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The behavior of fission gases in molten fuel salt reactors governs activity transport
from the reactor and can also affect the performance of the reactor itself. The gas
solubility can be described thermodynamically by Henry’s law. However, the
coupling of the condensed and gas phases depends on the interfacial area, which
is difficult to measure or even to estimate. Surfaces of materials in the reactor will
include disperse phases in the salt and porosity within the structural materials,
covering a range of compositions and sizes. These attributes can affect
measurements of fundamental properties such as gas solubility. Methods to
obtain gas solubility, surface tension, interfacial energies, and bubble gas
transport are reviewed. Recent data from manometric experiments are
interpreted based on xenon sorption onto salt-wetted quartz.
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Introduction

Gases in molten salts and how they affect reactor operation

Unlike ceramic fuels, fission products’ transport in molten salt reactors is not restricted by
cladding. Instead, the pressure boundary is the off-gas system, which may be swept by a carrier
gas (Andrews et al., 2021). Xenon, krypton, and tritium transport directly into the gas where it
contacts the salt, such as the pump bowl, and are continuously removed. The fission products
that are readily soluble in the salt can move into the cover-gas flow by forming mists or aerosols.
Confinement in the off-gas allows these radionuclides to decay and the nonvolatile daughters
condense in the off-gas components, decay tank, scrubbers, or filters (McFarlane et al., 2018).

Fission gases comprise the largest fraction of fission products—almost half—and xenon
isotopes are the largest contributors. The isotopes of xenon and krypton have a wide range of
half-lives. Fission gases are of concern for two main reasons (Price et al., 2020). Some, notably
135Xe, can affect reactor operation as a neutron poison under shutdown and restart conditions.
Reaction 1) shows the decay chain from 135I that forms 135Xe. During normal operation, the
abundance of 135Xe is controlled by neutron capture to 136Xe. Furthermore, because of their
abundance and volatility, noble gas isotopes are the main contributors to the radionuclide load
in the cover gas system. For instance, 137Xe, which has a half-life of 3.95 min, decays to 137Cs, as
shown in Reaction 2). This fission product is tracked because of its potential uptake into the
environment and its 30-year half-life, which contributes a significant decay heat load to cover
gas components.
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135I t1/2 � 6.57h( )→135Xe t1/2 � 9.14h( )→135Cs t1/2 � 2.3 × 106years( )
(1)

137Xe t1/2 � 3.95min( )→137Cs t1/2 � 30.05years( )→137Ba stable( ) (2)
In molten salt reactors, gas behavior is governed by several

dynamic and complex processes, including generation by fission or
through radioactive decay, transport through temperature gradients in
the primary heat transport system, gas sparging to push bubbles from
the melt, adsorption onto surfaces, and ingress into structural
materials such as graphite. Despite these complications, the
solubility of the gas in the salt is fundamental to understanding
noble gas transport.

The partitioning of noble gases between the gas and condensed
phases can be described by chemical thermodynamics, which relates
the partial pressure of the gas to the concentration in the condensed
phase, Eq. 1a and Eq. 1b, where P0

i and P*
i are the partial pressures of

the solute gas species i at the start of the experiment and at
equilibrium, respectively, and Cli

* and Cgi
* are the concentrations of

the solute gas i in the liquid and the gas phase at equilibrium,
respectively. The ratio defines the Henry’s law constant, which is
independent of pressure under ideal conditions. Although nominally
unitless, the units used in the calculation of Henry’s law coefficients
need careful consideration.

H � P0
i

P*
i

− 1 (1a)

H � Cli
*

Cgi
*

(1b)

This perspective discusses the measurements of noble gas
solubilities that support reactor simulation and the difficulties
experienced in the design of the experiments.

Experimental methods for measuring
gas solubilities

Tomkins (2003) reviewed the methods for measuring gases in
molten salts. These measurements can be obtained either by directly
monitoring the absorption of the gases into the molten salt or by using
a two-step approach that involves a sparging step to saturate the salt
with the gas of interest followed by a stripping and analysis step.

Absorption of a gas into a molten salt can be monitored in a
quiescent system. In these experiments, a physical change in the
system results from the uptake of gas into the salt mixture. This
change manifests as changes in volume at constant temperature and
pressure or as changes in pressure at constant temperature and
volume. Because no active mixing occurs, except by convection,
these measurements can take several hours. Another approach is to
monitor absorption actively in a molten salt, that is, well stirred by a
sparge of the analyte in a carrier gas. If the analyte has an appropriate
spectroscopic signature, then these measurements can be performed
on the salt in situ because the carrier is often optically transparent
(Medina et al., 2022). Thermogravimetry tracks increases in salt mass
as a gas mixture carrying the analyte contacts the salt (Bratland and
Corbett 1966). This method requires the gas to have significant
solubility in the salt and is sensitive to changes in buoyancy with
the flow of gas and to losses of semivolatile components from the salt
by evaporation. Consequently, traditional methods for direct

observation of gas uptake are not likely to be feasible for tracking
absorption of noble gases into molten salts.

