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This article proposes a fault detection and location strategy based on cognitive edge
computing to harvest the benefits of cognitive edge computing and address the special
needs of active distribution networks (ADNs). In the proposed strategy, an ADN smart
gateway is used to compile data in a central repository where it will be processed and
analyzed. The intermediary smart gateway includes a protection unit where the fault
detection, location, and isolation are accomplished through a combination of virtual
mode decomposition (VMD), support vector machine (SVM,) and long short-term
memory (LSTM)–type deep machine learning tools. The local measurements of
branch currents and bus voltages are processed through VMD, and the informative
decomposed components are provided as inputs to the SVM-based fault detection
unit and LSTM-based fault location unit. The smart digital relay passes trip commands
to the respective circuit breaker/s and submits compiled data regarding the history of
faults and protection actions to the upper-level units. The findings from simulation
results demonstrate the effectiveness of the proposed strategy to provide fast and
accurate fault detection and protection against all types of faults and locations in
the ADN.
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INTRODUCTION

An active distribution network (ADN) is a section of a power system that involves a combination of
distributed energy resources (DERs) and flexible network topology. The involvement of various
generating units and, especially, renewable energy resources with fluctuating outputs, the possibility
of variation in topology during the operation, and other special characteristics of ADNs make their
protection relatively complex compared to the conventional distribution networks. Some of the
special features in the protection of ADNs are low fault currents from converter-based generators,
multiple directions of flow of fault currents, and continuous change of topology leading to
complexity in the adjustment of protection setting values. Such special characteristics of ADNs
result in the commonly used current magnitude-based protection relays (such as overcurrent
protection) being less effective in the case of ADNs (Hooshyar and Iravani, 2017; Hooshyar and
Iravani, 2018). Differential protection is seen as a more effective option, especially for the protection
of individual units or sections of a power system. However, there comes the economic burden of
having individual protection systems for individual units or sections with it. When applied to an
ADN with multiple DER units, differential protection with fixed or slightly adjustable (as in
percentage/dual-slope differential relays) threshold setting is vulnerable to sensitivity issues due
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to a varying fault magnitude and the possibility of multiple
sources feeding a fault. These issues lead to an increased need
for advanced and smarter protection schemes that can cope with
the future power system.

One way of achieving the required accurate and effective fault
detection and protection is through the use of integrated
information in a centralized manner. Features of the Internet
of Things (IoT) are being increasingly integrated into the power
system, with the concepts of virtual power plant, energy internet,
and smart grid becoming more popular. Active distribution
networks are part of the smart grid concept. The growing
information and communication technology (ICT) capacity in
today’s power system allows for the application of cloud
computing and edge computing technologies. The use of such
tools in the protection systems is compatible with and expected to
contribute to ongoing changes in the power system.

A range of techniques is suggested for fault detection and
location in active distribution networks and microgrids. The
categories, operation, constraints, strength and shortcomings
of different protection schemes applicable to distribution
networks integrating distributed generation units are
highlighted by Nsaif et al. (2021). One of the most popular
approaches in fault analysis is the use of symmetrical
components, where a three-phase system is converted to three
single-phase systems, for positive, negative, and zero sequences.
Detailed analysis of symmetrical components fault analysis in
active distribution networks is discussed by Mijailović et al.
(2018). The article lists four types of distributed generation
units (DGs) regarding short circuit modeling and focuses on
synchronous generators. The authors argue that synchronous
DGs is the most critical DG type in terms of their impact on the
fault current. However, the fact that converter-based generators
(CBGs) are becoming integral in today’s distribution system
means it is important to consider such DGs in the fault
analysis. Strezoski and Prica (2016) tried to consider CBGs in
the fault analysis of active distribution networks. It is stated that
the controllers in converters of those DGs are usually set to inject
only positive-sequence currents, even during unsymmetrical
faults. This limits the effectiveness of protection schemes based
on sequence components other than positive sequence.

Fei and Moses (2019) used a current tracing method based on
the SVM model for fault detection of lower-level faults in
distribution systems with inverter-based DERs and reported
that the method provides sufficient details and sensitivity to
identify faults and other abnormal conditions in the
distribution feeder. The study focused on modeling and
studying a single distribution feeder rather than a complete
distribution network. An attempt to use other machine
learning–based techniques was presented by Shafiullah et al.
(2018) for fault location in distribution grids. They employed
the Stockwell transform to extract useful features from recorded
three-phase current signals that are used as inputs for the
machine learning tools. High impedance faults were not
considered in the study.

