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The rise of electric vehicles (EVs) has amassive impact on the electricity grid due

to the electrification of vehicles in the transportation sector. As a result, various

techniques are needed to minimize the effects of charging on the grid. One of

these techniques is having intelligent coordination between the various

components of the EV charging network. This ensures that the network has

enough electricity to support the charging needs of the vehicles. This article

provides an overview of the many aspects of the EV industry and its charging

infrastructure. It also provides a step-by-step approach for implementing the

Vehicle to Grid (V2G) deployment, the utilization of recordings from the data by

the EV battery through Artificial Intelligence and the cost-benefit analysis from

effective utilization of the V2G method. The paper also explores the various

aspects of the EV market and the role of aggregators and consumers. Finally, it

assesses the possibility of expansion of the EV charging and grid integration

system and outlines its challenges and solutions.

KEYWORDS

electrification, charging infrastructure, V2G, artificial intelligence, cost analysis

OPEN ACCESS

EDITED BY

Vikram Kulkarni,
SVKM’s NMIMS University, India

REVIEWED BY

Gaddam Sridhar,
Jawaharlal Nehru Technological
University, Hyderabad, India
Srikanth Velpula,
SR University, India
Rajendhar Puppala,
Smt. Indira Gandhi College of
Engineering, India
Shiva Rama Krishna K.,
J.B. Institute of Engineering &
Technology, India

*CORRESPONDENCE

Hossam Kotb,
Hossam.kotb@alexu.edu.eg

SPECIALTY SECTION

This article was submitted to Smart
Grids,
a section of the journal
Frontiers in Energy Research

RECEIVED 16 November 2022
ACCEPTED 08 December 2022
PUBLISHED 11 January 2023

CITATION

Dharavat N, Golla NK, Sudabattula SK,
Velamuri S, Kantipudi MVVP, Kotb H and
AboRas KM (2023), Impact of plug-in
electric vehicles on grid integration with
distributed energy resources: A review.
Front. Energy Res. 10:1099890.
doi: 10.3389/fenrg.2022.1099890

COPYRIGHT

© 2023 Dharavat, Golla, Sudabattula,
Velamuri, Kantipudi, Kotb and AboRas.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms. Abbreviations: ANN, Artificial neural network; B2G, Battery to Grid; BCS, Battery Charging Station; BSS,

Battery Swapping Station; CEM, Consecutive Energy Management; CI, Computational Intelligence;
CNN, Convolutional Neural Networks; DGs, Distributed Generators; EGOA, Extended Grasshopper
Optimization Algorithm; ESS, Energy Storage System; EV, Electric Vehicle; EVCS, Electric Vehicle
Charging Station; FTS, Fuzzy Time Series; G2V, Grid to Vehicle; GOA, Grasshopper Optimization
Algorithm; HSLC-PS, Hybrid Soccer League Competition–Pattern Search; LSTM, Long short-term
memory; MINLP, Mixed Integer Non-Linear Problem; ML, Machine Learning; PSO, Particle Swarm
Optimization; QoS, Quality of Service; SVM, Support Vector Machine; V2G, Vehicle to Grid; VPP, Virtual
Power Plant.

Frontiers in Energy Research frontiersin.org01

TYPE Review
PUBLISHED 11 January 2023
DOI 10.3389/fenrg.2022.1099890

https://www.frontiersin.org/articles/10.3389/fenrg.2022.1099890/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1099890/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1099890/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1099890/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.1099890&domain=pdf&date_stamp=2023-01-11
mailto:Hossam.kotb@alexu.edu.eg
mailto:Hossam.kotb@alexu.edu.eg
https://doi.org/10.3389/fenrg.2022.1099890
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.1099890


Introduction

Due to the rising concerns about the environment and the

scarcity of fossil fuels, the electrification of the transportation

sector has attracted wide attention. However, the rapid growth of

these vehicles has been hampered by the lack of charging

facilities. Various policies and guidelines have been established

to encourage the development of EVs on a global scale Nallusamy

et al. (2016). By 2030, the world’s population is expected to reach

approximately 130 million. Due to the rapid growth of EVs, the

existing power grid infrastructure is expected to face significant

challenges in handling the penetration of these vehicles’ loads

IEA (2022). The grid’s components might break down, and the

transformer can become overloaded as a result of the successive

increase in its dependence. Although renewable energy sources

are considered an ideal solution for addressing the issue of fossil

fuel shortages, their intermittent nature could make their

operation challenging to manage. Dharavat et al. (2022), PEVs

(plug-in electrical vehicles) also have challenges such as restricted

range, a shortage of charging stations, less power, high cost (due

to expensive batteries), expensive insurance, high maintenance,

and pollution (due to battery toxicity) as well as the fact that not

all energy is generated from renewable sources. PEVs have

difficulties in India owing to poor market penetration, high

manufacturing costs owing to the drop in the value of the

rupee, an inadequate infrastructure, and the need to import

lithium batteries from other nations.