Two-step measurements include saturation of the salt with the gas
mixture, followed by posttest analysis in a second step. This approach
was demonstrated at the United States Department of Energy’s Oak
Ridge National Laboratory during the 1950s and 1960s. Colligative
properties such as freezing point depression can give dissolved gas
concentration, should they provide sufficient sensitivity. This
method is not appropriate for measurements on noble gases,
which evaporate below the solidus. However, as the gas comes
out of solution during freezing, it can be captured and analyzed
by mass spectrometry. The molten salt can be transferred to a second
vessel to minimize contaminating the collection system with the
initial sparging mixture. Alternatively, the salt can be actively
stripped by a different carrier gas. The mixture containing the
stripped analyte can be analyzed by mass spectroscopy, titration,
electrochemistry, and gas chromatography (Field and Shaffer 1967).
Grimes and others (1958) used the sparging/stripping method to
measure gas solubilities in both fluoride and chloride salts by gas
chromatography. Hamilton and Inman (1992) performed similar
measurements on chloride salts. These studies all required kilograms
of salt to achieve the needed sensitivity. Higher sensitivity can come
from radiometric analysis, e.g., measuring 14C for tracking CO2

uptake (Numata and Bockris 1984).

Results from noble gas contact/uptake
experiments

Recent experiments investigated the uptake of argon and xenon in
chloride salts in chloride salt mixtures (Moon et al., 2022a). The salt
mixture was melted in an open-ended quartz tube in an argon-filled
glove box. The tube was placed inside a larger stainless-steel tube that
could be isolated form the atmosphere by two valves, one on the gas
inlet to the system and the other on the outlet. After being sealed, the
apparatus was moved to a vertical furnace. The vessel was attached to
vacuum and gas lines that allowed the space above the salt to be
evacuated or permitted the introduction of the gas of interest, either
argon or xenon.

Manometric experiments were conducted by evacuating the
headspace above the salt and heating the salt to the desired
temperature while under vacuum. The salt was once again degassed
while at temperature to −800 mbar. The gas of interest was added to
the system, to 0.5, 1.0, or 1.8 bar absolute. The pressure drop was
measured over time until it stabilized corresponding to an equilibrium
between the gas and the molten salt. These measurements were
repeated for several different chloride salt systems that included
NaCl, MgCl2, KCl, and UCl3 at temperatures from 525°C to
725 °C. The pressure drop data were fit to a kinetic model as
published by Librovich et al. (2017), Eq. 2 (Weber 2022).

Si t( ) � ΓiA
RT

2πMi
( )

1
2

Cgi
* − Cgi t( )( )

The symbols include: Si—rate of mass transfer (mol·s−1) at time t s),
Γi—mass transfer coefficient (unitless), A—interfacial area between the salt
and the gas phase (m2), R—ideal gas constant (g·m2·s−2·mol−1·K−1),
T—temperature (K), and Cgi(t)—concentration of solute gas i at time t
(mol·m−3). The final pressure drop gave themolar ratio of gas in the liquid
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phase to gas in the gas phase, as shown in Eq.1b. The data and the
values of Henry’s law coefficients were reported by Moon et al.
(2022a). The coefficients for argon in NaCl-MgCl2 were reported as
3.3 ± 0.2 × 10–2 mol dm−3·bar−1 and exhibited little temperature
dependence. Henry’s law coefficients for xenon in NaCl-MgCl2 ranged
from 3.23 × 10–3 mol dm−3·bar−1 at 525°C to 1.7 ± 1.5 × 10–2

mol dm−3·bar−1 at 725°C and depended linearly on temperature.
The third measurement at 725°C: 7 × 10–4 mol dm−3·bar−1, was
35 times lower than the first two measurements, an artifact likely
arising from residual xenon.

