzer, and GSCHP into

multi-energy carriers, which are delivered to the consumption of

community electricity, heat, and H2 loads.

In this microgrid system, when solar power is unavailable at

night, wind turbines could run to generate electricity, which took

solar andwind energy complementarity into consideration. Different

from solar and wind energy that is greatly affected by environment

and meteorological conditions, stable geothermal energy is a flexible

RES and can be converted to different energy carriers. The obtained

H2 is an advantageous gas, which can keep variable RES in reserve

and alternatively convert into electricity and heat. BES and H2 tank

serve as energy storage devices to store and condition superfluous

energy. When solar and wind energy is scarce, the electrical and gas

energy in ESS could be discharged to energy conversion devices in

order to obtain an economical and reliable energy supply solution.

Flexible energy storage and conversion provide more flexible multi-

energy pathways for enhancing economical energymanagement and

RESs accommodation.

2.2 Hybrid energy storage

The aim of hybrid ESS is to inherit the advantages of

heterogeneous ESSs in the aspect of response characteristics,

operational costs, power and energy density, and flexibility.

The hybrid energy storage in this study consists of a H2 storage

system and BES because of their mutually complementarities.

The H2 storage system is generally composed of an

electrolyzer and a H2 tank. The degradation cost of ESS is

a common metric to evaluate economic operation of the

microgrid. While the main degradation BES is derived from

battery, the main degradation of the H2 storage system is

derived from the electrolyzer. The degradation of battery

lifetime includes the degradation of cycle life and capacity.

The number and rates of charging and discharging make a

difference on the battery lifetime. Contrary to the complicated

battery degradation, only the operating time and on/off

cycling conditions have effects on electrolyzer degradation.

Remarkable advantages of the electrolyzer in the aspect of low

customer acquisition cost, easy to scale up, and long durability

is propitious to maintain a longer lifespan and not suffer from

cycling issues (Xu et al., 2020). Especially, because of the small

capacity in the microgrid, the degradation cost of the

electrolyzer or the H2 storage tank is relatively small

compared to the BES degradation cost. The hybrid ESS

plays a role in offsetting the fluctuations from multi-energy

supply and demand and alleviating unnecessary discharging/

charging of BES. Consequently, the hybrid ESS has different

objectives, where H2 storage is introduced to operate as the

primary energy storage mode for supply and demand balance

and the BES should be developed to cope with the instant

energy unbalances.

2.3 Energy forecasting

In themicrogrid, the energy balance between energy production

and consumption must be stay at balance to avoid system operation

interruptions. Compared to traditional generation systems, the

multi-energy supply and demand are generally undispatchable.

Thus, energy substitutes are needed to offset the fluctuations of

renewable energy when they are scarce in the short term. Better

forecastings allow the microgrid manger to deploy less energy

storage; however, the problem gets more complex when

considering multi-energy carriers. Here, the short-term multi-

energy supply and demand forecasting includes forecasting

multi-energy loads and solar and wind renewable energy.

Though short-term forecasting can be offered up to 7 days in

advance, day-ahead multi-energy supply and demand forecasting

is adopted to accommodate the market mechanisms and energy

management systems. Here is the implementation process of the

developed forecasting method:

1) Quantitative analysis is performed based on Copula theory to

shed light on the inherent nonlinear relationships among

external meteorological factors (including meteorological

condition, and geographical location) and multi-energy

supply and demand. The key meteorological factors are

thus obtained to explore the model for forecasting

accuracy enhancement;

2) Multi-energy supply and demand forecasting is performed

based on XGBoost algorithm (Liu et al., 2022). XGBoost

arranges all the column data in advance and stores them

in blocks in the form of compression. Different blocks can be

stored in a distributed way, or even in a hard disk. In feature

selection, these column data can be processed in parallel to

achieve parallelization, and multithreading can be used to

achieve acceleration.

3) The commonly used performance indexes, including root

mean square error, mean absolute error, and mean absolute

percentage error are adopted to evaluate the multi-energy

supply and demand forecasting accuracy.