High-capacity energy storage devices are required to support

the expansion of the EV network. These systems can be

integrated into the grid and provide additional storage

capacity. The charging infrastructure connects the transport

network and distribution system. It’s crucial to study charging

loads and predict their needs while designing electric vehicle

charging stations (EVCS). Installing EVCS will raise distribution

system demand, which will affect their performance. Integrating

local renewable power into the grid may reduce the adverse

effects of charging load and reduce greenhouse gas emissions.

The increased demand, however, may not be able to be met at

certain times of the day due to the stochiastic nature of renewable

energy sources like solar, wind, etc. Cleary and Palmer, (2020).

The stability of the power grid will be more affected by the

intermittent nature of RES and the lack of coordination among

EVs. On the other side, the energy storage capacity of EVs may be

used to stabilize the power grid, particularly when collaborating

with RES to mitigate power transitions, therefore lowering both

energy costs and carbon dioxide emissions. Increasing the

percentage of RES integrated into the grid is possible in a

variety of ways, but the best one, in terms of both cost and

complexity, is to store electricity generated by electric vehicles. By

mitigating the negative effects of unplanned EV charging on the

grid and enhancing the unpredictability of RES, benefits Reddy

and Vijayakumar, (2019). To assist distribution operators in their

decision-making processes in the event of system violations, it is

crucial to study the consequences of quick charging for EVs. The

use of charging stations that are integrated into the smart grid can

help to minimize air pollution and provide better energy

management.

Smart grid operators must determine an ideal power pricing

by examining EV charging behaviour with the enormous

quantity of electric energy required by EVs. Regular and

irregular EV users may be distinguished from one another

from the standpoint of charging behaviour Chung et al.

(2018). There is some consistency in how common users

charge. The quantity of each charge is constant, and it occurs

at a specific time each day. Unusual users do not charge in a

predictive manner. V2G technology can also help to reduce the

impact of additional load demand on the grid. This mode of

operation allows the grid to receive and utilize the collected

energy from the vehicles. Due to their environmental benefits,

energy storage is becoming an integral part of the electric vehicle

industry. Its continuous use enables the grid to monitor and

control the distributed generation network. Although the grid

operation can be beneficial for consumers, there’s a chance that

EV batteries could get damaged due to the discharge conditions.

To encourage the use of EVs, India is offering subsidies to its

buyers. But as the number of EVs on the road increases, so does

the need for lithium-ion batteries (LIBs), and therefore measures

must be made to guarantee safe battery disposal. This effort

contributes to India’s larger goal of making the country’s future

pollution-free EVreporter (2022) and the same given in Table 1.

Integrating EVs and the grid can be considered an efficient

energy management method. Doing so involves establishing a

smart contact connection between the grids and the vehicles.

This can help inminimizing the effects of varying load conditions

and improve the efficiency of the entire system.

The conventional power infrastructure cannot provide the

rising demand for energy needed to enable industrial innovation

and the rise in human living standards due to the ongoing

TABLE 1 Penetration of four wheeler EVs in 2022 EVreporter, (2022).

OEMs August September October

Tata Maotors 3845 3655 4277

Mg Motor India 316 286 450

Mahindra and Mahindra 17 112 15

Hyundai Motor India 73 75 82

BYD India 45 65 36

BMW India 25 28 6

Audi Ag 14 10 0

Kia Motors — 0 33

Mercedes Benz — 3 23

Others 4 28 13
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changes in the climate across the world. By integrating smart

communication, artificial intelligence, sensor and automated

control technologies with electricity infrastructures, the smart

grid is developing as the next-generation electrical grid to solve

these issues Sun et al. (2020). In contrast to traditional

optimization approaches, using Machine Learning to

coordinate EVs is more superficial and takes less time and

computational resources Shibl et al., (2020). The machine

learning algorithms can forecast the amount of electricity

EVCS will consume. Machine learning has been used because

of its capacity to use previous information to learn and recognize

patterns to make future predictions with minimum input from

the user. The use of these technologies for improving future

forecasts has yet to be realized and shown, despite the fact that

the majority of studies and implementations of ML/CI

techniques focus on energy use and associated costs, Shibl

et al., (2020). There is a need to emphasize and look forward

to the future mobility transition while deploying charging

infrastructure. They also believe that developing intelligent

charging technologies and measures to reduce range anxiety

are crucial components of the EV market strategy, as they

would promote the widespread use of EVs.

Non-etheless, EV drivers face range anxiety since charging

takes longer than filling a non-EV with petrol at a petrol station.