Another work, by El-Zonkoly (2011), proposed a multi-agent
based scheme that uses the entropy of wavelet coefficients of the
measured bus currents for fault diagnosis in distribution

networks with distributed generators. The study used the sum
of absolute entropies of wavelet coefficients of the Clarke
components to determine the type of fault. The
microprocessor-based protection scheme employs a
communication network that allows information on the status
of the relays and breakers to be obtained from the supervisory
control and data acquisition system. The proposed technique
would use the objective comparison of signal features from
measurements at the different busbars to locate the faults,
which may be difficult at times, especially because the fault
currents and impacts on the fault-detection signal features
could be varied under different operational conditions.

Features of measured positive-sequence impedance at near
and far ends of a protected line section in distribution networks
with CBGs are used for protection of internal and external fault
cases in work by Xu et al. (2016). Their study devised a strategy
based on the amplitude difference of differential impedance with
restraining characteristics and a current amplitude difference
coefficient. Though the proposed strategy has a greater ability
to resist transition resistance compared to the current
conventional differential protection, it still gradually loses the
advantage with increasing fault resistance, especially for high-
impedance faults.

The special challenges in designing protection schemes for a
distribution network consisting of microgrids due to the dynamic
characteristics in their architecture are also addressed by Habib
et al. (2020). The study proposed a centralized approach where
operational modes and topologies are monitored for optimal
detection and protection of faults. Data distribution service
middleware is used to interface the hardware and software
environments, and the relay settings are adjusted based on the
topology and the shortest path to a fault. While the article is a
trailbreaker in its proposed software–hardware infrastructure, the
protection scheme while on modified versions of directional and
distance relays cannot guarantee resilience against multiple-
direction of fault currents and low fault current levels from CBGs.

Protection systems which use communication media are
getting wider recognition in recent times to ensure reliable
operation of distribution networks. The possible role of
communication systems for such purpose are outlined by
Habib et al. (2020). A further verification of a similar
approach is provided by Cai et al. (2020), who used a
technique based on IEC 61850 for protection of distribution
networks. The study divided a regional distribution network into
protection zones based on the switch status and sampling
conditions and represented the protection zones by the zone
incidence matrix. The decisions for fault removal operations are
established in the same way and denoted as incidence matrix
according to the ability of a switch to cut the fault current. The
method relies on updating system settings based on
communicated status information. The effectiveness of such a
method depends on the size and complexity of the distribution
network. Large and complicated networks could result in the
processing of large and complex information, which would be
difficult to implement practically.

Zhang et al. (2019) also proposed an integrated wide-area
protection scheme for ADNs based on the fault components
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principle with a three-level hierarchical structure. Fault detection
and classification are performed through the use of a fault state
network composed of the pre-fault state and post-fault state
networks generated using the superposition principle. The
post-fault state network is also composed of positive-sequence,
negative-sequence, and zero-sequence fault components
networks. The method ignored the influence of line
capacitance, which may be significant, especially in the case of
ungrounded systems and high impedance faults. The time-delay
cooperation-based approach used to realize protection selectivity
is reported to ensure the reliability of the protection system while
at the same time possibly affecting the speed of the protection
system operation, leading to less convenience when the devised
technique is used as a primary protection.

Strategies of real-time dispatching and protection for active
distribution networks are presented by Song and Caihong (2018).
A structure with three layers, consisting of a centralizedmonitoring
layer, an optical fiber network layer, and a terminal nodes layer, is
applied. A multi-level protection system with centralized
differential protection was suggested as the main protection
with backup protections based on multi-stage over-current
protection. The enhancement from the conventional differential
and overcurrent protections is interesting, although the fact that
the basic working principles are still reliant on pre-specified
threshold values means the strategies are vulnerable to the
possibility of malfunctioning in special events related to changes
in configuration and generation status of DGs.

Many studies have investigated the possibility of applying
communication systems (Coffele et al., 2015; Singh et al., 2016),
signal processing techniques (Bukhari et al., 2017; Netsanet
et al., 2018; Wang et al., 2019; Aftab et al., 2020; Xie et al.,
2020; Sharma et al., 2021; Wilches-Bernal et al., 2021), and
machine learning tools (Orozco-Henao et al., 2018; Silva et al.,
2018; Khalaf et al., 2019; Uzair et al., 2019; Peng et al., 2021) in
the protection of ADNs and microgrids. Some of the techniques
are modifications of the customary protection schemes that
require pre-specified relay settings, although some
accommodate adaptive modification of the setting values.
Those approaches may be too complicated for
implementation when the network is large and complex.
Using machine learning techniques that can learn the
complicated nature of fault conditions under varying network
configurations is one of the suggested techniques.

