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Due to the strong coupling characteristics and daily correlation characteristics

of multiple load sequences, the prediction method based on time series

extrapolation and combined with multiple load meteorological data has

limited accuracy improvement, which is tested by the fluctuation of load

sequences and the accuracy of Numerical Weather Prediction (NWP). This

paper proposes a multiple load prediction method considering the coupling

characteristics of multiple loads and the division of load similar fluctuation sets.

Firstly, the coupling characteristics of multivariate loads are studied to explore

the interaction relationship between multivariate loads and find out the priority

of multivariate load prediction. Secondly, the similar fluctuating sets of loads are

divided considering the similarity and fluctuation of load sequences. Thirdly, the

load scenarios are divided by k-means clustering for the inter-set sequences of

similar fluctuating sets, and the Bi-directional Long Short-Term Memory (BI-

LSTM) models are trained separately for the sub-set of scenarios and prioritized

by prediction. Finally, the effectiveness of the proposed method was verified by

combining the multivariate load data provided by the Campus Metabolism

system of Arizona State University.
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1 Introduction

Intergrated Energy System (IES) is a new energy system that integrates electricity,

natural gas, heating and cooling energy supply, including various forms of energy

production, energy conversion, energy distribution, energy storage and energy

utilization, etc. (Valery et al., 2022). Compared with the traditional energy utilization

system, IES can realize the coupling of different types of energy in different links such as

source, network and load side, effectively improving the comprehensive utilization rate of

energy (Wei et al., 2022). At present, as the basis for guiding the optimal scheduling of the

system, IES load prediction is important for the accurate prediction of multivariate loads,

considering the interaction of various relevant factors in IES and the complex mechanism

(Wang et al., 2021; Jizhong et al., 2022).
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On the energy supply side of the IES, the main focus is on

wind power and PV power prediction. Among them, In Mao

et al. (2022), proposed a composite prediction framework DC

(DWT-DAE)-CNN consisting of dual clustering and

convolutional neural network. Firstly, discrete wavelet

transform (DWT) and deep self-encoder (DAE) are

performed on the original data respectively to reduce data

redundancy. Secondly, a pairwise clustering model based on

dynamic time-bending distance clustering and fuzzy C-mean

(FCM) clustering is proposed to gradually realize the dynamic

characteristics of power curves and numerical clustering of

weather information data. Finally, it is verified by arithmetic

case analysis. In Mao et al. (2020), proposed an improved fuzzy

(FCM) clustering algorithm, which can obtain better prediction

results by using the principle of minimum distance to select

relatively coarse initial cluster centers, and by dividing wind

turbines with similar power output characteristics into several

classes and selecting representative power curves as the

equivalent curves of wind farms. The shortest distance

method clustering is proposed to provide the initial clustering

center for FCM, the use of validity analysis of the degree of

similarity of samples within classes and the degree of

independence between different classes to discriminate the

superiority of clustering results, and the identification and

elimination of noise points by data density are proposed to

improve the performance of FCM clustering algorithm (Kai et

al., 2022). In Yang et al. (2019), used set-pair analysis to assess the

correlation between the power fluctuations of individual wind

turbines and the power fluctuations of all aggregated wind

turbines, and between the smoothing effect of aggregated

wind farms and the prediction accuracy of the corresponding

aggregated power output. The experimental results show that the

wind power prediction accuracy varies with the smoothing effect

index, which is influenced by the number of wind farms. In Wu

et al. (2022a), proposed a multi-stage urban distribution network

(UDN) resilience enhancement framework to cope with the

substantial loss of UDN critical loads caused by high impact

low probability events (HILP) in UDN. In the first stage, the

distribution system operator forms typical failure scenarios based

on historical data of electrical component damage under ice

events and sets up specific response plans in each scenario to

reduce the lost load and associated costs, in the second stage, the

operator performs a risk assessment of the corresponding plans,

and in the third stage, the operator revises the response plans to

reduce the “second stage” impact. In Wu et al. (2021a), promotes

distributed renewable energy consumption through a specially

set price mechanism that incorporates supply and demand ratios

into the dynamic price formation process to better accommodate

highly penetrated renewable energy sources and small-scale

energy markets. A two-way auction model is proposed in Wu

et al. (2021b), first, to establish a participant-driven framework

for distributed trading of electricity demand response, followed

by a bargaining game for cost and benefit allocation, and finally,

to form a co-optimization model for electricity and hydrogen

considering production constraints to improve system capacity

and economics. In Nantian et al. (2022), a multi-node charging

load joint adversarial generation interval prediction method

considering the charging load correlation between nodes is

proposed to effectively predict the spatio-temporal distribution

of EV charging load with respect to the time-space progressivity

of EV charging load.