3 Two-layer predictive energy
management system

3.1 System model

3.1.1 Thermo-electrochemical model
Based on thermo-electrochemical effects, GTH is another

potential energy storage since excrescent electricity and thermal

energy can be used to produce storable H2. The model of

producing H2 is shown as follows:

VH2 ,k �
Pgth,k · ηH2 ,k

· Δk
QH2

. (1)
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Supposing that reaction environment and electrolytic solution are

given, and temperature of electrolyte would be the prime affecting

factor on reaction courses and H2 generation. By using the piecewise

linear, the H2 can be modeled as shown in (2) by fitting the measured

data (Clegg and Mancarella, 2015; Xu et al., 2020; Yilmaz, 2020).

ηH2 ,k
�
⎧⎪⎨⎪⎩

r1(TZ,k − TZ,min), TZ,min ≤TZ,k ≤T1,
r1(T1 − TZ,min) + r2(TZ,k − T1), T1 ≤TZ,k ≤T2,
r1(T1 − TZ,min) + r2(T2 − T1) + r3(TZ,k − T2), T2 ≤TZ,k ≤TZ,max.

(2)

TheGTH reaction affected bymany internal and external factors

is complicated, and a RC thermodynamicsmodel is introduced to be

convenient for the electrolytic reaction analysis. With the classical

lumped parameter method (Xu et al., 2020) the temperature, heat

storage and transfer properties are processed into equivalent thermal

resistance and capacitance at their geometric center. Based on the

Fourier’s law, the GTH dynamics can be expressed in (3) and (4).

CZ
dTZ,k

dk
� QRES,k − TZ,k − Tout,k

RZ
− TZ,k − Tout,k

Rair
+ Pgth,kΔk

− VH2 ,kQH2, (3)
QRES,k � ηBSef ,kΔk + Shf ,kΔk. (4)

From the thermodynamics model in (1)–(4), the gain H2

yield owing to feedback of excess electrical and thermal

energy in electrolyzer can be obtained, and multi-energy

complementarities can be fully exploited.

With respect to (3), the nonlinear differential thermodynamic

model of electrolyzer is handled by means of a Jacobian linearization

approach, which are discretized to further problem solving:

Tk+1 � ATk + Buk, (5)

where Tk and Tk+1 are temperature state vector; A and B are state

and input matrix; uk represents the RESs heating and GTH

enthalpy uxes. This approach is proved in (Zhou et al., 2018)

to be effective and feasible for nonlinear differential equations.

3.1.2 Multi-energy coupling matrix
According to the converter efficiencies and dispatch factors

of conversion and storage devices, microgrid is formulated as a

multi-energy coupling matrix in (6) to provide multi-energy

flexibility for cost-effective supplies.

⎡⎢⎢⎢⎢⎢⎣ Le,k

Lh,k

Lg,k

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎣ fWT]e,k fe,PVT]e,k ηe,GS]e,k
fWT]B,kηB]h,k (fe,PVT]B,kηB + fh,PVT)]h,k ]h,k(ηh,GS + vB,kηBηe,GS)

0 0 0

QH2vCHP,kηe,CHP]e,k/Δk
QH2]h,k/Δk(vCHP,kηh,CHP + ]F,kηF + vB,kηBvCHP,kηe,CHP)

]g

]e,k
vB,kηBvh,k

0

QH2vCHP,kηe,CHP]e,k/Δk
QH2]h,k/Δk(vCHP,kηh,CHP + ]F,kηF + vB,kηBvCHP,kηe,CHP)

]g

]e,k
vB,kηBvh,k

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WWT,k

GPVT,k

Egeo,k

VH2,k
PBES,k

VGS,k

Epg,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(6)

By assigning outputs of multi-energy conversion and storage

devices as state variables, the nonlinearity in (6) can be handled.

The input vector E in (6) could combine with state variables as E′
in (7), as follows:

⎡⎢⎢⎢⎢⎢⎣ Le,k

Lh,k

Lg,k

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎣fWT

0
0

fe,PVT ηe,GS 0 1 0 1
fh,PVT ηh,GS 0 0 0 0
0 0 1 0 1 0

−1/ηB 1 0 −1 −1 0
1 ηh,CHP/ηe,CHP 1 0 0 −1
0 −Δk/QH2ηe,CHP −Δk/QH2ηF 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WWT,k

GPVT,k

Egeo,k

VH2,k
PBES,k

VGS,k

Epg,k

SB,k
SCHP,k

SF,k
Pgth,k

Sef ,k
Shf ,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

3.1.3 Energy supply and demand constraints
Constraint (8) represents multi-energy supply and demand

balance, which includes total, supplied, and shed loads. Constraints

(9) and (10) limit load shedding and maximum electricity to market.