These values were compared with solubilities reported in the
literature. None of the reported salt systems were identical to
those reported here but serve as a rough comparison. Watson et al.
(1962) measured Henry’s law coefficients for xenon in LiF-BeF2
as 2.35 × 10–6 to 8.63 × 10–6 mol dm−3 bar−1 for 600°C–800°C.
They also performed measurements on NaF-ZrF4-UF4, NaF-ZrF4
(Grimes et al., 1958), and LiF-KF-NaF (Blander et al., 1958)
mixtures that showed comparable results. Published noble gas
solubilities in chloride systems include argon in NaCl from 850°C
to 950°C and in KCl from 827°C to 1227°C (Noviozhilov 1973; Woelk
1960), which yielded Henry’s law coefficients in the range of 10–4

to 10–3 mol dm−3 bar−1. The current experimental results were much
higher than those previously reported, except for the third
measurement for xenon at 725°C. When comparing the noble
gases, results showed that uptake into the salt was higher for argon
than for xenon by a factor of two, which is consistent with the
literature (Grimes et al., 1958). The enthalpy of solution (ΔHsoln)
for xenon was close to that reported for xenon in fluoride systems:
ΔHsoln = 48 kJ mol−1 vs. 46.4 kJ mol−1 for xenon in NaF-ZrF4 (Watson
et al., 1962). The accommodation coefficient, or Γ, derived from the fit
of Eq. 1, ranged from 4 to 25 for the xenon and argon systems. This
result is unphysical because, by definition, the coefficient varies from 0
(no uptake) to 1 (every atom contacting the surface dissolves into the
salt).

Discussion of gas uptake results

The rates of noble gas uptake into molten salts and their measured
solubilities were higher than expected. These effects may have arisen
from the surface tension of the salt and the interfacial interaction
between the salt and the quartz tubing containing the salt.

Although not numerous, surface tension measurements for
molten salt systems are available. Data for surface tension of
chloride salts are reviewed by Janz et al. (1975), from maximum
bubble pressure, Whilhemy slide plate, and pin detachment methods.
Data for the NaCl-MgCl2 systems were obtained by measuring the
force required to pass a bubble of gas through a platinum capillary.
Measurements started at 700°C giving a value 0.088 N m−1 (Sokolova
and Voskresenskaya, 1966). These values are very close to the surface
tension of liquid water (Rivera et al., 2006). Many salts also exhibit
strong interfacial properties, e. g., creep of chloride salts was measured
by Stepanov et al. (1989); Stepanov (2018) on a variety of surfaces.
Dogel et al. (2003) described chloride salt creep in term of the excess
Gibbs energies. This excess energy may have complicated our recent
gas solubility measurements.

Neutron radiography gives credence to the possible role of
interfacial interactions. The radiographs were taken to determine
the density of the chloride salt mixtures above the melting point
(Moon et al., 2022b). Selected radiographs are shown in Figure 1: each
quartz tube contains a different mixture. Figure 1A shows a
radiograph of a molten chloride salt with entrained bubbles.
Figure 1B shows a salt sample heated in an evacuated quartz tube,
illustrating variations in contact angles that depend on whether the
system is advancing (being heated) or retreating (being cooled).
Chloride salts are not expected to react with quartz, and certainly
any reaction is slow. However, some literature report that cations can
exchange with the quartz, leading to irreversible surface modification
(Gao et al., 2005). In our tests, 1 day of annealing at temperature did
not affect the contact angle variation.

FIGURE 1
Radiographs of molten chloride salts. (A) Above the melting point (800°C), entrained bubbles occur in NaCl-KCl. (B) A salt, that is, undergoing its second
heating cycle has menisci that indicate wetting and nonwetting for the same sample. This figure is modified from Moon et al. (2022b) (Figure 2).
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Thus, surface wetting could effectively increase the salt surface
area exposed to the gas, thereby increasing the rate of uptake into the
salt. This phenomenon explains the unphysically high
accommodation coefficient observed in these experiments. For
instance, the cross-sectional area of the salt enclosed in a 4.1 mm
inner-diameter quartz tube should be 13.1 ± 0.2 mm2. However, salt
wetting 0.3–2.4 cm of tubing above the expected meniscus leads to an
effective increase in surface area of 52–328 mm2, explaining the larger
accommodation coefficient.

The accommodation coefficient is plotted vs. temperature in
Figure 2, decreasing as expected with physisorption. If the data
are plotted as an Arrhenius plot (ln Γ) vs. inverse temperature,
then the slopes of the lines correspond to −14 kJ mol−1 for the
argon system and −42 kJ mol−1 for the xenon system. The
enthalpy of adsorption (ΔHads) results for argon are close to
ΔHads = −8 kJ mol−1, comparable to literature values for
adsorption of argon on graphite (Farías Hermosilla and Albesa
2020). This result suggests that the gas, when introduced into the
system, rapidly adsorbed onto salt-wetted surfaces. Once
physisorbed, the gas would remain bound unless deliberately
degassed, such as stripping with a flow of inert gas or sharply
increasing the temperature. Such efforts would also perturb the
equilibrium of the salt with the dissolved gas.

