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In view of the operational risk issues such as safety and economy caused by the
connection of new energy and multiple types of electric vehicles (EVs) to the AC–DC
distribution network, an AC–DC distribution network operational risk assessment method
that takes into account multiple risk factors is proposed. First, a probability distribution
model of scenery output and EV timing is constructed, and the starting charge state of
multiple types of EVs is replaced by the number of daily driving miles subjectively set; then,
based on the complex network theory, timing safety indicators, such as voltage overrun
risk and branch power overload operation risk, are proposed, and the economic risk is
established according to the economic operation of the distribution grid; Furthermore, a
risk assessment matrix for grid-connected EVswith different capacities is constructed, and
the principal component analysis (PCA) method is used to reduce the dimension of the risk
assessment matrix and calculate the objective weight coefficient; finally, taking the
improved IEEE 33 node AC/DC power distribution system as an example, the
comprehensive risk evaluation based on PCA is compared with the traditional one,
and the results show that when the safety and economic risk factors are considered at
the same time, the operation risk in a certain range has a downward trend when the
proposed method is adopted, which has a positive guiding significance for the planning of
EV capacity in a certain area.
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INTRODUCTION

In recent years, with the rapid increase of new energy and electric vehicle (EV) access capacity, the
structure, flow, and operation mode of the AC and DC distribution network have undergone
tremendous changes (Liang et al., 2020). On the one hand, the output of DG (distributed generation)
has randomness and uncertainty, which will cause negative effects such as line overload, reduced
power quality, and increased system loss (Yang et al., 2020a); on the other hand, the random charging
behavior of EVs will provide a safe and economically stable operation of the power system bringing
new risks and challenges (Chen et al., 2019). Therefore, evaluating the operational risks of DG and
EV after being connected to the power grid is an urgent problem to be solved in the power system.

The risk assessment for the simultaneous access of DG and EVs to the AC/DC distribution
network is mainly divided into two aspects: risk assessment method and risk assessment index
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construction. The traditional risk assessment analysis method
mainly follows the reliability assessment method, which can
usually be divided into the analytical and simulation methods
(Lu and Yuan, 2017). Nan et al., (2020) established a risk
assessment system from four levels for EV fast charging
stations using the AHP (analytic hierarchy process) and
entropy weight methods to determine the weight of each level
of the index and finally combined with the fuzzy comprehensive
evaluation method to quantify the evaluation results; Xiong et al.,
(2016), based on the stochastic power flow of the full probability
theory, established and solved the level 2 risk index, established
the comprehensive risk assessment index, and realized the
quantitative assessment of the risk of the distribution network;
Hu et al., (2016) established the dynamic distribution model of
EV charging power using the semi-invariant probabilistic power
flow algorithm and solved the risk indicators of node voltage and
branch power flow over-limit so as to analyze the security risk of
the electric power distribution network. Although the
abovementioned studies have made certain contributions to
risk assessment methods, most of them rely on expert
evaluation (Yuan et al., 2016) or semi-quantitative analysis
when determining indicator weights. They are susceptible to
subjective factors and are often not comprehensive enough to
consider the true size of risk indicators.

In terms of the construction of the risk index system, the index
system that uses the degree of severe loss to describe the
consequences of operating events has developed more
maturely. Liu et al., (2015) defined the calculation expressions
of risk indicators such as voltage overruns, probability of line
fluctuations, and severity of accidents and conducted a
comprehensive risk assessment of the power grid and
quantified the differences of components; Zhang et al., (2019)
fully considered wind power, and based on the uncertainty of EV
access to the distribution network, the load aggregator response
reliability and risk cost indicators are proposed based on fuzzy
theory. In addition, harmonic risk (Zhao et al., 2014), load
reduction risk (Wang et al., 2018), flexibility risk (Li et al.,
2015) and other risk indicators are also involved in research,
but most of them are limited to a single risk indicator that
considers safety or economy and does not consider operational
risks. Due to variable factors and dynamic processes, it is
impossible to clearly grasp the operating status of the power
system.

At the same time, the abovementioned documents are all
researched under the premise of considering a single type of EV,
and the charging power remains unchanged. Yang et al., (2020b)
built a weighted basis for the scenario where DG and three types
of variable power EV charging loads are simultaneously
connected to the distribution network, entropy voltage, and
power flow limit risk, but it did not further analyze the EV
type and charging mode and failed to objectively consider the
operation risk status of the distribution network from multiple
factors. Therefore, it is necessary to establish a set of multilevel
risk indicator system and objective and reasonable
comprehensive evaluation methods, thereby reducing repeated
risk information and better analyzing the operating status. This
study analyzes the stochastic characteristics of DG output and EV

charging load and constructs a time-series model of constant
current–constant voltage (CC–CV) variable power multitype EV
charging load based on daily driving mileage; proposes a short-
term safety risk index based on the complex network theory,
while introducing an economic risk that includes the operating
profit; a three-dimensional and multi-angle risk index system is
established; and the principal component analysis (PCA) method
is used to comprehensively evaluate the operation risk of the
distribution network under different EV capacities. The validity
of the proposed risk index and the rationality of the
comprehensive evaluation method are verified by numerical
example analysis. The results show that the proposed method
can actively guide the safe, economical, and stable operation of
DG and EV in the distribution network.