⎡⎢⎢⎢⎢⎢⎣ Le0,k

Lh0,k

Lg0,k

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ Le,k

Lh,k

Lg,k

⎤⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎣DLe,k

DLh,k

DLg,k

⎤⎥⎥⎥⎥⎥⎦. (8)

DLe,k ≤DLe,k,max,
DLh,k ≤DLh,k,max,
DLg,k ≤DLg,k,max,

(9)

Sbuy,k ≤ Sbuy,max,
Ssell,k ≤ Ssell,max.

(10)

3.1.4 Energy storage system constraints
Constraints (11)–(18) represent state of charge (SOC)

balance in hybrid ESS, which includes physics ranges and limits.

SOCBES,k � SOCBES,k−Δk + ηchPch,k−ΔkΔk
ER

− Pdis,k−ΔkΔk
ηdisER

, (11)

SOCBES,min ≤ SOCBES,k ≤ SOCBES,max, (12)
SOCH2 ,k � SOCH2 ,k−Δk −

VGS,k−ΔkΔk
VR

, (13)
SOCH2 ,min ≤ SOCH2 ,k≤ SOCH2 ,max, (14)

Pch,k ≤Pch,max, (15)
Pdis,k ≤Pdis,max, (16)
Pch,kPdis,k � 0, (17)

VGS,min ≤VGS,k ≤VGS,max. (18)

3.1.5 Energy conversion constraints
Constraints (19) represents the limits of multi-energy

converters.

0≤ Si,k ≤ Si, max, i � CHP,B, F. (19)

3.2 Mathematical Model for upper layer
predictive energy management system

The operational objective function of the upper layer is the

minimization of the system operating costs. Since the fuels of
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conversion devices are obtained from GTH, the system operating

costs only includes power procurement cost PCk and demand

shedding cost DCk.

Fu � PCk +DCk. (20)
PCk � μbuy,kSbuy,kΔk − μsell,kSsell,kΔk. (21)

DCk � μp(DLe,k +DLh,k + QH2DLg,k)Δk. (22)

The upper layer PEMS problem in the can be formulated as

follows:

FU:

min ∑
Δtu∈{n,/tu}

Fu(Δtu),
s.t.(1) − (10), (13), (14), (18) − (22),
variables: {VGS,tu, SB,tu, SCHP,tu, SF,tu, Pgth,tu, Sef ,tu, Shf ,tu, DLe,tu, DLh,tu,

DLg,tu, SOCH2 ,tu, Sbuy,tu, Ssell,tu}. (23)

3.3 Mathematical model for lower layer
predictive energy management system

The operational objective function of the lower layer PEMS is to

minimize the effects raised from multi-energy supply and demand

forecasting errors. By obtaining parameters from (Zhou et al., 2018),

the battery degradation cost BCk can be calculated as follows (24):

BCk � (Pch,k + Pdis,k)μcdΔk,
μcd �

μBESrBES
a1[a2(1 − SOCBES,avr) + a3] exp(a4Tout,k)ER(1 − SOCBES,ref ).

(24)
The effects raised from multi-energy supply and demand

forecasting errors in short-time scales can be formulated as the

deviations of references from the upper layer PEMS. The

deviations can be augmented with penalty costs to form the

penalty terms and can be formulated as a quadratic function:

ECk � σGS,k(VGS,k(tu) − VGS,k(tl))2 + σB,k(SB,k(tu) − SB,k(tl))2
+σCHP,k(SCHP,k(tu) − SCHP,k(tl))2 + σF,k(SF,k(tu) − SF,k(tl))2
+ σgth,k(Pgth,k(tu) − Pgth,k(tl))2 + σef,k(Sef ,k(tu) − Sef ,k(tl))2
+ σhf,k(Shf ,k(tu) − Shf ,k(tl))2 + σDLe,k(DLe,k(tu) −DLe,k(tl))2
+ σDLh,k(DLh,k(tu) −DLh,k(tl))2 + σDLg,k(DLg,k(tu) −DLg,k tl 2 .)))(

(25)