On the energy consumption side of the IES, the main focus is

on multi-energy load prediction. Among them, a novel

decomposition-ensemble model for short-term load prediction

is proposed in Yang et al. (2019). (Xiaobo and Jianzhou, 2018)

The singular spectrum analysis (SSA) decomposition and

reconstruction strategy is introduced in the proposed model,

and the cuckoo search algorithm is used to generate the ensemble

results and thus improve the model prediction accuracy. In

Abhishek et al. (2022), a seasonal partitioning method is

proposed for day-ahead prediction of electrical loads, and

corresponding prediction models are established for the

transition season and the regular season, and in the transition

season, the weighted output method of multiple seasonal

prediction models is used to improve the prediction accuracy.

In Mukhopadhyay et al. (2017), explore how to reasonably use

meteorological factors for load prediction, use the meteorological

factors of the day to determine the magnitude of load, and

consider day type information to appropriately scale the

forecast results for rest days to better approximate the actual

load. In Luiz and Afshin (2015), a transfer function (TF) model

was developed using measured hourly weather variables for the

simulation and prediction of electric loads and compared with an

autoregressive integrated moving average model (ARIMA) and

an artificial neural network (ANN) based on exogenous variables,

and finally, an arithmetic analysis concluded that the accuracy of

the proposed method has good stability with the extension of the

time series. The above research methods mainly focus on some

single load type for prediction, compared to single load

prediction, the research on multivariate load prediction is

relatively new, and the multi-task structure is commonly used

to accommodate multivariate output requirements. For example,

a short-term prediction method for electricity and gas demand

based on a radial basis function neural network (RBF-NN) model

was proposed (Tang et al., 2019). A multivariate load prediction

model based on kernel principal component analysis, quadratic

modal decomposition, two-way LSTM and multiple linear

regression was proposed (Jinpeng et al., 2021; Yingjun et al.,

2022). In Ref. (Qingkai et al., 2021), a multi-task learning load

prediction model with Long-Short-Term Memory (LSTM) as a

shared layer is constructed, where the learning of single load

features is first performed separately, and then the auxiliary

coupling information is learned using the shared layer. In Ref.

(Jixiang et al., 2019), a mixed-model short-term load prediction

method based on convolutional neural networks and LSTM is

proposed, in which a large amount of historical load data,
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meteorological data, date information, and peak and valley tariff

data are used as inputs to construct a continuous fluctuation map

by time-sliding windows, the eigenvectors are first extracted

using convolutional neural networks. The eigenvectors are

constructed in a time-series manner and used as input data

for the LSTM network, and then the LSTM network is used for

short-term load prediction. The method proposed in Ref.

(Haohan et al., 2021), fails to explicitly consider the complex

coupling interaction features between multi-energy loads, where

LSTM as a recurrent neural network has its own limitations, and

although it can better mine the data temporal features, it cannot

fully explore the interaction coupling relationship betweenmulti-

energy loads. The key idea of load prediction is to exploit the

cyclical nature of load demand behavior and its dependence on

other influencing factors, such as multi-energy coupling and

weather information. However, the analysis of historical data

shows that some of these influences do not have a uniform

impact on load demand throughout the year.

To sum up, this paper proposes a multivariate load ultra-

short-term prediction method based on load similar fluctuation

set division combined with multivariate load coupling

characteristics. First, a gray correlation analysis is performed

on the multivariate load series to explore the coupling

characteristics of the multivariate load data. Secondly, based

on the historical load data, the actual load sequence of the

highest priority is divided into correlation and volatility to

obtain the set of load similar fluctuations. Thirdly, the NWP

strongly correlated features of inter-set load sequences are used

as input for k-means clustering to classify load scenes and train

BI-LSTM network by load scenes; Finally, the final prediction

results are obtained by ranking the multivariate load prediction

priorities one by one.

2 Coupling characteristics mining of
multiple loads

Before carrying out the research work of IES multiple load

prediction, the energy use characteristics of the system should be

analyzed, i.e., starting from the mechanism of load composition

and revealing the inherent change law of the system load itself.

