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Introduction

The needs of modern coastal communities exert high pressure on the ecosystem

services that are naturally provided nearby, putting their future socio-economic

development at risk. Over the last hundred years, the population and the economy of

the coastal states of Mexico have been growing rapidly due to internal migration. It is

estimated that by 2030 the total population of Mexico´s coastal states will have reached

60.1 million (Azuz-Adeath et al., 2019). Satisfying the demand for essential services

(energy, water, and food security), maintaining ecosystem functionality, and the

socioeconomic activities of its communities is a huge challenge. In Mexico, it is

estimated that approximately 32% of the population lives in “energy poverty” or has

poor quality electricity, making it impossible for them to improve their quality of life

(García-Ochoa and Graizbord, 2016). A significant number of these communities are

located near the coasts and are vulnerable to climate change, so their adaptation is a

priority (Masson-Delmotte et al., 2021).

Renewable energies include many promising options that can mitigate global

warming by reducing our dependence on fossil fuels (IRENA, 2021). Diversification

and modernization of the energy matrix, improving affordability and efficiency, are of

great importance, and marine renewable energies (MREs) can play a crucial role in this.

The 1.5% increase in global installed renewable capacity in 2020 was 2.54 TW

(representing 35.7% of global installed capacity). Although quite promising, efforts

still need to be accelerated to reach the targets to mitigate average carbon emissions

by 3.5% per year and reach net zero by 2050 (IRENA, 2021; Europa Publications, 2022)

(IRENA, 2021). The reserves of MRE are enormous, with vast potential in the seas and

oceans around the world that could enable coastal communities to foster their social and

environmental resilience through the development of the blue economy. The creation of

multipurpose clusters of MRE systems and coastal industries, such as desalination and

aquaculture, could generate many beneficial by-products that improve energy, water, and

food security and stimulate the commercialization and competitiveness of the emerging

MRE sector (LiVecchi et al., 2019). However, techno-economic challenges, such as the
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commercial-scale performance, and the high levelized cost of

electricity (LCOE) related to higher capital, maintenance, and

operating expenses, are obstacles to the deployment of MRE

hybrid projects (Babarit et al., 2018). Furthermore, there are

other challenges, related to the uncertainties of the potential

impacts MRE deployment could have on the coastal

environment, society, and the economy (Martínez et al., 2021).

This work evaluates the sustainability criteria of marine

energy harnessing through an interdisciplinary approach that

identifies the main technical, environmental, social, and

economic components to foster the deployment of marine

renewable technologies in coastal areas of Mexico.

Off-grid hybrid systems for marine
renewable energy harvesting

Mexico has a coastline of around 12,000 km, where a variety

of MREs offer significant energy potential for 91–100% of the

time, such as Thermal Gradient Energy (TGE), Salinity Gradient

Energy (SGE), Ocean Currents Energy (OCE) with 0.5–1 kW/m2,

Tidal Energy (TE), Wave Power (WP) with 10–20 kW/m, and

Offshore Wind Energy (OWE) (Hernández-Fontes et al., 2019;

Posada-Vanegas et al., 2019). These energy resources compare

relatively well with other renewable energies (Garduño-Ruiz

et al., 2021).

Depending on their physical nature, weather, and climatic

conditions, the various types of MREs have different degrees of

inter- and intra-annual variability in their spatio-temporal

average energy availability. For example, in latitudes where

TGE is feasible there is generally low intra-annual variability

because the mean sea temperature is practically constant at

depth, 800–1,000 m, and can be considered as “base load”. On

the other hand, WP is strongly related to the areas where the

waves originate, meaning high seasonal dependence and mean

annual variability. Figure 1A) shows the monthly variability of

three MREs, solar and wind energy in Cozumel and Baja

California, Mexico. It can be seen that TGE has low monthly

variability compared to ocean currents, wave energy, or solar

energy. It is important to note that in regions where the

minimum potential for wave energy generation is present, it

coincides with the maximum potential of other renewable

resources that can be harvested, as solar or ocean currents.

Power systems that combine renewable energies could make it

possible to reduce monthly variations, allowing a more providing

continuous electricity generation throughout the year. For such

continuous operation, the harnessing of the MRE can be co-

localized with other renewable energy sources, non-renewable

energy sources, or energy storage technologies.