WIND POWER, PHOTOVOLTAIC, AND
CONVENTIONAL LOAD MODELS

Wind Power Model
Wind power output is mainly determined by wind speed, and the
statistical characteristics of wind speed obey the two-parameter
Weibull distribution (Liu et al., 2017). Therefore, the expression
of the distribution function of the active power output Pw of the
wind turbine is as follows:

F(Pw) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 0≤ v< vci, v≥ vco

1 − exp{ − [(1 + vcr − vci
vciPr

Pw) vci
cw
]kw}+

exp[ − (vco/cw)kw] vci ≤ v< vcr

, (1)

where Pr is the rated output power of the fan; v is the wind space;
vco, vci, and vcr are cut-out, cut-in, and rated wind speed,
respectively; and kw and cw are scale and shape parameters,
respectively.

Photovoltaic Power Generation Model
The intensity of solar light varies with the geographical
environment and location. Based on a large amount of
measurement data, beta distribution (Zhang et al., 2013) can
be used to represent the distribution of solar light intensity in a
day. Then, the probability density function of photovoltaic power
generation’s active power output is as follows:

f(Psolar) � Γ(α + β)
Γ(α)Γ(β) ( Psolar

Psolar,max
)α−1(1 − Psolar

Psolar,max
)β−1

, (2)

⎧⎪⎨⎪⎩ Γ(g) � ∫∞
0

xg−1e−xdx

Psolar � rAη

, (3)

where Γ(·) is the gamma function; α and β are two parameters
that characterize the shape of the beta distribution function; Psolar

and Psolar,max are the actual output and maximum output of the
photovoltaic array, respectively; r is solar irradiance; and η and A
are the power conversion efficiency and the total area of the
photovoltaic array, respectively.
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Conventional Load Model
The conventional load at any time adopts normal distribution to
reflect its randomness and uncertainty. The probability density
function of the conventional load active power PLD and active
power QLD is as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
f(PLD) � 1���

2π
√

λLP,tμLP,t
exp( − PLD − μLP,t

2λ2LP,tμ
2
LP,t

)
f(QLD) � 1���

2π
√

λLQ,tμLQ,t
exp⎛⎝ − QLD − μLQ,t

2λ2LQ,tμ
2
LQ,t

⎞⎠ , (4)

where μLP,t and μLQ,t are the expected values of the active power
and reactive power of the conventional load at time, respectively;
and λLP,t and λLQ,t are the coefficients of variation of the active
power and reactive power of the conventional load at time t,
respectively.

ELECTRIC VEHICLE PROBABILITY
DISTRIBUTION MODEL

The factors that affect EV charging load can be summarized as
charging characteristics, charging period, and charging mode.
The following three influencing factors will be analyzed separately
to establish a mathematical probability distribution model.

Electric Vehicle Charging Characteristic
Model
The EV charging process meets the charging characteristics of
lithium batteries. It is a CC–CV variable power charging method.
When the battery state of charge is low and the battery internal

resistance is relatively stable, the constant current method is used
for fast charging. As the charging time increases, the charging
voltage increases after reaching Umax, the equivalent internal
resistance of the battery increases rapidly, entering the
constant voltage charging stage, the charging current decays
exponentially, and the constant voltage charging process
accounts for less than 1% of the constant current charging
process. In order to simplify the calculation, this study
analyzes only the constant current charging process. The
charging process parameters are shown in Table 1. The
voltage and current variation curves during EV charging are
shown in Figure 1, and the specific formulas are shown in
literature (Zheng et al., 2012). The charging process
parameters are shown in Table 1.

Therefore, the charging power of the jth EV can be defined as
Pcar,j, and the specific parameters are shown in Table 2.

Pcar,j � Ubatticar, (5)
whereUbatt is the terminal voltage of the lithium battery; icar is the
EV charging current.