Multi-class energy coupling mechanism is the theoretical basis of

IES, and all kinds of energy sources are interactively coupled with

each other, so the coupling characteristics between all kinds of

energy sources need to be considered in the process of multiple

load prediction (Jizhong et al., 2021). Multi-Task Learning

(MTL) is often used for joint prediction of multivariate loads.

The idea is to use multiple types of loads as the object of study

and other influencing factors as fluctuation data to predict

multiple types of loads simultaneously, which is a method of

multiple inputs accompanied by multiple outputs at the same

time (Wang et al., 2021). Although this method is able to take

into account the coupling characteristics between multiple types

of energy sources, the output side of the method outputs the

multivariate load forecasts simultaneously, and the coupling

strengths between the various types of energy sources may be

different.

Therefore, this paper takes the lead in exploring the coupling

strength between multiple types of energy sources and analyzes the

correlation between multiple load series by Grey Relation Analysis

(GRA) method to portray the coupling strength between multiple

loads by correlation degree (Xuexiang et al., 2022). The sum of the

correlations between any two selected loads and the third load is set

as a parameter indicator φi (cumulative correlation coefficient) that

weighs the strength of the coupling of the two loads to the third load,

i � 1, 2,/, i is the load type. The larger the value of φi, the greater

the coupling strength of other kinds of loads to the i species load, and

the more backward the prediction order, conversely, the smaller φi

indicates that the coupling strength of other kinds of loads to that

kind of load is smaller, then the prediction order is advanced. As a

result, themagnitude of the cumulative correlation coefficient φi can

be used to prioritize the prediction of multiple loads in an integrated

energy system.

3 Load similar fluctuation set division

The average daily load distribution within a season follows

almost a similar pattern. However, the classification of load

characteristics by season alone is too subjective and is likely to

ignore the load characteristics between non-contiguous months.

Based on the above multiple load coupling characteristics mining,

this paper divides the highest priority electrical loads into load

similar fluctuation sets and analyzes the monthly average electrical

load distribution of the integrated energy system under the complete

seasonal sequence as shown in Figure 1. It can be seen that similar

fluctuations exist between different seasons.

Firstly, the average monthly electric load distribution series

under different months is obtained by taking the average value of

parallel load points of the load series under different load days in

the same month. Secondly, the obtained daily average electric

load distribution series are then compared two by two using grey

correlation analysis to form a correlation coefficient matrix Dα

between different months of the same load with correlation

coefficient ξα(i, j), where i and j are the number of sample

series. The variance is used to portray the degree of volatility of

the series, and the correlation coefficient is used to portray the

similarity between the series. The variance of the daily average

load series of different months is used to make the first-order

difference, forming the variance first-order difference matrixDβ,

and the correlation coefficient is ξβ(i, j). The smaller the value in

the matrix, the more similar the degree of volatility between the

two series is. Finally, the correlation thresholds of the parameters

in the above matrix are selected separately to classify the

multivariate load similar fluctuation fluctuation set, and the

solution flow chart is shown in Figure 2.
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The correlation threshold ξo(j) is actually the final

criterion for the attribution of the sample to be examined.

If the value of ξo(j) is low, association misclassification will

occur, i.e., sequences that are not originally part of the

fluctuation set are classified, and the lower the value of

ξo(j), the higher the probability of misclassification.

Conversely, if the value of ξo(j) is high, the higher the

probability of fault omission, the sequence that should have

been classified into the fluctuation set is not classified in, and

the higher the value of ξo(j), the higher the probability of

omission. We write down the minimum correlation threshold

corresponding to the smallest correlation of the sequence as

min ξo(j). Therefore, the maximum correlation threshold

corresponding to the largest correlation is written down as

max ξo(j). The best value of the correlation threshold ξo(j)op
should satisfy the following conditions.

min ξo(j)< ξo(j)op<max ξo(j), min ξo(j)<max ξo(j) (1)
min ξo(j) � ξo(j)op � max ξo(j), min ξo(j) � max ξo(j) (2)

ξo(j)op � α(j)min ξo(j)
+ β(j)max ξo(j), min ξo(j)>max ξo(j) (3)

Where α(j) and β(j) are weighting factors, 0≤ α(j)≤ 1,

0≤ β(j)≤ 1, α(j) + β(j) � 1.