The combination of different energy sources in an off-grid

system is known as hybridization, and these promising options

would thus become economically more viable and, therefore,

more attractive to investors. The main function of hybridization

is to compensate for daily and monthly fluctuations in electricity

generation. However, since up to 60% of the total cost of an off-

grid system comes from the energy storage system, it is vital to

determine the optimal size and the right degree of hybridization

(EERE, 2021; Olmedo-González et al., 2022).

Most often, electricity is supplied via centralized generation

(large-scale generation), with power plants distributing electricity

through electric power gird. However, distributed generation

(on-site generation) has been gaining importance as renewable

energies are developed (Gorr-Pozzi et al., 2021). Off-grid systems

and mini-grids or microgrids can generate electricity efficiently

FIGURE 1
(A)Mean monthly variability for different MREs in Cozumel and Baja California. Data taken from CEMIE-Oceano research (Garduño-Ruiz et al.,
2021; Gorr-Pozzi et al., 2021; Olmedo-González et al., 2021; Tobal-Cupul et al., 2022). Note: The power units are “normalized” because the graph
only represents the power variation considering a minimum power generation of 0.5 units. (B) An off-grid, hybrid energy system for isolated
communities.
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as they are located close to the point of consumption. They are

considered an attractive solution for isolated areas lacking

electricity services, where the installation of power lines is not

profitable.

In many developing countries, it is common to find

communities lacking a quality electrical interconnection along

the coastline (Alstone et al., 2015). The cost of deploying more

traditional electrical infrastructure to provide a service for such a

small number of inhabitants and the distance between the

communities and the nearest cities mean that off-grid systems,

in particular, are a potentially cost-effective option for these areas

and could meet part of the electricity demand of isolated

communities in Mexico. For example, the fishing community

of Puertecitos in Baja California, has only 80 inhabitants.

Electricity is supplied by a 60.2 kW hybrid microgrid

(55.2 kW solar PV/5 kW Wind energy) and a 522 kWh

battery energy storage (Cota-Soto et al., 2017). The Inter-

American Development Bank (IDB) co-financed 11 projects

for rural electrification in Latin America and the Caribbean

for communities with 100–7,000 inhabitants (five now

operating and six still being developed) (Graham et al., 2021).

Off-grid systems offer the advantage of using emerging

technologies for power generation, as their power rating (kW

to MW) allows test prototypes in field conditions of an

operational environment.

Off-grid systems are quite versatile since their configuration

can be adapted to the local community’s needs, even if energy

demand grows. Figure 1B shows an off-grid renewable energy

system with a hybrid renewable energy source, a backup power

source (typically a non-renewable system, such as a diesel

generator), an energy storage system (e.g., batteries), and a

power conditioning system (a regulator DC/DC, DC/AC),

(Sawle et al., 2018). For the design and optimization of such

systems, several methodologies have been suggested (Siddaiah

and Saini, 2016). These focus onminimizing costs by maximizing

generation time and reducing energy storage capacity.

Furthermore, others also take into account social and

environmental aspects to try to overcome potential negative

impacts on ecosystems.

A policy framework is needed for national governments to

unite countries internationally to commit to a just and

inclusive energy transition that strengthens the flow of

finance and attracts investors, capacity, and technologies.

Five renewable energy innovation centers were created

following the Mexican Energy Transition Law of 2013, to

contribute to the growth and diversification of the national

energy sector. The Mexican Center for Ocean Energy

Innovation (CEMIE-Oceano) has been evaluating the

possibilities of MRE, conducting studies on potential sites

for implementation, taking into account environmental and

social impacts. In 2017, the Mexican government developed a

“Road Maps” series for ocean energy implementation (IEA-

OES, 2022).

Criteria for the deployment of
sustainable marine renewable
energies

Availability of MRE resources, environmental constraints,

regulatory and legal aspects, protection instruments, and

maritime spatial planning are factors to be considered when

evaluating potential sites for hybrid MRE systems. Most of these

factors are site-specific. When considering the different criteria

for sustainable MRE deployment, the potential benefits, and

adverse effects can be evaluated to promote solutions that

mitigate negative impacts. Table 1 shows an overview of the

advantages and disadvantages of the technical, environmental,

economic, and social components of deploying different MRE

systems in Mexico. In turn, these are classified by criteria rated

according to a color-coded for each MRE. Green indicates low

risk, relative ease of deployment or few additional requirements,

while red indicates high risk and less ease of implementation or

the need for more conditions.

Discussion

Improving the sustainability of a hybrid MRE generation

plant should consider all the components in Table 1 and analyse

them using an interdisciplinary and holistic vision. This must

reduce the likelihood of failure or potential impacts of MRE

projects (Wang and Zhan, 2019).