This delays the widespread adoption of EVs and directly results

from battery chemistry, charger limitations, and power

consumption requirements Wu, (2021). As a result, the BSS

model of battery exchange has been presented. Battery swapping

has been introduced at commercial and private stations by BSS

service providers, prompting academics to study the BSS

methodology and propose different operating systems and

optimization approaches.

Literature review

There was a period of phenomenal development for the EV

industry throughout the last decade. After the previous

COP26 summit, India pledged to bring its carbon emissions

to zero by 2070. India plans to have a 30% share of the private car

industry, a 70% share of the commercial vehicle market, and an

80% share of the two- and three-wheeler market in 2030,

originating through sales of EVs. The rising expense of fossil

fuels and increased environmental concerns, EVs have attracted

the public’s attention. EV owners may swiftly charge their

vehicles at home with the aid of charging stations. However,

these stations can also overload the grid due to their presence

(Bossche, 2010). An intelligent charging system should be

implemented to avoid this issue. It should use a strategy that

considers the varying factors that affect the charging process and

provide a reliable and cost-efficient method of operation.

N. Uddin and Islam, (2019) provide a fuzzy logic-based

intelligent power management controller that blends wind,

solar, and grid power with backup batteries. To assess the

suggested method, the smart energy management system uses

optimal fuzzy logic and is thus more economical than other

conventional methods.

Zahedmanesh et al., (2019), Proposed a model of VPP, which

includes parking spots for EVs, connected to the grid through

photovoltaic panels. A CEM-based strategy is explored in order

to assign a systematic and cost-effective energy management for

the VPP and to control the electric constraints for the power

systems. For both energy management and the delivery of

auxiliary services, the suggested CEM technique makes use of

hierarchies. To meet the needs of the commercial entities in the

neighborhood, meet the charging needs of the parking lot, and

optimize the VPP controller’s profit, the CEM’s structure

employs a daily scheduling strategy. The second-tier aids in

satisfying the technical needs of the power system via the

VPP’s provision of reactive power compensation (RPC).

Das et al. (2020) explores a multi-objective optimization

problem to establish the simultaneous placement and size of

DGs and FCSs, with limitations on the number of EVs in each

zone and the maximum number of FCSs achievable based on the

road and electrical network in the proposed system. In order to

reduce the cost of developing FCS, optimise power loss, and

enhance the voltage profile of the electrical distribution system,

the challenge is framed as a MINLP.

Gampa et al. (2020), For distribution systems, this work

proposes a two-stage GOA based Fuzzy multi-objective approach

to the size and location of DGs, Shunt Capacitors (SCs), and

EVCS. By addressing the voltage and current limits of the

distribution system and limiting the actual power losses to a

specific value, the fuzzy-based GOA algorithm determines the

optimal size and location of EV charging stations.

Zeb et al. (2020) explore the inclusion of all three categories

electric vehicle chargers, which are optimized to achieve the best

results by Controlling the electric vehicle load efficiently while

reducing installation costs, losses, and distribution transformer

loading. Probability has a role in the EV load due to the

unpredictable nature of vehicle users. The constrained non-

linear stochastic issue is solved using PSO. The model is

simulated using MATLAB and OpenDSS.

Dogan, (2021), This paper proposes a weighted sum of

Evolutionary-based multi-objective optimization technique for

substantially decreasing power loss, improving voltage level, and

enhancing the DG, EVCS, and ESS integration capacities. Also

presented a hSLC-PS optimization technique to improve the

optimization performance.

The overall load demand, the generating profiles of solar and

wind energy systems’ uncertainties and the DSTATCOM

operation capabilities of photovoltaic and wind generating

units are taken into account in this research. The potential EV

needs are also considered, the time of arrival and departure, the

battery’s original and current SoC configurations, the charging

methods used, and whether the battery was charged in a
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regulated or unregulated manner. To handle this complicated

planning model, an efficient and accurate bi-level Multiobjective

Ant Lion Optimizer (MOALO) solution for the planning model.

The MOALO solver has a bi-level structure, with upper-level

optimization aimed at maximizing the efficiency of renewable

energy sources and lower-level optimization aimed at

maximizing the efficiency of personal electric vehicles. The bi-

level MOALO solution takes into account sub objectives such as

reducing energy losses and maximizing energy from the main

grid Ali et al. (2022).

A micro-grid with a fleet of EVs and a confined vehicle-to-

grid application is the focus of this research. Chtioui and

Boukettaya (2020). The discharging mode is only used when

there is a high-demand situation with a long response time.

The micro-construction grid’s blocks are described and

modelled, as well as a simulation of their operation. The

research explores the charging and discharging scenarios

and the management strategies employed to govern the

power in this simulation.