Electric Vehicle Charging Period Model
The initial charging time, daily mileage, and EV charging
period are very closely related, so this study is based on the
2017 and 2018 National Family Travel Survey (NHTS) data
published by the US Federal Highway Administration on the
entire network (Guo et al., 2020; U.S. Department of
Transportation, 2018); the Monte Carlo simulation (MCS)
method is used to fit the normal distribution of EV daily
mileage, as shown in Eq. 6.

f(d) � 1���
2π

√
dσd

exp( − ln d − μd
2σ2d

), (6)

where μd and σd are the expected value and standard deviation of
the normal distribution function, respectively, and different
values are selected according to the user’s driving behavior.

The initial charging time of EV satisfies the normal
distribution shown in Eq. 7.

f(t) � 1���
2π

√
σt
exp[ − (t − μt)2

2σ2
t

] , (7)

where μt and σt are the expected value and standard deviation
of the normal distribution function, respectively, and
different values are selected according to the user’s driving
behavior.

TABLE 1 | Parameters of the constant current-constant voltage two-stage
variable power charging process of the lithium battery.

E0 K0 A B R

1.0834 0.05645 0.08496 60.0619/C0 0.01
Un Un/C0 Un/C0

FIGURE 1 | Current and voltage changes in the CC–CV charging mode.

TABLE 2 | Parameter setting of the electric vehicle’s battery.

EV type Private car Bus Taxi Official car

Battery capacity/(A·h) 200 600 200 200
Rated charging current/A 20/150 100/200 150 20
Battery voltage rating/V 316.8 540 316.8 316.8
End voltage maximum/V 345 597 359 345
Maximum mileage/km 400 250 400 400
Charging efficiency/% 90 90 90 90
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The charging time T is calculated according to the daily
mileage d, as shown in formula Eq. 8.

T � dW100

100Pcar,jηcar
, (8)

whereW100 is the power consumption of EV driving 100 km; ηcar
is the charging efficiency of the EV.

Electric Vehicle Charging Mode Analysis
The charging mode has a great influence on the EV charging
power. At present, the main charging modes of EVs include slow
charging, regular charging, and fast charging. Generally, different
charging modes are distinguished by a given constant current. In
the following paragraphs, according to the driving characteristics
of different types of EVs, the charging mode that meets the actual
situation is selected.

The driving range of a fully charged private car battery is much
greater than the average daily driving range, so one charging cycle
a day can meet the daily driving demand of a private car. Private
cars can be charged in the parking lot of the workplace from 09:
00–12:00 and 14:00–17:00 or charged in the parking lot of
residential areas from 19:00 to 07:00 the next day, charging in
three periods. The probabilities are 20, 10, and 70%. If charging in
the parking lot of the work unit, the charging time does not
exceed 3 h; then, the fast charging mode is chosen with larger
constant current; if charging in the parking lot of a residential
area, the charging can continue all night; then, the regular
constant current moderate charging mode is chosen. Official
vehicles are mainly used for daily official travel of government
agencies. Long-distance travel is not considered. Its driving
characteristics are similar to private cars. It can meet the
charging demand even if it is charged once a day. The
charging period is from 19:00 to 07:00 the next day. The
constant current moderate regular charging mode is chosen.

It is difficult to meet the operational requirements of actual
work for buses and taxis to be charged only once a day. Generally,
two charging cycles a day are adopted. The bus operating time is
06:00–22:00 and the route is relatively fixed. It can be charged
centrally. Charging is not arranged during the peak operation
period during the day. During the 10:00–16:30 shift and lunch
break, the bus will be charged with a constant current. Charging
in the charging mode and in the regular charging mode with
moderate current from 23:00 to 05:30 is conducted the next day.
Taxis have limited rest time and need to replenish electricity in
time. Therefore, taxis are charged in a constant-current fast
charging mode during the two periods of 02:00–05:00 and 11:
30–14:30.

The specific parameters of the four EVs are set according to the
influence of the different charging modes on the magnitude of the
charging power Table 3.

ESTABLISHMENT OF ELECTRIC VEHICLE
CHARGING RISK INDICATORS

Short-Term Security Risk Indicators
Severity of Loss Based on Complex Network Theory
As a complex system, each node of the power grid does not
exist independently but as a whole that restricts and influences
each other. The vulnerability of each component is not only
related to its structural position in the power grid but also to
other components when the power grid is running. The
influence of the node is related. Therefore, when evaluating
the risk of DG and EV connecting to the AC/DC distribution
network, it is necessary to comprehensively consider the
impact of various factors. Therefore, this study proposes a
short-term security risk assessment model for power grids that
combines network structure vulnerability and risk theory. The
importance of the node comprehensively considers the degree
of the node, the betweenness (Shi et al., 2018), and the
proportion of the conventional load connected to the node.
The importance of the branch is measured by the degree and
betweenness of the line, and the calculation formulas are as
follows:

ρv,i � α1Dv,i + α2Bv,i + α3NPi, (9)
ρ1,l � β1D1,l + β2B1,l, (10)

where ρv,i and ρl,l are the node importance of the node and the
branch importance of the line, respectively;Dv,i and Bv,i are the
degree and betweenness of the node, respectively; NPi is the
power injected into the node; Dl,l and Bl,l are the degree and
betweenness of the line, respectively; α1, α2, and α3 are the
weight coefficients of node degree, node betweenness, and
node injection power, respectively, and α1 + α2 + α3 � 1; β1 and
β2 are the weight coefficients of the line degree and line
betweenness, respectively; and β1 + β2 � 1. In this study, the
AHP method is used to determine the size of each weight
coefficient.