FIGURE 1
Monthly average electric daily load distribution chart.

FIGURE 2
Flow chart of correlation coefficient threshold selection.
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Let the minimum correlation of the sequence j be Ew(j) and
the maximum correlation be El(j). Establish the objective

function on the sequence.

E(α(j), β(j)) � Ew(j) + El(j) (4)

Search for α(j) and β(j) when this objective function is

minimized, and find the corresponding correlation threshold,

which we call the best correlation threshold at this time, and

denote as ξo(j)op.

4 K-means clustering method for
each fluctuation set sequence

4.1 Gray correlation analysis method

Electricity, heat and cold loads in IES have strong correlation

for meteorological factors, and the usual prediction method is to

artificially and subjectively select several meteorological factors as

inputs, which does not seem to be logically sufficiently justified.

Therefore, before carrying out multi load prediction of the

regional integrated energy system, the various types of loads

and the correlation strength between them and meteorological

factors should be analyzed and screened, so as to analyze the

coupling characteristics among electric, heat and cold loads, as

well as the impact of each influencing factor on the multi loads.

GRA compensates for the shortcomings caused by the use of

mathematical and statistical methods for systematic analysis.

GRA is a multi-factor statistical analysis method, and its basic

idea is to determine whether the association is strong or not based

on the similarity of the geometry of the series curves. The closer

the curves are to the response series, the greater the degree of

association between them, and vice versa. The GRA method is

suitable for analyzing the nonlinear relationship between

multiple loads and influencing factors, which can largely

reduce the loss due to information asymmetry, and this

method does not need a large number of data sets as the

basis, the calculation is small and fast, and there is no

discrepancy between quantitative results and qualitative

analysis results. Therefore, in this paper, GRA is selected to

quantitatively analyze the degree of influence of meteorological

factors on the multiplicative load, and the meteorological factors

that have the greatest influence on the multiplicative load are

selected as the influence factors to analyze the correlation

between each influence factor and the multiplicative load.

4.2 Multivariate load and meteorological
factor correlation analysis

The correlation coefficient and the correlation degree of the

GRA method are two key parameters used to measure the

correlation, and the magnitude of the correlation degree can

visually reflect the degree of association between two factors,

which are calculated by the following equations.

ξ i �
min

i
min

k
|x0(k) − xi(k)| + ρmax

i
max

k
|x0(k) − xi(k)|

|x0(k) − xi(k)| + ρmax
i

max
k

|x0(k) − xi(k)| (5)

γi �
1
n
∑n
k�1

ξ i(k) (6)

Where x0 is the normalized weather factor sequence, xi is the

normalized load sequence, ρ is the resolution coefficient,

generally taken as 0.5, n is the length of the sequence.

The correlation between the multiple loads of the integrated

regional energy system and each meteorological influencing

factor is analyzed. Let the sequence of electrical, heat and cold

loads and each meteorological influence form the following

matrix.

Based on the load prediction priorities derived from the

above correlation analysis for multivariate loads, the NWP

strongly correlated features are used as input for k-means

clustering to classify load scenarios, and the BI-LSTM network

is trained separately for each load scenario set for sub-scenario set

prediction modeling.

Xs �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xE

xH
xC

xTemp

xHUM
xWVEL

xWD

xGHI
xPW

xDp

xatm

xCT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xE(1) xE(2) / xE(n)
xH(1) xH(2) / xH(n)
xC(1) xC(2) / xC(n)

xTemp(1) xTemp(2) / xTemp(n)
xHUM(1) xHUM(2) / xHUM(n)
xWVEL(1) xWVEL(2) / xWVEL(n)
xWD(1) xWD(2) / xWD(n)
xGHI(1) xGHI(2) / xGHI(n)
xPW(1) xPW(2) / xPW(n)
xDp(1) xDp(2) / xDp(n)
xatm(1) xatm(2) / xatm(n)
xCT(1) xCT(2) / xCT(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(7)
Where xE is electrical load, xH is heat load, xC is cold load, xTemp

is temperature, xHUM is relative humidity, xWVEL is wind speed,

xWD is wind direction, xGHI is irradiance, xPW is rainfall

availability, xDp is dew point, xatm is atmospheric pressure,

and xCT is cloud type.