By integrating the degradation cost of BES and quadratic

penalty factors, the lower layer PEMS problem can be formulated

as follows:

Fl: min ∑
Δtl∈{(4n−3),/tl }

(σECEC(Δtl) + σBCBC(Δtl) , s.t.(1) − (19), (24), (25),)

variables: {VGS,tl , SB,tl , SCHP,tl , SF,tl , Pgth,tl , Sef,tl , Shf,tl , DLe,tl , DLh,tl , DLg,tl ,

Pch,tl , Pdis,tl , SOCH2 ,tl, SOCBES,tl , Sbuy,tl , Ssell,tl}. (26)

3.4 Problem solving

As for the two-layer PEMS, the objective is to optimize the

energy dispatch in a finite period, so that a reasonable allocation of

energy resources is explored to operate economically under volatility

and intermittent of multi-energy supply and demand. Based on the

model predictive control framework, the two-layer PEMS is

formulated as a discrete-time optimization problem with different

time scales, where multi-energy supply and demand uncertainties

can be corrected through feedback mechanism. Figure 2 shows the

flowchart of the proposed two-layer PEMS. The upper layer PEMS is

composed of a receding model predictive controller, and the lower

layer PEMS is a quadratic model predictive controller. In the upper

layer, system operating costs is minimized by solving objective

function at the current moment and looking ahead the remaining

time slots considering the forecasting of multi-energy supply and

demand. Only the optimal results at the current time will be

delivered as the base values to the lower layer. After the

awareness of multi-energy supply and demand forecasting errors,

energy fluctuations each short time interval is minimized in the

lower layer PEMS. The lower layer PEMS would return the value to

correct the associated value obtained from the upper-layer, and the

PEMS problem will start for the next time until the last moment.

4 Case study

4.1 Base data

Here, the proposed two-layer predictive PEMS is verified on

geothermal, solar, and windMEM. The diagrammatic drawing of

MEM and the flowchart of PEMS are illustrated in Figures 1, 2. In

order to evaluate its practical performance, the system is

equipped with PVT, WT, GSCHP, boiler, CHP, furnace, BES,

and H2 tank whose installed capacities are set as 1 MW, 1 MW,

500 kW, 1 MW, 1 MW, 1 MW, 1 MWh and 1000 m3,

respectively. To achieve interaction with the electricity market

and promote the diversified renewable accommodation, the feed-

in price is obtained from (Zhou et al., 2017a) and it is set as 0.04

$/kWh. The actual parameters of the all kinds of multi-energy

devices in microgrid system obtained from (Xiao et al., 2010;

Zhou et al., 2018; Xu et al., 2020) in demand are listed in Table 2.

4.2 Comparative results

To demonstrate the validity and superiority of the proposed

two-layer PEMS of geothermal, solar, and wind MEM,

comparative schemes are performed:

1) Scheme 1 is the proposed two-layer PEMS for geothermal,

solar, and wind MEM in Sections 2, 3;
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2) Scheme 2 is the proposed two-layer PEMS without

consideration of the battery degradation cost in (24);

3) Scheme 3 is the single-layer PEMS for the proposed MEM in

Section 2.

The three operation schemes are performed for a 24 h with

upper and lower layer time intervals setting as 1 h and 15 min,

respectively. All the schemes are coded on GAMS on a laptop

with 2.3 GHz Intel Core i5 CPU and 8GB RAM, and solved with

its default settings.

Figure 3 shows the purchase and sale of daily electricity of

schemes 1–3. It can be shown that, because of abundant solar and

wind energy during noontime and lower electricity price, a large

amount of electricity will be bought at dawn. Scheme 2 is

performed with very similar purchase and sale as scheme

1 though without considering the degradation cost. Because of

single-layer PEMS, the electricity in scheme 3 is tended to be

bought timely to accommodate the shorter time scale

fluctuations of solar and wind energy. When considering the

intra-hour energy fluctuations, the microgrid in scheme 3 has to

buy more electricity for multi-energy supply and demand

balance.

Figures 4, 5 show the daily outputs of BES and H2 tanks.

Energy storage units are in the state of charging when renewable

energy is abundant and sufficient, and are discharged to replenish

energy when renewable energy is insufficiency. Although the

curve of scheme 1 is performed similarly as scheme 2, less

electricity is charged in scheme 1 due to the consideration of

the degradation cost. It also can be found that the hybrid ESS in

the microgrid can efficiently accommodate the fluctuant solar

and wind energy based on their complementary characteristics.