Short-Term Security Risk Indicators
EV charging load will bring short-term security risks to the power
grid. Impact indicators include node voltage over-limit risk
indicators and line power over-limit risk indicators. The
specific calculation method is as follows.

TABLE 3 | Driving characteristic parameters of the EV.

EV types Charging periods Probability distribution of
starting charging moments

Probability distribution of
daily miles travelled

Bus 10:00–16:30, 23:00 to 05:30 next day N(14,12), N(23,12) N(4.4,0.352)
Taxi 02:00–05:00, 11:30–14:30 N(4,12), N(13,12) N(5.1,0.352)
Private car 09:00–12:00, 14:00–17:00, 19:00 to 07:00 next day N(9,12), N(14,22), N(19,22) N(3.58,0.882)
Official car 19:00 to 07:00 next day N(19,22) N(3.58,0.892)
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a) The calculation formula of the node voltage over-limit
operation risk index is.

Rv,i(t) � ∑nv,i(t)
j�1

ρv,iSv,j(t)p(Sv,j), (11)

Sv,j(t) �
⎧⎪⎨⎪⎩

V − Vmax V>Vmax

0 Vmin ≤V≤Vmax

Vmin − V V<Vmin

, (12)

where Rv,i(t) is the value of the risk index value of the voltage
over-limit operation of the node at time t; nv,i(t) is the number of
voltage states of node i at time t, where the number of voltage
states is the number of times the voltage per unit value of the
probability flow node i crosses the upper and lower limits; p(Sv,j)
is the probability of the jth voltage state; Sv,j(t) is the voltage loss
severity of the jth voltage state of node i at time t; and V, Vmax,
and Vmin are the voltage qualified value and the unit value of the
upper and lower limits, respectively.

b) The calculation formula of the risk index of line power
exceeding the limit is.

R1,l(t) � ∑n1,l(t)
k�1

ρ1,lS1,k(t)p(S1,k), (13)

S1,k(t) � {Ll − 0.9 Ll > 0.9
0 Ll ≤ 0.9

, (14)

where Rl,l(t) is the power limit risk index value of line l at time
t; nl,l(t) is the number of power flow states of line l at time t,
where the number of power flow states is the number of times
that the active power flow of branch l of the probability power
flow exceeds the limit; p(Sl,k) is the probability of the kth
power flow state; p(Sl,k) is the severity of the active power flow
loss of the branch in the kth power flow state of line l at time t;
and Ll is the ratio of actual active power to rated active power
of line l.

In this study, Rl,l(t) is used to characterize the short-term
comprehensive safety risk coefficient of system operation, Rv

sys(t)
is used to characterize the voltage risk caused by the over-limit of
the node voltage of the AC/DC distribution network system and
its distribution uncertainty, and Rl

sys(t) is used to characterize the
over-limit of the branch power of the AC/DC distribution
network system and its distribution uncertainty. The tidal
current risks caused are as follows:

RSRI � γ1R
v
sys(t) + γ2R

1
sys(t), (15)

where γ1 and γ2 are the security risk weight coefficient,
and γ1 + γ2 � 1。

Economic Risk Indicators
The ERI (economic risk indicator) of DG and EV charging loads
connected to the AC/DC distribution network comprises two
parts: ELLR (economic line-loss risk) and EPLR (economic
operational profit or loss risk). The formula is as follows:

CERI(t) � CELLR(t) − CEPLR(t), (16)
CELLR(t) � Cprice(t)Ploss(t), (17)

CEPLR(t) � ∑n
i′�1

Csell
i′ (t) + Cenv(t) −∑n

i′�1
Ccos t

i′ (t), (18)

Csell
i′ (t) � SDGi′ (t)PDG

i′ (t), (19)

Ccost
i′ (t) � ∑N

m�1
∑n
i′�1

μi′P
DG
i′,m(t), (20)