Javed et al. (2020), present the configuration of V2G and the

fundamental concerns related to V2G, which are profoundly

analyzed in terms of Battery deterioration, Bi-directional

chargers, and charging stations using centralized control and

management of the battery system. In addition, the economic

cost and income from both the EV owner and the power grid are

explored, as well as the problems, benefits, and technologies

associated with V2G. The influence of V2G on power systems is

investigated in this study using typical test networks.

Based on the value-based pricing strategy, this research

proposes a unique methodology of placing DGs and V2G

parking lots in the most efficient locations at the same time

Mousavi-Khademi et al. (2020). The paper’s essential

contribution is the inclusion of pricing the DGs and V2Gs

using a value-based approach for the best position, as well as

the suggested optimal search algorithm. The network’s technical

issues, include improving the voltage profile and lowering the

losses, are addressed in this way by identifying and establishing

the best capacity of distributed production resources and electric

car parking spaces using value-based pricing to attract network

investment.

The article’s objective is to reduce power loss in the distribution

system when DG is present along with more strategic planning of

G2V and V2G operating modes of EVs. Velamuri et al. (2022). To

identify the optimal size of the DGs to be placed in the system, the

suggested method includes a smart charging mechanism, a voltage

stability index, and an EGOA. The electric vehicles are simulated by

taking into account the most important aspects, such as the EV SoC,

journey circumstances, EV battery capacity, and charging/

discharging levels.

The work presented here is the size and positioning of DGs in

the distribution system, with battery storage installed after the

DGs to sustain the grid Chellappan et al. (2022). The genetic

algorithm is utilized by radial node distribution systems, IEEE-

33, IEEE-69, and IEEE-118, to install the battery energy storage

system. At the same time, the heuristic technique PSO is

employed for the sizing and positioning of DGs.

Ravi and Aziz (2022), provides a summary of the current

V2G technology scenario and some potential ancillary services,

such as frequency regulation, voltage regulation, peak shaving,

load levelling, spinning reserve, congestion mitigation, renewable

energy storage, reduction of intermittentness, and curtailment,

that could be offered with an infrastructure that supports vehicle

grid integration.

Electric vehicle charging station
infrastructure

The global transportation industry is transitioning from cars

powered by traditional fossil fuels to vehicles with zero or ultra-low

exhaust emissions. We need a well-developed network of charging

stations (CSs), data analytics, intelligent decentralized power

generation units, and supportive policy initiatives to facilitate this

shift. It is crucial to design and locate a charging station to encourage

the widespread usage of electric cars and maximize the benefits of

cost-efficient, clean electricity from the grid and renewable energy

sources. The transportation industry is undergoing these three

transformations in terms of autonomous driving, shared mobility,

and electrification Ghosh. (2020). As a result, it is vital to consider

the interactions and synergies that may arise between these three

impending revolutions while designing the infrastructure for EV

charging. A new, considerable electrical demand is being added to

the power grid as EV usage rises, forcing infrastructure

improvements. Only the distribution grid transfers electrical

energy, restricting the amount of energy that may travel via the

transmission lines Zhang et al., 2011). The electrical grid must be

extensively rebuilt to accommodate the EV’s charging requirements.

Figure 1 represents approaches to the conceptualization of the

problem regarding the optimal location of EVCS and Figure 2

represents EV Charging Infrastructure.

Optimal allocation and size of charging stations is a

fundamental planning challenge for the electric vehicle (EV)

industry, with considerations including cost, distribution

network operational characteristics, and the needs of EV

drivers. For EVs to be extensively employed, a well-thought-

out charging infrastructure must be in operation. Figure 1 depicts

the many steps involved in designing a charging infrastructure.

The forecasting of pricing service demand at various times and

places throughout the day is to be measured precisely. Its

utilization must be known to determine how often a charger

has been used and how many charging cycles it has been

supported. Scheduling charging entails scheduling various

charging operations with the grid’s capacity and the projected

charging demand Brenna et al. (2020). Figure 3 represents

strategic charging network design: an overview and Figure 4

represents EV charging management structure.
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Management, development, and
optimization of charging infrastructure

Location and sizing considerations are vital in optimizing

charging infrastructure facilities. Large charging stations are

able to handle a greater number of EVs since they have the

capacity to house more chargers, but at increased electricity

consumption and building expense Iqbal et al. (2021). EV

battery capacity and power rates determine future charging

infrastructure requirements. The profitability and performance

of EVCS are directly correlated to the level of planning and

management that goes into the operations of the charging

FIGURE 1
Approaches to the conceptualization of the problem regarding the optimal location of EVCS.

FIGURE 2
EV charging infrastructure.