While the H2 tank is charged during hours 1–3 and 11–14 to cope

with intermittent solar and wind energy to reduce unnecessary

BES degradation, the BES is charged and discharged on a short

time scale to compensate unstable renewable energy and load

owing to their short-term volatility.

The daily outputs of multi-energy converters in schemes

1–3 are shown in the Figures 6–8. The three forms of energy,

electricity, thermal and gas can be flexibly converted in multiple

energy conversion devices. The high-efficiency CHP and BES in

system can meet unstable renewable energy and fluctuant multi-

energy loads, while boiler and furnace are used as auxiliary

equipment. The output of CHP is at high level to provide

electricity and thermal energy because of low-level SOC of

BES during hours 18–24. It also can be concluded from

Figures 3–8 that the proposed two-layer PEMS scheme can

reach efficient coordination among diverse multi-energy

conversion equipment, hybrid ESS to regulate the multi-

TABLE 2 Basic parameters.

GSCHP ηe,GS = 0.25 ηh,GS = 0.3

Electrolyzer QH2 = 3.54 kWh/m3

H2 tank VGS,min = −200 m3 VGS,max = 200 m3

SOCH2,min = 0 SOCH2,max = 1

BES ER = 1 MW ηch = ηdis = 91.4%

μBES = 100,000 $ rBES = 1327 cycles

a1 = 3291 a2 = −4230

a3 = 4332 a4 = −0.05922

SOCBES,min = 0.1 SOCBES,max = 0.9

Pch,max = 200 kW Pdis,max = 200 kW

SOCBES,ref = 0.2

CHP SCHP,max = 1 MW

ηe,CHP = 0.4 ηh,CHP = 0.5

Boiler SB,max = 1 MW ηB = 0.7

Furnace SF,max = 1 MW ηF = 0.7

Market Sbuy,max = 1 MW Ssell,max = 1 MW

FIGURE 2
(A) Flowchart of the proposed two-layer PEMS. (B)
Framework of the proposed two-layer PEMS.
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FIGURE 3
Daily electricity buying/selling of schemes 1–3.

FIGURE 4
Daily battery charging/discharging of schemes 1–3.

FIGURE 5
Daily H2 charging/discharging of schemes 1–3.

FIGURE 6
Daily CHP outputs of schemes 1–3.
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energy carriers. For example, during 6–8 hours, the outputs of

BES, furnace, and CHP in schemes 1 and 2 stay at low level, while

boiler is used to follow the peak thermal demand.

Table 3 lists the system operating cost, battery degradation cost,

electricity procurement, load shedding, and renewable

accommodation of schemes 1–3. It can be found that the

proposed two-layer PEMS can cost-effectively explore the multi-

energy complementarities to supply the multi-energy loads. It is

shown that the battery degradation cost of scheme 1 is decreased by

5.5% comparing with schemes 2, which mitigate unnecessary BES

charging/discharging actions because of the consideration of battery

degradation costs in scheme 1. In terms of scheme 3, the SOC of H2

tanks always stays at high level and electricity is purchased and sold

timely with electricity market, which results in lower degradation

cost. While sufficient electricity is purchased in the single-layer

PEMS, the proposed scheme 1 takes the fluctuation of renewable

energy in 15 min into account to reduce system operating cost. As a

result, the electricity procurement cost and operating cost of scheme

1 is decreased by 29.5% and 22.2% compared to schemes 3. Because

of the synergistic effects of hybrid renewables and electricity market,

load shedding is 0 and solar and wind accommodation is 100%. In

conclusion, the comparative schemes confirm the advantages of the

proposed two-layer PEMS.

5 Conclusion

A geothermal, solar, and windMEM is proposed for sustainable

multi-energy supplies and a two-layer PEMS is proposed to exploit

their 100% renewable complementarities from multi-time scales.

The two-layer PEMS is performed by considering hybrid ESS

degradation characteristics, in which the operational cost is

minimized in the upper layer for a long term and fluctuations by

multi-energy supply and demand forecast errors areminimized with

shorter time intervals in the lower layer. It can be concluded:

1) With the multi-time scale mutual multi-energy couplings,

cost-effective utilization of geothermal, solar, and wind

FIGURE 7
Daily boiler outputs of schemes 1–3.