Cenv(t) � ∑m′

j�1
MjCj(PWODG(t) − PWDG(t)), (21)

where CERI(t) is the ERI value of the AC/DC distribution
network at time t; CELLR(t) and CEPLR(t) are, respectively, the
ELLR and EPLR index values of the AC/DC distribution network
at time t; Cprice(t) is the electricity price of the AC/DC
distribution network at time t; Ploss(t) is the power loss of the
AC/DC distribution network at time t; Cenv(t) is the government
subsidy income from the AC/DC distribution network at time t;
Ccos t
i′ (t) and Csell

i′ (t) are, respectively the operation and
maintenance cost and electricity sales revenue of the i′-th DG
at time t; n is the number of DG; SDG

i′ (t) is the time-varying
electricity price per unit power of the i′-th DG at time t; PDG

i′ (t) is
the active output power of the i′-th DG at time t;N is the number
of types of DG; μi′ is the maintenance cost per unit power of the
i′-th DG; PDG

i′,m(t) is the active output power of the i′-th DG of the
mth type at time t; PWDG(t) and PWODG(t) are the power
obtained by the AC/DC distribution network from the large
power grid before and after the DG is connected at the time t,
respectively; Mj is the emission coefficient of category jth
pollutant gas per unit power generation of the AC/DC
distribution network; Cj is the treatment cost of the jth
polluted gas; and m′ is the number of polluted gas categories.

PRINCIPAL COMPONENT
ANALYSIS–BASEDCOMPREHENSIVERISK
ANALYSIS
In order to fully consider the uncertainty of EV charging time and
charging location and its impact on the power distribution
system, EV capacity (Yang et al., 2020b) is defined as the sum
of the rated charging power of all EVs in the charging and non-
charging states in an area. According to the risk indicators
mentioned above, in order to ensure the safe and stable
operation of DG and EV in the distribution network, the PCA
method (Xiao et al., 2018) is used to analyze the risks caused by
different EV capacities to the distribution network, and a small
number of risk variables are used to replace the original large
number of risk variables and can contain the full content of the
original input risk variable. P risk indicators x1, x1,/, xpare
defined, whose weights are c1, c2,/cp, respectively; then, the
weighted sum of the risk indexes is s � c1x1 + c2x2 +/ + cpxp.
When the power grid is connected to different EV capacities,
there is a corresponding comprehensive evaluation result, and the
comprehensive evaluation result when h different EV capacities
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are connected is recorded as s1, s2,/, sh. The specific steps of the
PCA method are as follows. 1) The calculated risk index data are
standardized, its dimension is eliminated, and a standardized risk
index matrix B � [bi″(m″)]h×k � [B1,B2,/,Bk]is obtained,
whose elements are shown in formula Eq. 22.

bi″(m″) � (xi″(m″) − �xi″)/si″. (22)
Among them, �xi″ � ∑h

m�1xi″(m″)/h is the indicator mean;

si″ �
��������������������∑h

m″�1(xi″(m″) − �xi″)2/h
√

is the indicator standard
deviation. After normalization, matrix B satisfies E(Bi″) � 0
and D(Bi″) � 1(i″ � 1, 2, . . . , k).

According to the standardized risk index matrix B, the
correlation coefficient matrix R is calculated after processing
by the Z-Score method. Since the correlation coefficient matrix
is equal to the covariance matrix, and R is a positive definite
matrix, the eigenvalue λ1 ≥ λ1 ≥/≥ λm’’ ≥ 0 of Ris calculated
and the corresponding characteristics vector u1, u2,/, um’’ ;
then, the calculation expression of the ith principal component
Yi‴(i’’’ � 1, 2,/, p) is as follows:

Y i‴ � BT
i‴ui‴. (23)

The proportion of the variance of the i‴ principal component
Yi‴ in the total variance is defined as the contribution rate ]i‴,
which is used to reflect the comprehensive ability of the original p
indicators. The cumulative contribution rate γ is defined as the
total comprehensive ability of the first k principal components.
The formulas for ]i‴ and γ are as follows:

]i‴ � λi‴/∑p
i‴�1

λi‴. (24)

γ � ∑k
i‴�1

λi‴/∑p
j′�1

λj′. (25)

If the cumulative variance of the principal components reaches
a certain proportion, the original index can be replaced by the
corresponding principal component, and the comprehensive risk
assessment index result can be calculated by the linear
superposition of the abovementioned principal components,
namely:

F � ]1Y1 + ]2Y2 +/ + ]m″Ym″. (26)
On the premise of retaining the main information of the

original data, PCA effectively reduces the correlation between the
evaluation indicators and the data dimension, so the obtained
evaluation is more credible. At the same time, since the
comprehensive risk assessment takes the contribution rate of
each principal component as the weight, it not only avoids the
drawbacks of subjective weighting but also fully reflects the
information value contained in the risk index.