Other effects could cause problems for noble gas solubility
measurements. The volatility of salts containing MgCl2 is
well understood (Schrier and Clark 1963). When heated to
400°C, even purified salts can produce HCl(g), which is
generated by the liberation of hydration water and the reaction
with the chloride salt (McFarlane et al., 2022). Gas uptake cannot

be measured in salts that evolve gases or that have volatile
components because these systems are unstable. Consequently,
few data on gas solubility in molten MgCl2 are available. This
same concern applies to salts that react with their containers,
slowly changing composition during the measurement. In molten
salt reactors, adding fission products to the salts would be expected
to decrease the density. However, because some of the fission
products are themselves volatile or semivolatile, this assumption
is difficult to validate in a static system. Noble gases are expected
to coalesce into bubbles and transport out of solution (Frederix
2022).

Radiolysis is expected to generate secondary phases in molten salt
systems, even those that operate at temperatures above 400°C (Roy
et al., 2021). Radiolytic damage of reactor surfaces, such as graphite,
will generate fine particles (Lee et al., 2020). Noble metal fission
products have unstable fluorides and chlorides and will form
dispersed solids in the salt, perhaps serving as nucleation loci for
noble gas bubble generation. Corrosion products, such as chromium,
generated from the reaction of stainless steel with salts, can accumulate
in solution and form ternary compounds (Sprouster et al., 2022).
Certain fission products, such as tellurium, have complicated
chemistry. Tellurium can combine with noble metals to form
compounds such as PdTe, and tellurium has also been implicated
in stress-corrosion cracking of reactor alloys (Ignatiev et al., 2013).
Tritium as a ternary fission or activation product is expected (Dolan
et al., 2021). Fission changes the salt’s redox state and the chemistry of
fission products within the salt, including noble gas solubility. Fission
gases can penetrate and degrade nuclear graphite, which enhances
alloy corrosion (Lee et al., 2020). Therefore, the transport and

FIGURE 2
Accommodation coefficient as a function of temperature for argon in NaCl-MgCl2, (A,B) and xenon in NaCl-MgCl2 (C,D) The accommodation
coefficients decrease with temperature (A,C). The enthalpy can be calculated from ln(Γ) vs. 1/T.
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partitioning of fission gases between phases in a molten salt reactor
governs complex and interdependent phenomena.

Conclusion and conceptual design of
solubility measurement apparatus

The characterization of complex behavior must start somewhere:
gas solubilities provide an initial explanation of noble gas behavior in
molten salts. Solubility measurements provide a starting point for
modeling and simulation of noble gas behavior during
burnup. Successful solubility measurements on molten salts have
used kilograms of salt, maximizing the volume of the salt relative
to the surface area of the apparatus. Gases were introduced by
bubbling or sparging the gas through the salt, creating a well-
mixed system. However, such large-scale experiments are not
feasible for highly radioactive salts, such as those containing
plutonium and higher actinides.

To acquire solubility data, controlling the dynamic processes
and minimizing the perturbations in the salt is of utmost
importance. The salt must be contained in a material with
which it does not react. Even refractory materials can
experience irreversible changes during a measurement over
several hours. Measurements in fluoride salts benefit from vessel
contact with a sacrificial salt, that is, removed for disposal before
the actual tests take place. Chloride salt containers may require
coatings of protective noble metals, e.g., iridium. Alternatively,
salts could be transferred to a secondary vessel before analyzing the
gas uptake, selectively sampling away from vessel walls.
Controlling creep, capillary transport, and other effects that
distort the salt’s geometry is also important. Changes in salt
composition via incongruent volatilization must be minimized.

Measuring the salt temperature can be difficult because
temperature gradients in the experiment can cause the salt to be
several degrees hotter than the gas above the salt. This effect can be
minimized by applying additional heaters, like the guard heaters used
in thermal conductivity measurements (Gallagher et al., 2022), as well
as thermal insulation, well-calibrated systems, and long equilibration
times.

As was observed in the experiments discussed herein, adsorption
of gases, even noble gases, onto surfaces can occur (Stach et al., 1986).
The apparatus and methodology must be designed to promote
the measurement of gas absorption into the condensed phase
rather than adsorption onto apparatus surfaces. This outcome can
be achieved by separating the uptake and measurement steps, moving
the saturated salt to a secondary container where measurements can
be made. Direct measurement of the analyte in the salt itself
will avoid errors, by spectroscopy or radiotracers. Gas-phase
measurements of noble gases have been achieved by laser-induced
breakdown spectroscopy and could be applied to the liquid (Andrews
et al., 2022).

Knowing the noble gas solubilities in molten salts is crucial
for understanding reactor behavior and radionuclide transport.
Because the physical phenomena governing noble gas
partitioning are complex, it is important to ensure that solubility
measurements target the correct behavior. This accuracy can
be achieved by careful apparatus design, calibration with known
salt/gas systems, and development of a methodology for accurate
measurements.
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