FIGURE 3
Strategic charging network design: An overview.
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stations. The first step in planning an EVCS is to engage in

creative thinking and decision-making at different levels. The

charging intensity, the expected number of charges, the

necessary storage area, the charging infrastructure, and the

planned energy storage system are all the factors to be

considered. Scheduling charging to support grid functioning,

reducing EV charging wait times, and providing a seamless

charging experience are all part of a well-managed charging

station network. Bhattacharjee et al., (2020). The infrastructure

for EVCS, including the distribution system, may be planned,

designed, simulated, and optimized using software like

MATLAB, HOMER, PVsyst, EVLibSim, etc. Together, EVLib

and EVLibSim offer a robust infrastructure for managing EV

charging operations at the station level via simulation Rigas

et al. (2018).

EV charging time reduction with fast,
ultra-fast, and battery swapping stations

The pace of EV adoption is crucial to the implementation and

profitability of fast and ultra-fast charging stations. Considering

that many would-be plug-in electric vehicle (PEV) buyers want

public charging times that are on par with traditional refuelling,

researchers and policymakers have concentrated on developing

rapid charging technologies that can handle larger power loads

Sadeghi-Barzani et al. (2014). The public’s adoption of EVs may

be significantly aided by the widespread availability of fast and

ultra-fast charging stations that reduce the charging time to an

acceptable level. However, there will be consequences for grid

stability, robustness, and efficiency if these technologies are

widely used Amiri et al., (2018). Another novel solution to the

issue of EVs taking extended periods to charge is the battery

swapping station (BSS), which allows drivers to change their

discharged battery for a fully charged one. In Iannuzzi and

Franzese (2021), a plan is presented for developing ultra-fast

EV charging infrastructure. It has a super-fast charging station

for EVs powered by a DC microgrid and uses batteries to store

energy. In addition to effectively supporting 800 V DC charging,

the system allows rapid EV charging in under 10 min. The

developed control system uses load-level managing electricity

use in order to ease the load on the AC power grid during high

demand. According to the system analysis, the ESS’s charging

power surpasses the grid in the case of a high arrival rate, making

it hard to lower the system loss rate successfully. For this reason,

to increase profit, the ESS configuration must be adjusted

according to the charging load. Optimization often entails

formalizing the issue in mathematics and then solving it using

an appropriate method. The EVFCS-RP problem is an

illustration of an evolutionary computation challenge, since it

involves maximizing both profitability and the prospect of

satisfying EV consumers. In this research, a multiobjective

EVFCS-RP mathematical model is developed to facilitate the

attainment of a satisfactory solution Shi and Lee (2015).

Intelligent scheduling of charging the
electric vehicles

The widespread adoption of EVs is often viewed as a key

component in developing intelligent transportation applications.

However, the widespread installation of EVCS presents a number

of issues with the electrical grid and other forms of public

infrastructure. The straightforward solution of installing

FIGURE 4
EV charging management structure.
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additional charging stations to boost overall charging capacity

does not work to mitigate the issue of protracted charging times

because of the strain that this would place on existing power grids

and the constraints imposed by the availability of physical space

Shahriar et al. (2020).

With more recent times, there has been a rising demand in

using data-driven methods for simulating electric vehicle

charging. As a consequence of this, methods are able to

recognize patterns in customer charging behavior in the order

to gain insights and the potential to do predictive analytics. As a

result, academics have emphasized creating modeling and

optimization-based intelligent scheduling methods to reduce

the need for public charging. Incorporating network for data

exchange, an optimization unit to cut down on wait times at

charging stations, and a prediction unit to help the optimization

unit will make the most informed decisions possible about

charging station placement choice feasible, are the three major

impediments to creating an efficient charging infrastructure

Sheik Mohammed et al. (2022).

Strategy-based charging station queue
management

It is of the utmost importance to manage and effectively plan to

charge the electric car at the nearest available charging station to

prevent situations in which there is a high demand for charging at

one charging station, while there is less demand at other

neighbouring stations. This will assist in the strategic management

of the queues of vehicles at EVCS. The delays at the charging stations

might be more efficiently managed and monitored with an efficient

communication network. A negotiating strategy based on agents was

developed to schedule charging at an available charging station and

allocate EVs to those stations. This system might be used to manage

the wait time at the charging station. To facilitate energy trading

between individuals and the supply of ancillary services to the grid,

Seitaridis et al. (2020) presented an algorithm for bidirectional smart

charging of EVs linked to the grid using bidirectional converters. A

combination of soft restrictions and optimization variables allows the

EV user’s preferences to be accounted for in the scheduling model.

Mathematical analyses show that taking into account user

preferences improved the overall income earned by the EV

scheduling scheme. In addition, the established user-centric model

increased the number of peer-to-peer energy transactions between

the EVs by nearly 90% and the number of ancillary services provided

to the grid by about 11% Seitaridis et al. (2020).