5 Multivariate load prediction model

5.1 LSTM neural network predictionmodel

LSTM is an improved model of Recurrent Neural Network

(RNN), which solves the gradient disappearance and explosion

problems of RNN, enabling the network to effectively handle

long-term time series data, improving the ability to handle

samples with long time series intervals or delays, as well as the

ability to handle non-linear data (Hongbo et al., 2022). The network

Frontiers in Energy Research frontiersin.org05

Yang et al. 10.3389/fenrg.2022.1037874

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1037874


structure of a typical RNN is shown in Figure 3. xt is the input, ht is

the output, ct is the memory state, A is the neural network module.

The key is that it can be used to connect previous information to the

current task, and to interact with information by stacking multiple

neural networks, passing each neural network module

corresponding information to the next one. However, the

disadvantage is that as the network is extended, the distance

between the relevant information and the current predicted

location gradually increases, which makes the RNN lose the

ability to learn information that is connected so far.

LSTM can learn long-term dependent information, the key of

which is the transfer of cell states, and it has the same repetitive way

as RNN, but redesigned memory units while retaining the original

structure of RNN, The LSTM sets up three control gates, input gate

it, output gate ot, and forgetting gate ft, which are used to select the

correction parameters of the error function of the memory feedback

with gradient descent, optimizing the weights of the self-loop and

keeping the dynamic change of the weights (Fulong et al., 2022), the

architecture is shown in Figure 4.

As shown in Figure 3, the output value ht−1 and the current
moment input value xt passed through the forgetting gate

from the implicit layer of the previous moment, the forgetting

gate reads the above information and outputs a value between

0 and 1 to each of the data in the cell state ct−1. 1 means

“complete retention” and 0 means “complete forgetting.”

Therefore, the forgetting gate can filter the previous data

and discard the useless information. The calculation

formula is as follows.

ft � σ(Wf · [ht−1, xt] + bf) (8)

Where Wf and bf are the weight matrix and bias vector in the

forgetting gate, respectively, σ is the activation function, and the

sigmoid function is used.

FIGURE 3
Single RNN hidden layer unit expansion structure diagram.

FIGURE 4
LSTM architecture.
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The new information is then subjected to a sigmoid function

to determine the data that needs to be input into the memory cell,

while a new candidate state ~ct is constructed through A. The

calculation formula is as follows.

it � σ(Wi · [ht−1, xt] + bi) (9)
~ct � tanh(Wc · [ht−1, xt] + bc) (10)

Where Wi and bi are the weight matrix and bias vector in the

input gate, respectively,Wc and bc are the weight matrix and bias

vector in the cell state, respectively.

Then, update the cell state, first multiply the old state ct−1 and
ft to complete the screening of useless information to delete, and

then sum up the product of the calculated result it and the new

cell state value ~ct with the input gate, then get the current

moment cell state value, the calculation formula is as follows.

ct � ftct−1 + it~ct (11)

In addition, the implied layer data values ht passed to the next

moment are obtained using the new cell states ~ct processed by the

tanh function and the data ot classified by the sigmoid function,

the calculation formula is as follows.

ot � σ(Wo[ht−1, xt] + bo) (12)
ht � ot*tanh(ct) (13)

Where Wo and bo are the weight matrix and bias vector in the

output gate, respectively.

5.2 BI-LSTM prediction model

Both RNN and LSTM can only predict the output of the next

moment based on the temporal information of the previous

moment, but the output of the current moment is not only

related to the previous state, but also may be related to the future

state. BI-LSTM is a combination of a forward LSTM and a

backward LSTM, and its architecture is shown in Figure 5. It

can be viewed as a two-layer neural network, with the first layer

serving as the starting input for the series from the direction of

the input, and the second layer serving as the starting input from

the direction of the output.

To splice and combine the backward-conducted information

vector [S0′, S1′,/, S′t] with the forward-conducted information

vector [S0, S1,/, St], so that the whole prediction process can

take into account the bi-directional information, deepen the

understanding of data features, and thus improve the

prediction accuracy, and its splicing and combination

structure is shown in Figure 6.

5.3 Step-by-step prediction of multiple
loads

The prediction priority of the multiple loads in the IES

can be determined based on the cumulative correlation

coefficient φi. Take electric load as an example, select

electric load as the benchmark, sum up the correlations of

heat, cold and two loads for electric load to get the

cumulative correlation coefficients φ1 of hot and cold

loads for electric load, and then select heat and cold loads

as the benchmark respectively to get the cumulative

correlation coefficients φ2 and φ3 of the selected loads

relative to the other two loads. The smaller the value of

cumulative correlation, the less coupling with other loads,

and vice versa. Then, the priority of multiple load prediction

can be determined according to the increasing order of the

cumulative correlation coefficients.