From the ratings of all the criteria considered, the capacity

factor, the climate change potential, and the exclusion zone are

the features that most highly endorse MRE implementation in

Mexico. However, the MRE variability, the associated potential

impacts on threatened ecosystems, and the relatively low

generation of by-products highlight the need for continued

efforts in developing the feasibility of deploying sustainable

energy harvesting devices. Among all current MRE

technologies, the most suitable for its sustainable deployment

at potential coastal sites in Mexico are TGE and OWE.

TGE offers a low annual variability, and its capacity factor

gives a base load of annual energy production and a low LCOE.

Furthermore, TGE presents positive environmental aspects, such

as negative-CO2 emissions, and the TGE by-products make it

more viable (e.g., freshwater production, aquaculture, and seawater

conditioning. OWE is the most advanced MRE technology due to

its learning rate, which reflect an accelerated increase in the

installed capacity of commercial systems tested in the operating

environment. It also has a competitive LCOE and more mature

commercial deployment than other MREs. In contrast, the

deployment of SGE systems presents several challenges as it

still lacks technological development, has a high environmental

risk related to its low carbon mitigation capacity, and carries a risk

to nearby ecosystems associated with brine spills from the

discharge pipelines. In addition, SGE is less economically
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attractive, primarily due to its high capital, operating, and

maintenance costs. It is suggested that TGE and OWE

prototypes-technologies be tested under field operating

conditions to validate their performance, to have site-specific

information on environmental and social impacts, and improve

their profitability.

Mexico has substantial detailed information on the MREs

available around its coasts. Improving capacity factors and

energy production by more efficient MRE prototypes adapted

to Mexico’s climatic conditions will directly impact its

technological capabilities. The combination of electricity

generation from various MRE sources, or hybridization, and

their integration into off-grid systems will compensate for the

variability of the electricity generated and allow isolated

communities on the coast of Mexico to have access to this

vital resource in a sustainable way. The use and

commercialization of by-products in such a hybrid plant will

boost the blue economy, creating numerous benefits and

accelerating the pre-commercial stage. These conditions could

increase the installed capacity of MRE systems and strengthen

local human capabilities. In turn, this could improve credibility

in MRE and increase confidence in investing in it in the medium

term, as well as the perception and social acceptance of using

these technologies. Joint work between the different levels of

government, the private sector, academia, and the local

population must be strengthened to develop public policies

and regulations that encourage the sustainable installation of

hybrid MRE systems in Mexico.
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Components Criterion Thermal
gradient
energy
(TGE)

Salinity
gradient
energy
(SGE)

Wave
energy
(WE)

Ocean
currents
energy
(OCE)

Tidal
energy
(TE)

Offshore
wind
energy
(OWE)

References

Technical Low variability (Huante et al., 2018; Alcérreca-Huerta
et al., 2019; Hernández-Fontes et al.,
2019; Gorr-Pozzi et al., 2021;
Bernal-Camacho et al., 2022)

Need for Energy
Storage

(Zhou et al., 2013; Gorr-Pozzi et al.,
2021; Olmedo-González et al., 2022)

Technology
readiness
level (TRL)

IEA-OES, (2022)

Capacity Factor (%) (Garduño-Ruiz et al., 2021; Gorr-Pozzi
et al., 2021; IEA-OES, 2022;
Tobal-Cupul et al., 2022)

Off grid system
viability (Power
rating)

(Sheng et al., 2017; IRENA, 2019, 2020;
Gorr-Pozzi et al., 2021)

Efficiency (W/m2) (Alcérreca-Huerta et al., 2019;
Hernández-Fontes et al., 2019)

Environmental Climate change
potential
(gCO2 equiv/kWh)

(Rau and Baird, 2018; Paredes et al.,
2019; Ma et al., 2022; Smoot, 2022;
Tobal-Cupul et al., 2022)

Affection to
threatened
ecosystem (% of
affection)

Martínez et al. (2021)

Economic LCOE ($/kWh) (Garduño-Ruiz et al., 2021; IEA-OES,
2022; Tobal-Cupul et al., 2022)

Social Food and services
(by-products)

Tobal-Cupul et al. (2022)

Social perception Tobal-Cupul et al. (2022)

Exclusion zone (m2) (Kim et al., 2012; Gourvenec et al., 2022;
Hernández Galvez et al., 2022)
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