Infrastructure management
communication system

An optimal EV charging communication protocol is required

to provide the following functions when technological

innovations like “smart grid” and “V2G” are introduced

Dhianeshwar et al., (2017).

• Identifying the vehicle and simplifying the procedure of

paying the customer.

• Cost-effective optimization of the charging process is

achieved by determining the optimal charging slot and

settling on the most economical charging rates.

• Management of charger power rating to grid demand,

resulting from loading optimization.

• Vehicle-to-grid (V2G) technology assists the grid during

peak demand.

• The ability to charge users and compensate them for their

time and energy spent using V2G services.

Several parties, including utilities and vehicle manufacturers,

are involved in developing this communication protocol. A joint

working group made up of representatives from IEC TC69, ISO

TC22 SC3, and TC22 SC21 is addressing the standardization of a

communication protocol.

Artificial intelligence-based methods for
load forecasting

The operational conditions and equipment capabilities of

distribution networks are established based on the predicted

loads of EV charging. Therefore, it is crucial to strengthen the

distribution system’s consistence and efficiency by improving the

accuracy of load forecasts. Traditional, non-artificial intelligence

approaches, machine learning methods, and artificial intelligence

methods are the broad categories that may categorize the many

available techniques for load forecasting. The temporal features

of the load needs are often the foundation for non-AI

approaches. After then, long-term load demand forecasting is

usually achieved via statistical approaches Yang (2015). Also, the

non-linear properties, fluctuating power demands and their

time-dependent, unpredictable nature are becoming

increasingly apparent as EVs and renewable power production

equipment are integrated on a massive scale on the load side. Due

to the lack of consistency and precision in conventional

forecasting approaches, it is challenging to develop an

appropriate mathematical model that can represent the

correlations between predicting outcomes and influencing

factors.

Artificial intelligence algorithms that are data-driven rather

than model-based have shown promising growth in electricity

forecasting in recent years. A wide variety of approaches have

been used by researchers in power forecasting, including random

forests Huang et al., (2016); Lahouar and Ben Hadj Slama (2015),

BP neural networks, support vector machines, extended short-

term memory networks and convolutional neural networks

Choi et al., (2020). FTS and CNN are combined to provide a
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short-term load forecasting approach. On the other hand,

conventional CNN requires a lot of time to train and fails to

adequately capture the temporal information included in the

time series. An approach to load forecasting using a genetic

algorithm and an extended short-term memory network is

presented in Santra et al. (2019). The load curve is the final

product after carefully considering the input data as load-

demanding elements.

In contrast, the LSTM network augments each hidden-layer

neural unit with sophisticated gate components. Therefore, LSTM

training efficiency may be poor. The SVM technique suggested in

Barman andNalin Behari, (2020) for load demand forecasting uses

grey wolf optimization. SVM approach, on the other hand, when

the amount of training data is too large, its classification

performance may suffer from a lack of precision due to the

continuous nature of the data samples.

Automated charging scheduling using
machine learning

To prevent abrupt spikes in peak load demand, it is essential

that charging activity at charging stations be managed. V2G

technology and scheduled EVCS were the primary emphasis of

Dang et al., (2019), which also used reinforcement learning to

assess the operational benefit of EVs, also models the scheduling

of EV charging and discharging as a constrained Markov

Decision Process (CMDP). The constraint is to reduce the

cost of charging the EV while still ensuring it can be

completely charged, hence a limited charging/discharging

scheduling technique is being sought. Model-free safe deep

reinforcement learning (SDRL) is offered as a means to

resolve the CMDP. With the suggested method, familiarity

with randomization is not necessary. It uses a DNN for the

constrained optimum charging and discharging schedules

directly. The authors of Li et al., (2020) present a method

based on reinforcement learning to schedule constrained EV

charging times. The authors of Cong Zhang et al. (2021) posed

the issue of charging schedule creation as an NP-hard one and

then used reinforcement learning to solve it. It was recommended

that an intelligent pricing strategy be used at charging stations,

and an ANN was presented as a remedy for the issue with

charging patterns. Using the Q-learning technique, the authors of

Dang et al., (2020) determined that charging electric vehicles at a

fast-charging station connected to an intelligent grid was

optimum. The attractive feature is the intelligent charging

scheduling system, which considers in the state of charge, the

distance travelled, the proximity to charging stations, the number

of scheduled events, and the average speed. The scenario

simulator that creates the labelled datasets needed to train the

Machine Learning/Reinforcement Learning algorithms is a

unique part of the proposed approach as well, given the

scarcity of such datasets Viziteu et al. (2022).

The fields of machine learning and artificial intelligence

include the subfield of supervised learning, commonly known

as supervised machine learning. It is characterised by training

algorithms that properly categorise data or predict outcomes

using labelled datasets. Cross-validation is the iterative process of

adjusting a model’s weights when new data is added until the

model is well suited to the data. Predictions based on labelled

data may be made more accurately and save time with the help of

supervised learning models.