On the basis of the load prediction method of the above

priority, the idea of prioritized step-by-step prediction is

adopted, as the electrical and cold loads have the weakest

FIGURE 5
BI-LSTM architecture.
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correlation for heat loads, followed by electrical and heat

loads for cold loads, and again by heat and cold loads for

electrical loads. Accordingly, the predicted heat load can be

considered first, and the predicted heat load is first used as

input combined with the NWP characteristics of the strong

correlation of the cold load and the load mean value series of

the first 16 time points of the prediction period for the

prediction of the cold load in the set of sub-load sc.

Secondly, the predicted hot load and cold load are used as

the input combined with the strong correlation NWP

characteristics of the electric load and the load mean value

series of the first 16 time points of the prediction period to

predict the electric load. Finally the overall prediction results

of the multiple loads are obtained, where the overall

prediction process is shown in Figure 7.

6 Example analysis

6.1 Data source

Example load data from Campus Metabolism for the Temp

campus of Arizona State University from 1 January 2019 at 00:

00 h to 31 December 2019 at 24:00 h for electricity, heat and cold

(Arizona State University, 2022), Meteorological data were

obtained from the National Climatic Resources website for the

Tempe campus location (U.S. Department of Energy, 2022),

including temperature, relative humidity, wind speed, wind

direction, irradiance, rainfall availability, dew point,

atmospheric pressure, and cloud type, at 15-min sampling

intervals.

6.2 Model evaluation metrics

In this paper, Root Mean Square Error (RMSE), Mean

Absolute Percentage Error (MAPE) and Mean Absolute Error

(MAE) are selected as the evaluation indexes, and the expressions

of the specific evaluation indexes are as follows.

RMSE �















1
N

∑N
t�1
(yt − y′

t)2
√√

(14)

MAPE � 1
N

∑N
t�1

∣∣∣∣∣∣∣∣y′
t − yt

yt

∣∣∣∣∣∣∣∣ × 100% (15)

MAE � 1
N

∑N
t�1

∣∣∣∣y′
t − yt

∣∣∣∣ (16)

Where yt is the actual value, y′
t is the predicted value, t is the

sampling moment, N is the sample size.

6.3 Load scenario set division results

Based on the results of gray correlation degree analysis in this

paper, the highest priority electric load is used as the basis for the

division of load scenarios, and the similar fluctuating sets of load

for 12 months of a year are obtained according to the similarity

and fluctuation division of load sequences. Among them, the load

of a year is divided into four sets by month as shown in Table 1.

The correlation degree analysis of the strongly correlated

NWP features of the multivariate loads is required before the load

scenario set division, based on the results of the gray correlation

degree analysis, as shown in Table 2. The results show that the

FIGURE 6
BI-LSTM bi-directional conductive splicing combinatorial architecture.
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strength of the correlation between eachmeteorological influence

factor and the electric, heat and cold loads varies, so it is

necessary to correspond the meteorological influence factors

to the load types in a reasonable way when prediction.

Based on the results of the strong correlation NWP

fluctuation analysis of multiple loads, the NWP features of

each load are input into the k-means clustering model to

obtain the clustering cluster division of each load under each

fluctuation set and train the BI-LSTM model separately for each

cluster to realize the sub-load scenario set prediction.

6.4 Multiple load prediction priorities

Since the paper is mainly based on the coupling

characteristics of multiple loads to prioritize the single load

sequence for load prediction, the coupling relationship of

multiple loads obtained based on gray correlation analysis is

shown in Table 3. The influence of day type information and

meteorological influences on the degree of load coupling is taken

into account. For the first predicted heat load, six meteorological

factors with the highest correlation are selected for prediction,

and then the cold load is predicted iteratively using the predicted

heat load data and the corresponding meteorological influences

on the cold load. And so on, ensuring that each load forecast from

the second priority load forecast onwards iterates over the

previous load forecast results and the newly added

meteorological impact factors. The following results can be

obtained from Table 3: φ1 = 1.4255、 φ2 = 1.3561、 φ3 = 1.3596.