FIGURE 8
Daily furnace outputs of schemes 1–3.

TABLE 3 Optimized results of schemes 1–3.

Scheme 1 2 3

System operating cost ($) 1934.022 1956.865 2485.140

Battery degradation cost ($) 220.353 233.211 54.199

Electricity procurement (kWh) 1713.669 1723.654 2430.941

Load shedding (kWh) 0 0 0

Solar and wind accommodation (%) 100 100 100
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RESs can be achieved. More specifically, the operating cost

and electricity procurement cost of the proposed two-layer

PEMS are decreased by 22.2% and 29.5%.

2) The hybrid energy storage can be utilized complementarily at

two layers for multiple decision-making objectives, and the

battery degradation cost is decreased by 5.5% because of the

consideration of degradation cost.

3) The proposed two-layer PEMS can coordinate energy sources

efficiently and accommodate renewable energy at high

penetration.

Further research would focus on the multi-time scales of

multiple energy carriers.
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Nomenclature

Indices and sets

k Time index

Δk Time interval

tu, tl Two-layer time index

Δtu and Δtl Two-layer time interval

n Number of optimizations

Parameters

a1, a2, a3, and a4 Parameters of BES degradation cost

Cz Thermal capacitance of electrolyte

DLe,k,max, DLh,k,max, and DLg,k,max Upper shedding value of

multi-energy loads

ER Battery capacity

fWT, fe,PVT, and fh,PVT Energy transformation factors of WT

and PVT

Le0,k, Lh0,k, and Lg0,k Total multi-energy loads

Pch,max and Pdis,max Maximum charging and discharging of

battery

QH2 Heating value of H2

Rz Rair Equivalent thermal resistances

ri Rate of the ith segment of curve

Sbuy,max and Ssell,max Maximum amount of electricity bought

and sold

Ri,j Total thermal resistance between node i and j

SB,max, SCHP,max, and SF,max Upper value of multi-energy

converters

SOCBES,ref and SOCBES,avr Reference and average SOC

SOCH2,min and SOCH2,max Minimum and maximum SOC of gas

storage

SOCBES,min and SOCBES,max Minimum and maximum SOC of

battery

TZ,min and TZ,max Minimum and maximum temperature of

electrolysis

Ti Break points

Tout,k External temperature

μbuy,k and μsell,k Price of electricity bought and sold

μBES and rBES Capital cost and rated cycle life of BES

μp and μcd Unit cost of load shedding and battery degradation

VR Total H2 tank volume

VGS,min and VGS,max Minimum and maximum capacity of gas

storage

σi,k Coefficients of the i’s penalty costs

σEC and σBC Coefficients of the penalty cost and battery

degradation cost

WWT,k, GPVT,k, and Egeo,k Input wind, solar, and geothermal

energy

ηch and ηdis Efficiencies of battery charging and discharging

ηB, ηF, ηe,CHP, ηh,CHP, ηe,GS, and ηh,GS Efficiencies of multi-

energy converters

Variables

BCk Battery degradation cost

DLe,k, DLh,k, and DLg,k Shedding value of multi-energy loads

DCk Load shedding cost

Epg,k Net electricity procurement

Le,k, Lh,k, and Lg,k Supplied multi-energy loads

Pdis,k and Pch,k Power of battery discharging and charging

PBES,k and VGS,k Net outputs of BES and gas storage

Pgth,k GTH input

PCk Electrical purchasing cost

QRES,k Thermal energy for GTG

Qreaction,k GTH enthalpy uxes

Fu Upper layer system objective function

Fl Lower layer system objective function

Sbuy,k and Ssell,k Amounts of electricity bought and sold

SOCBES,k and SOCH2,k SOC of battery and H2 storage

SB,k, SF,k, and SCHP,k Outputs of boiler, furnace, and CHP

Sef,k and Shf,k Renewable energy for reaction heating

TZ,k Temperature of electrolysis

VH2,k H2 generation

νB,k, νCHP,k, νF,k, νe,k, νh,k, and νg,k Factors of input energy flowed
to devices and loads

ηH2,k Electrolytic efficiency of the GTH
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