Unsupervised learning makes use of data that has not been

labelled. Patterns useful for handling cluster or association

difficulties are uncovered within the information. This is

especially helpful when domain experts lack knowledge of the

similarities present in a dataset. In popular use, methods like the

hierarchical, k-means, and Gaussian mixture models cluster data.

Machine learning includes the discipline of reinforcement

learning. It involves appropriately increasing rewards in a

certain circumstance. To determine the optimal course of

action to pursue in each circumstance, it is used by different

software and robots. The process of reinforcement learning relies

heavily on sequential decision-making. To put it another way, the

state of one input determines the value of the next input, and the

value of the next input determines the value of the preceding

output. Figure 5 represents the types of ML Rajbanshi Sabita,

(2021).

Coordinated decision making for
integrated multiple BSS and BCS

The exponential growth of EV production on the road has

shifted the focus of urban planners, utilities, and business owners

towards the BSS and BCS initiation. Models of BCS and BSS are

included in cutting-edge research on EV charging to provide

additional energy sources for EVs. During the BCS mode, EV

drivers connect their vehicles to the charging connector and let

the batteries recharge over a long time. While in BSS mode,

electric vehicle drivers will discharge the spent, then swap it out

with one that has been fully charged, which will take less time

Wu, (2022). Figure 6 represents battery swaping system.

Charging management of BSS and BCS

Compared to the BCS model, the only direction in which

the duration of battery charge is transitioning from the EV to

the BSS. In other circumstances, even after switching the

batteries, the BSS must spend a significant amount of time

for recharging them. The BSS operator may decide on the most

effective battery and EV charging schedule based on the battery

condition and swapping/charging demand, that supports the

station to increase operational profit and reduce power

expenses. As a result, the BSS’s Quality of Service and
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service capacity may be enhanced. An ideal charging schedule

can also assist the BSS with gratifying more EV swapping and

charging demands Wang and Pedram (2019). The following are

some of the reasons why charging management is so important

while operating in BSS mode:

• If an ideal charging schedule is achieved, then modifying

the charging rate at the recharging centre may be used to

control the BSS’s service availability, which corresponds to

the batch of completely recharged batteries.

• The BSS operator is responsible for managing the charging

process while considering many factors, such as the needs

of EV drivers to swap out their batteries, the limits of the

power grid, and the cost to operate (which includes the cost

to buy batteries and electricity).

• As the lithium-ion battery’s charging power exhibits non-

linear features, determining the precise time required to

charge one is challenging entirely. To simulate the constant

current constant-voltage features Wu et al., (2020), several

researchers have developed non-linear mathematical

models that can approximate the quantity of power used

throughout each period and the time necessary to charge

various chargers fully.

EV distribution, road transportation, traffic patterns, and

business and residential zones should all be considered when

examining the need for charging and switching utilities from an

urban planning standpoint Pardo-Bosch et al. (2021). Then, by

providing charging facilities, a new charging station may be built,

or an existing one can be improved. Additionally, new BSSs

FIGURE 5
Types of machine learning Rajbanshi Sabita (2021).

FIGURE 6
Battery swaping system.
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might be designed in a given area to serve commercial EVs, with

significant energy demands and the need for quick charging. The

charging and switching stations function as high-energy units

that impact voltage stability from the standpoint of the power

system. Therefore, the power grid’s limitations should be

considered when choosing BSS or BCS centres. In addition,

the BSS/BCS imports supply of electricity from the mains,

utilizes it to charge EVs and batteries and then starts selling it

to drivers for a profit. As a result, the station manager and the

power grid may agree on an electrical strategy. With the aid of

V2G and B2G technologies, the BCS/BSS may potentially be able

to sell power to the grid., which allow them to benefit from price

fluctuations and aid the system in maintaining voltage stability.

Providing EV owners with access to battery switching and

charging stations is an opportunity for BSS/BCS providers to

generate revenue. The operators’ primary objective during the

planning phase is to choose an area with high swapping/charging

demand to optimize their operational profit. On the contrary,

intelligent optimization decision models may be used to reduce

the cost of their operations, which include things like the BSS’s

initial stock of batteries, charging infrastructure, and station

development. Increasing assessing demand and reducing

planning expenses is preferable to optimize the station’s

operational profit.