6.5 Analysis of experimental results

6.5.1 Prediction results for load scenario set
partitioning

According to the idea of differentiated priority prediction, the

heat load is first predicted. Prediction method 1: A sequence of

meteorological factors strongly correlated with the heat load and

a sequence of heat load history data are used as inputs, where the

input meteorological factors are forecast data for the forecast

period and the heat load history data are measured data for the

4 hours before the forecast period. Prediction method 2: Extract

the strongly correlated meteorological element sequences within

the similar fluctuation set with time interval of 1 hour by day as

the input of k-means clustering model for load scenario set

division, and train the model separately for prediction by load

scenario set according to the division result, at which time the

input is the same as predictionmethod 1. In order to highlight the

FIGURE 7
Flow chart of multivariate load data prediction.
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effect of clustering division, 2 days per month are selected for

load prediction for similar fluctuation concentration at this time,

and the load prediction results for 6 days are obtained, as shown

in Figure 8, which shows that the prediction curve of the

proposed prediction method in this paper is closer to the

actual value curve.

Among them, the error evaluation indexes of the prediction

results are shown in Table 4. The errors obtained by prediction

method two based on load scenario set division are smaller

compared with those obtained by prediction method 1, in

which MAPE is reduced by 1.59% on average, RMSE is

reduced by 0.14 MMBtu·h−1 on average, and MAE is reduced

by 0.11 MMBtu·h−1 on average.

6.5.2 Prediction results for load scenario set
partitioning

Prediction results base on heat load, the coupling

characteristics are considered for the prediction of cold load

taking into account the priority of multiple load prediction. In

this case, due to the consideration of the coupling characteristics,

the prediction results of the heat load, as well as the strongly

correlated meteorological characteristic series and the actual cold

load series of the first 4 hours of the prediction period are used as

inputs. The prediction method 1 that directly predicts

considering the coupling characteristics, the prediction

method 2 that divides the set of load scenes without

considering the coupling characteristics, and the prediction

method 3 that considers both the coupling characteristics and

the division of the set of load scenes are obtained. The prediction

results are shown in Figure 9.

A comparison of the results of multiple prediction methods is

shown in Table 5, where the prediction method 2 without

considering the coupling characteristics is less effective, with

the highest average absolute percentage error reaching 10.26%,

prediction method 3 has the smallest prediction error because it

considers the coupling characteristics of multiple loads and

divides the set of load scenarios. Compared with the

prediction method 1, the MAPE was reduced by 2.06%, RMSE

by 278.93 Ton, and MAE by 188.82 Ton on average, compared to

prediction Method 2, MAPE is reduced by 2.98% on average,

RMSE by 219.30 Ton on average, and MAE by 389.47 Ton on

average.

According to the above obtained heat and cold load

prediction values, the electric load is predicted by

considering the coupling characteristics. In this case, the

electrical load forecast inputs include the forecasted hot

and cold loads as well as strongly correlated meteorological

characteristics and measured electrical load data for the first

4 hours of the forecast period. As the coupling characteristics

and load scenario set division are considered, the same three

prediction modes as the cold load are obtained, and the

prediction results are shown in Figure 10. It can be seen

that the average absolute percentage error of prediction

method 3 decreases by 0.55% and 0.66% on average

compared with prediction method 1 and prediction method

2. Respectively, which is due to the fact that prediction method

3 takes into account the characteristics of multi-energy

TABLE 1 Results of load similar fluctuation set division.

Fluctuation set Fluctuation set 1 Fluctuation set 2 Fluctuation set 3 Fluctuation set 4

Month Jan Apr Jun Feb Mar May Jul Aug Sep Oct Nov Dec

TABLE 2 Correlation analysis between multivariate load and NWP characteristics.

Meteorological factors Data correlation

Temp HUM WVEL WD GHI PW Dp atm

Electrical load 0.9468 0.8814 0.8963 0.9171 0.7887 0.9030 0.6315 0.9572

Heat load 0.8729 0.8975 0.8930 0.8811 0.7866 0.8587 0.6304 0.9339

Cold load 0.9522 0.8442 0.8707 0.8999 0.8010 0.9116 0.6362 0.8899

TABLE 3 Correlation analysis between multiple loads.