CASE ANALYSIS

Simulation of Distributed Generation Output
and Electric Vehicle Charging Load in the
AC/DC Distribution Network
In this study, the improved IEEE 33 node distribution system is
selected as a simulation example. The system is a 10 kV network
with a reference voltage of 12.66 kV and a three-phase power
reference value of 10 MV A. Its improved topology is shown in
Figure 2 with node 1 as a balancing node and the voltage set to
1.05 p. u. The wind power is equivalently connected to node 18,
the PV is equivalently connected to node 33, and the EV charging
load of 13 MW is equivalently connected at node 8, with a total
expected peak value of 3.715 MW for the conventional load. The
relevant parameters of the EV are shown in Tables 1–4.

The simulation parameters and distribution parameter
variation curves of the DG are shown in Table 5 and
Figure 3, respectively, and the DG output curve is shown in
Appendix Figure 4.

The DG tariff setting reference (Ju et al., 2019). The power
factor of both the load and the power source is 0.95. The O &M
cost of both wind and PV is $55. The calculation process for
distribution network operational risk is shown in Figure 5.

In this study, the AHPmethod is used to determine the weight
coefficients of the risk indicators in Section 3.1, which can be
obtained as α1 � 0.2, α2 � 0.2, α3 � 0.6, β1 � 0.5, β2 � 0.5,
γ1 � 0.5, and γ2 � 0.5. MCS accuracy ke is set to 0.05%. In
order to make the maximum variance coefficient of voltage,
branch power flow, and network loss (Zhao et al., 2009; Li
et al., 2021), dv,max, dl,max, and dloss are all less than ke, and
the number of simulations is set to 5,000.

According to the model in Section 2 and 3, the expected
charging power values of 4 EV types are obtained based on the
MCS method, as shown in Figure 5. It can be seen from Figure 6
that for private cars, they are charged in a relatively large constant
current fast charging mode between 09:00–12:00 and 14:00–17:
00, resulting in a double-peak load state; at 00: 00: during 00–07:
00 and 19:00–24:00, although the conventional charging mode is

FIGURE 2 | Improved 33-node AC/DC system.

TABLE 4 | EVC proportion of various types of electric vehicles.

EV types Private car Bus Taxi Official car

EVC(%) 54 18 18 10
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adopted, a large number of private car access also caused load
peaks. Among them, the private car charging load and regular
load during 19:00–24:00 both reached the peak value, which
intensified the operation risk of the power grid. During the period
of 00:00–07:00, the battery power of most private cars was close to
saturation, which caused the charging load of private cars to drop.
For official vehicles, the regular charging mode is adopted

during the period from 19:00 to 24:00, forming a single peak
load, which aggravates the total load during this period to a
certain extent. For buses, the fast charging mode is adopted
during the period of 13:00–16:00 so that the load reaches the
peak during the day; the regular charging is adopted during the
period of 00:00–01:00 and 23:00–24:00 The mode makes the
night load increase, which has an impact on the operation risk of
the distribution network, but it complements other types of EV
charging loads, which reduces the load peak-to-valley difference
to a certain extent. For taxis, the fast charging mode with a
relatively large constant current is adopted during the period of
03:00–05:00, which dominates the EV charging load; the fast
charging mode is also adopted during the period of 12:00–14:00.

TABLE 5 | Simulation parameters of wind power and photovoltaic power.

Cut-in wind
speed vci

Rated wind
speed vcr

Cut-out wind
speed vco

Fan rated
power (MW)

Pw

Total photovoltaic
cell area
(m) A

Electrical energy
conversion efficiency

(%) η

Maximum PV
intensity rmax

3 m/s 13 m/s 25 m/s 2 14,002 14 1.133 kW/m2

FIGURE 3 | Photovoltaic power distribution parameters α and β and
wind speed distribution parameters cw and kw.

FIGURE 4 | Output of wind-PV in each period.

FIGURE 5 | Calculation process of distribution network operation risk.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8162467

Dong et al. Risk Assessment of AC/DC Network

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


This intensified the peak of the daytime charging load but reduced
the volatility of the load to a certain extent. In summary, it can be
seen that the charging load fluctuates sharply within a day, so it is
necessary to analyze the risk of power grid operation.