If an EV driver wants to switch, the control centre needs to

know how far away they are from the BSS and how long it will

take them to get there. Due to traffic and travel patterns, it is

important to include the unpredictability of appointment

information as input to the decision-making model Bonsall,

(2004). As a result of needing to travel to their destination

BSSs without running out of power, EVs’ remaining SoCs are

associated with the distance to those BSSs. Because of this, as a

constraint in the dispatching and routing problem, the remaining

SoC in the EV and the distance to each BSS must be taken into

account. In contrast to the single BSS mode, the multiple BSS

mode requires the control centre to improve the quality of the

choice by synchronizing the needs of EV drivers with the battery

status of the dispersed BSSs. To validate their choice, EV drivers

will get a response from the control centre. They could negotiate

new arrival times or switch to a different BSS if they decided not

to accept the assignment. On the BSS side, the control centre

should check each BSS’s power reserves and make charging

adjustments in real time as necessary. Coordination amongst

decision makers is, thus, essential in an intelligent BSS system for

achieving the best possible outcome.

Models of decentralized decision-making

Decentralized decision-making models that support

swapping and charging orders might be used to describe the

combined BSS and BCS modes. Due to the integrated nature of

these models, they can perform both of these functions. An EV

operator may choose battery exchange or recharge when making

a service request Sun et al., (2018). Two independent decision

models have been established to manage to swap and charge

requests from the viewpoint of the control centre. Based on the

volatile demands placed on the BSS and BCS, these models

determine whether to accept or not to provide access for the

request.

Models of centralized decision-making

A centralised decision model might be used to describe the

combined BSS and BCS station., in contrast to the decentralized

approach, where the BSS and BCS are complimentary while

taking into account the order needs from EV drivers and the state

of each station. This centralized approach has two operational

techniques.

• The control centre makes the assignment without

charging or swapping the desired signal from an EV

driver. The control centre thus mainly concentrates on

the changing battery count at the BSS and BCS, allowing

for optimal decision-making given the system’s overall

state of health.

• If the BSS is overloaded (because of a lack of completely

charged batteries), some batteries might be brought to the

BSS after being recharged in EVs at the BCS. Once the

parking duration of the EVs at the BCS and the switching

load at the BSS are known, the interaction may be

maximized.

The BSS and BCS models are combined, and the benefits of

doing so are addressed. First, the control centre handles the

switching and charging requests simultaneously, improving

the level of service for EV users. Secondly, by allocating the

swapping and charging operations, the choice is optimized,

and the overall optimization outcome may be reached. Third,

depending on demand and station state, In both the BSS and

BCS, the control schedule for the recharging process has been

optimised. Fourth, the control centre may ask EV drivers to

designate their preferred method, such as swap or charge,

since it is believed that they would use a system of distributed

decision-making for handling incoming requests Cui et al.,

(2022). Finally, by synchronising the BCS with the BSS

infrastructure, the service capacity may be increased,

resulting in enhanced QoS on a Global Scale in BSS and

BCS modes due to the adoption of centralized methods.

Possible future scope of this work

The research can be further progressed on the following

cases.
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• A comparison in the effectiveness of planning issues for

charging infrastructure using machine learning

approaches, heuristics, and metaheuristics techniques.

• The implementation of various pricing levels for energy

based on the intermittent EV load demand, where the price

of electricity in EVCS varies and will be calculated based on

the overall power use in the region as well as the demand

on the power system.

• It is possible to look at leveraging automation and IoT

architecture to operate EVCS. As a consequence, EV

charging and discharging may be automated based on

energy use.

• For EVs to be more sustainable, recycling rates must

increase so that valuable metals used in battery

production may be reused. The energy density and

charging velocity of solid-state batteries are enhanced by

the use of ceramic or other solid electrolytes.

Conclusion

This article provides a comprehensive review of studies

examining the use of machine learning in various contexts and

forecasting of EV charging behaviour. Standard ML algorithms for

predicting EV charging behaviourwere defined, including supervised

and unsupervised methods. Using EV and load volatility, a

comparison of different EV modes of operation is accomplished.

One might deduce that better EV and DG scheduling contributes to

enhanced DS performance. It is also clear that if EV owners can plan

their vehicles according to the system consumption pattern, they

may generate income using V2G mode.

The article also summarizes various EVs, storage facilities,

charging EVs using DGs integrated with EVCS, and a variety

of other socio-technical difficulties related to EVs. The

adoption rate, as well as the current situation of EVs all

around the world, have been emphasized. The increased

weight of EVs owing to the inclusion of battery storage

mitigates the benefits of EVs’ reduced particulate matter

production, but only to a limited extent. Electric cars have

fundamental problems, such as the absence of high-

performance rapid charging infrastructure and the inability

to compete in terms of mileage with conventional fuel-based

vehicles due to inefficiencies in energy storage and battery

management. Government policies that provide attractive

incentives and advantages are crucial to boost EV adoption.

Willingness to spend and socioeconomic status are two factors

influencing consumers’ decisions to purchase EVs. The

production of EV sales should focus on the variety and

design of a model that will appeal to a wide range of

buyers. Monadi et al. (2022).
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