Load type Data correlation

Electrical load Heat load Cold load

Electrical load 1.00 0.7110 0.7145

Heat load 0.7110 1.00 0.6451

Cold load 0.7145 0.6451 1.00
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coupling in IES and uses the remaining two loads as

references, which in turn improves its prediction accuracy.

Due to the consideration of multivariate load coupling

characteristics and the division method of load scenario set,

the prediction results of prediction method 3 have less

prediction error than the other two prediction methods,

This is mainly reflected in the peak and valley hours of the

load, and the prediction method 3 is more reflective of the

actual load variation, which reflects that the prediction

method considering the division of load scenarios and

taking into account the coupling characteristics is more

practical for IES multi load prediction. The electrical load

FIGURE 8
Heat load prediction results.

TABLE 4 Comparison of heat load prediction results.

Predictive
models

MAPE% RMSE/MMBtu·h−1 MAE/MMBtu·h−1

Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4

Prediction method 1 8.30 6.45 5.42 7.06 0.56 0.51 0.37 1.20 0.45 0.40 0.30 0.91

Prediction method 2 5.99 5.53 4.02 5.32 0.41 0.44 0.32 0.93 0.32 0.34 0.23 0.70

TABLE 5 Comparison of cold load prediction results.

Predictive
models

MAPE/% RMSE/Ton MAE/Ton

Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4

Prediction method 1 10.25 4.96 2.91 6.38 1,588.35 507.95 405.03 182.63 1,098.61 387.25 298.79 137.25

Prediction method 2 5.65 6.30 5.97 10.26 807.49 602.23 729.67 294.12 601.08 445.95 581.71 218.56

Prediction method 3 4.22 4.07 2.96 5.00 623.17 411.43 391.35 142.28 454.17 294.21 302.75 115.49
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forecast errors are shown in Table 6. Although the electric

load prediction errors obtained by the three prediction

methods are not significantly different, the prediction

errors obtained by the prediction method considering

coupling characteristics and load scenario set division are

smaller.

FIGURE 9
Cold load prediction results.

FIGURE 10
Electrical load prediction results.
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7 Conclusion

1) In order to improve the accuracy of multivariate load

prediction, this paper proposes a similar fluctuation

feature set partitioning method considering the coupling

characteristics of multivariate loads. By studying the

coupling strength between multiple types of energy in

IES to determine the prediction priority of multiple

loads, the interactive coupling between electric, heat and

cold loads is fully considered. The NWP features with

strong correlation with multiple loads are obtained by

gray correlation analysis, and k-means clustering is

performed using the inter-set NWP as input, and fine-

grained modeling is performed for each cluster. The

analysis of the arithmetic examples leads to the

following main conclusions.

2) Based on the load similar fluctuation set division method

proposed in this paper, four fluctuation sets are

obtained. The load fluctuation types within each

fluctuation set are similar, and the load scenario set is

divided based on the k-means clustering model for each

load similar fluctuation set. And according to the results

of the above analysis, the priority of load forecasting is

considered, and the heat load, cold load and electric load

are predicted step by step according to the fluctuation set

and load scenario set respectively.

3) The prediction results based on multiple prediction

methods show that the average absolute percentage

errors of electric, heat, and cold loads are 2.85%,

5.22%, and 4.06% for the prediction methods

considering the division of load scenario sets and

coupling characteristics in the overall prediction

results of four load similar fluctuation sets. The

average absolute percentage error is reduced by

0.66%, 1.53% and 2.99% respectively compared to the

prediction method considering only load scenarios,

compared with the prediction method without

considering load scenes, its average absolute

percentage errors are reduced by 0.55%, 1.53%, and

2.07%, respectively, which verifies the effectiveness of

the prediction method considering the division of load

scenes set and coupling characteristics.

With the popularity of IES and the development of

interconnected IES, the division of IES types can be

considered in the subsequent study so as to realize the

collaborative prediction among multiple IESs.
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TABLE 6 Comparison of electrical load prediction results.

Predictive
models

MAPE/% RMSE/kW MAE/kW

Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4

Prediction method 1 3.93 3.53 3.27 2.85 1,215.23 892.00 945.34 552.68 998.04 750.63 760.40 463.27

Prediction method 2 4.14 3.04 3.39 3.47 1,493.70 951.83 1,145.31 663.33 1,034.97 643.35 752.23 541.11

Prediction method 3 3.51 2.73 3.00 2.14 1,330.08 919.35 949.03 486.67 897.73 588.18 686.75 337.22
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