Risk Analysis of Safe and Economic
Operation of Distributed Generation and
Electric Vehicle Connected to the AC/DC
Distribution Network
Analysis of Short-Term Security Risk Indicators
In order to study the rationality and necessity of the short-term safety
risk indicator, this studyfirst compares the deterministic assessment and
the short-term safety risk indicator proposed in this study, that is, an
equivalent EV charging load of 13MW is connected at node 8, and the
AC voltage at nodes 1–18 is assessed during the period 20:00–21:00; the
results are shown in Figure 7 (AC voltages in the figure are the
standardized values). The stochastic nature of theDGoutput power, EV
charging power, and conventional load is ignored in the deterministic
assessment. The average equivalent access node power was used to
calculate theACnode voltage.As canbe seen fromFigure 7A, when the

deterministic assessment is taken, nodes 9–18 are the nodes with
voltages exceeding 0.93 p. u. In other words, only 10 nodes have
voltage overruns under the deterministic assessment; however, as can be
seen from Figure 7B, nodes 4–18 all have voltage overrun risks
according to the risk indicators proposed in this study, that is, most
nodes have voltage crossing probability. It can be seen that as the
deterministic assessment ignores the “probability” and uncertainty, the
assessment results do not reflect the actual operating conditions.

As there are differences in the short-term safety risk of DG and EV
access to the AC–DC distribution network at different time sequences,
the results of the AC node voltage crossing risk indicators at each time
are obtained on the basis of Figure 7, taking into account the time
sequence, as shown inFigure 8. This is due to the fact that nodes 18 and
33 are at the end of the distribution system and have a short electrical
distance from the DG or EV. The temporal variation also has a
significant impact on the power quality of nodes 5–18 and 25–33.
The temporal dimension shows that theACdistribution network nodes
experience voltage overruns between 06:00 and 19:00 when the EV
charging load is small and theDGoutput is too high; in addition, a large
number of taxis charge quickly between 01:00 and 05:00, resulting in a
certain voltage overrun at the nodes. In addition, a large number of
taxis charge quickly between 01:00 and 05:00, resulting in a certain
voltage overrun at the node. The DC distribution network node
voltage is constant, and there is no node voltage overrun, which
indicates that the DC distribution network node is not affected by
the time series change and is relatively stableTable 1 shows the risk
index results of line power overrun. It can be seen from the table
that during the period of 20:00–21:00, the risk of line power over-
limit is mainly concentrated at the head end of the distribution
network. Line 1–2 has the greatest risk of line power over-limit.
This period is also the superposition of EV charging load and
conventional load. The peak value of the power line leads to the
greatest risk of line power violation.

Economic Risk Indicator Analysis
Figure 9 gives the results of the AC and DC line power overrun risk
indicators. From Figure 9A, it can be seen that in the 20:00–21:
00 time period, line power overrun risk is mainly concentrated at
the head of the AC distribution network. From Figure 9B, it can be
found that at 21:00, line 1–2 has the highest risk of line power
overrun, which is also the peak of EV charging load and
conventional load superposition, resulting in the highest risk of
line power overrun. As can be seen in Figures 9C,D, branch tide

FIGURE 6 | Expected charging power for four EV types.

FIGURE 7 | Results of deterministic assessment and proposed short-term
safety risk indicator: (A)Certainty assessment. (B)Nodal voltage overrun risk indicator.

FIGURE 8 | Risk of over-voltage operation of AC distribution
network nodes.
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overruns occur in the DC distribution network during the 06:00–19:
00 time period, and the risk values are greater than those in other time
periods due to the smaller EV charging load and excessive DG output
power in the AC distribution network at this time.

Analysis of Economic Risk Indicators
After the time-series economic risk assessment, the ERI results of AC
and DC distribution networks for one day can be obtained as shown in
Figure 10. From Figure 10A, it can be seen that the CERI is positive

FIGURE 9 | AC and DC distribution network branch current overrun operational risk: (A) AC distribution network branch tidal overrun operation risk. (B) AC
distribution network branch tidal overrun risk distribution map. (C) DC distribution network branch tidal overrun operation risk. (D) Time distribution of tidal current
crossing risk in DC distribution network branches.
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during the 05:00 and 20:00–22:00 time periods, with the maximum
value occurring during the 21:00–22:00 time period. The most risky
time period is 20:00–22:00 when the risk values for both economy and
safety are high due to the superposition of the conventional load and the
EV charging load reaching peak load. At the same time, the operational
state of the distribution network can be divided into the following two
categories: ①During the periods 06:00–19:00 and 23:00–03:00, the
value of the RSRI is greater than 0, while the value of CERI is less than 0.
This indicates that the operational state is economic but unsafe, and
measures should be taken to reduce the RSRI, for example, by reducing
the output power of the DG and increasing the charging power of the
EV station.② The values of RSRI and CERI are both positive during the
hours of 04:00–05:00 and 20:00–22:00, indicating that the operating
state of the distribution network is neither safe nor economical at this
time due to the huge load demand and the fluctuation of DG output,
and measures should be taken to improve the operating quality of the
actual distribution network. As can be seen in Figure 10B, the value of
RSRI is almost zero and the value of CERI is less than zero at all times in
the DC distribution network, which is both safe and economical.

Comprehensive Operation Risk Analysis Of
DG And EV Connected To Distribution
Network
From the previous simulation results, it can be seen that the
short-term safety risk index and economic risk index at 21:00

reach the maximum value. Therefore, the risk value at 21:00 is
selected, and the EV capacity is increased from 9 to 15 MW at
intervals of 0.5 MW; 13 EV capacity values. According to the
definition of risk indicators in Section 3, a 4 × 13-order risk
indicator matrix is constructed. The risk index matrix was
processed by the Z-Score method, and the standardized risk
index results under each EV capacity were obtained. The
KMO (Kaiser–Meyer–Olkin) test obtained by SPSS software
simulation is 0.770, and the significance is less than 0.05. The
results show that there is a strong correlation between the risk
indicators, and factor analysis can be carried out.

The factor analysis in PCA is used to reduce the dimension
of the risk index matrix, and the related factor loading matrix
of the risk index and y1 is obtained. It can be seen from the
table that all risk indicators have a high correlation with the
first principal component, that is, y1 reflects 98.3% of ELLR
information, 97.7% of EPLR information, 97.7% of line power
over-limit risk information, and 98.8% of the node voltage
violation risk information. According to formula Eq. 25, the
cumulative contribution rate γ = 96.279% is calculated, so y1

can represent the original four risk indicators to achieve the
purpose of reducing the dimension of the original risk
indicators.

According to formula Eq. 24, the scores of each risk
index can be calculated, and the results are shown in
Table 6. It can be seen from Table 6 that the importance

FIGURE 10 | ERI results of the distribution network: (A) AC distribution network. (B) DC distribution network.
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of each risk index is related, and the node voltage over-limit
risk index has the largest weight, which is also an important
basis for the next stage of the distribution network to be
transformed.

In order to better reflect the superiority of the method in this
study, it is compared with the comprehensive risk assessment
method based on weighted entropy in literature (Yang et al.,
2020b) and the traditional voltage and power flow out-of-limit
comprehensive risk evaluation method in literature (Hou, 2017).
When DG and EV are connected to the distribution network at
the same time, the comprehensive risk assessment index results
under different EV capacities are shown in Figure 11. In the
figure F1, F2, F3 are the comprehensive risk assessment index
results of the method in this study, the method implemented by
Yang et al., (2020b), and the method implemented by Hou,
(2017), respectively.

It can be seen from Figure 11 that with the continuous
increase of EV capacity, the comprehensive risk value only
considering safety factors continues to increase. However,
using the method in this study, it can be found that when the
EV capacity is within the 12 MW range, the comprehensive risk
assessment index value of the distribution network decreases,
which has a mitigating effect on the operation of the distribution
network. It can be seen that it is better to consider the risk factors
such as safety and economy at the same time. It can accurately
grasp the operation risk status of the distribution network and
can play a positive role in guiding EV access to the distribution
network capacity.

CONCLUSION

In this study, a risk analysis method for grid-connected operation
of EVs in AC–DC distribution networks is proposed, and the
conclusions obtained are as follows.

1) In considering the impact of DG and EV on the AC–DC
distribution network, a CC–CV variable power charging load
model without subjective prediction laws is established, which
avoids the shortcomings of the commonly used EV charging
load modeling methods, such as the incompatibility between
the model with artificially set parameters and the random
driving characteristics of users, and can reflect the actual
charging characteristics of EV more realistically.

2) Compared with deterministic assessment, the short-term
safety risk index based on the complex network theory
proposed in this study can more realistically reflect the
short-term safety risk caused by the uncertainty of the
distribution network node; the greater the security risk is.

3) Using the ERIwith ELLR and EPLR, it is verified through simulation
that the distribution network has economic risk during the hours of
04:00–05:00 and 20:00–24:00, and the distribution network can
obtain certain economic benefits during other hours.

4) Based on the proposed risk index, the risk index matrix of
different EV capacities connected to the distribution network
is constructed, and PCA is used to conduct comprehensive
risk assessment. The results show that with the increase of EV
capacity, the comprehensive risk assessment index value also
increases, but the comprehensive risk has been alleviated
within a certain range, and EV charging can be better
guided. In addition, the weight coefficient of the risk index
is calculated by PCA, which effectively avoids the deviation
caused by the adverse influence of other subjective factors.
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TABLE 6 | Component score coefficient.

Index Node
voltage over-limit risk

Line
power limit risk

ELLR EPLR

Score 0.256 0.254 0.256 0.253

FIGURE 11 | Comprehensive risk assessment indicator results with
different EV capacities.
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