In an article by Xie et al. (2020), a double-ended traveling
wave–based fault location method that makes use of VMD and
Teager energy operator (TEO) is proposed for distribution
networks. A fault distance difference matrix (FDDM) built
from TEO analysis on the VMD decomposed signal of the
post-fault traveling wave is compared against a pre-fault
calculated intrinsic distance difference matrix (IDDM) to
locate the fault. The presence of tap points or DGs in ADNs
could affect the performance of traveling wave–based fault
location techniques (Wilches-Bernal et al., 2021). The VMD-
based fault detection technique is also applied for a low-voltage
DC microgrid with renewable sources by Sharma et al. (2021).
VMD is used with Teager-Kaiser energy operators (TKEOs) to
calculate time entropy values from transient zero-sequence

currents that are used as input to identify a high impedance
fault from the capacitor and load switching in distribution
network in a 2019 article by Wang et al.

A study by Peng et al. (2021) utilized a radial basis function
neural network for fault location in a distribution network with
homogenous and hybrid feeders. Although the issue of
homogeneity in feeder types is an important aspect of protecting
distribution networks, the more concerning aspect of the existence
of multiple DERs in the contemporary distribution networks is not
addressed.However, the article outlined the possibility of using edge
computing tools for different aspects of power system protection.
The application of edge computing in relay protection is discussed
by Yin et al. in their 2019 study. However, details of the technique
are not presented, aside for a brief mention that time series,
regression analysis, and expert system methods are used.
Another study, by Huo et al. (2020), also tried to apply edge
computing for fault diagnosis and location in low-voltage power
systems. It states that the method involves Wavelet analysis
(singular signal detection, signal-to-noise separation, and
frequency band analysis). However, discussions on how to set
the threshold value for fault detection and how the faults are
located are not provided. These are the challenging aspects in
fixed setting protection schemes and protection systems that
depend on an analytical comparison of some parameters.

One factor to pay attention to in the application of machine
learning–based approaches is whether the models are capable of
learning and representing both the long-term and short-term
relationships between factors and the fault conditions. The use of
signal-processing tools to extract features from the measured
voltage and current signals is suggested to improve the
performance of machine learning–based techniques. Wavelet
transform and Hilbert transform are the most commonly used
techniques. Those techniques may be effective to some extent,
while the latest methods, such as VMD, are better in terms of
proving information on both amplitude and frequency and being
robust in terms of sampling and noise.

The proposed method of fault detection and protection in this
study involves a virtual mode decomposition (VMD)-based signal
analysis stage where themeasured voltage and current waveforms are
preprocessed to produce decomposed components, which can better
show the discontinuity in the waveforms and hence be better used as
inputs for fault detection and location. The decomposed components
are provided as inputs first to the SVM-based fault detection module
and then to the Long Short-Term Memory (LSTM) model, which is
trained to identify the faulted zone. Each of the three phases is treated
individually, and the judgment on the type of fault is made through
analysis of each. The decision as to whether the circuit breaker will
open is hence based on the results from fault detection and location
units of each phase. The devised strategy is tested based on a PSCAD/
EMTDS simulation model of a low-voltage ADN consisting of
multiple converter-based generators, renewable resources, and
clusters of loads. A complete architecture of the overall cloud
computing platform that integrates the cognitive edge
computing–based digital relay is provided. The digital relay design
is also provided and constitutingmodules are developed. Themethod
proved to be effective in terms of detecting and locating all types of
faults, high impedance faults, and faults at the different points in the

Frontiers in Energy Research | www.frontiersin.org August 2022 | Volume 10 | Article 8269153

Netsanet et al. Edge Computing for ADN Protection

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


ADN. The article proposes a method of extracting signals for fault
detection and location based onVMDopening up to the possibility of
using VMD in power system protection studies. The devised
protection scheme is also unique in its two-stage approach, where
two different types of machine learning tools (SVM and LSTM)
employ their best strengths in fault detection and location. The
method is different from the fixed (or slightly varying) setting-
based protection schemes, because the way the classification
problems of fault detection and location are solved through SVM
and LSTM models is based on artificial learning of the system
architecture and electrical parameters under various conditions
rather than analytical comparisons. This allows the devised
method to effectively address the issues tied to protecting active
networks due to fluctuating and intermittent distributed generation.

The remainder of this article is organized in such a way that
the second section discusses the concepts of edge computing,
cognitive computing, and digital relay based on cognitive edge
computing. The data and method used in the article are discussed
in the third section, which is followed by the results and
discussion section. The final section provides conclusions on
the findings of the study.

COGNITIVE EDGE COMPUTING FOR
DIGITAL RELAY

Cognitive computing represents self-learning systems that work on
deep learning algorithms and big data analytics to be applied in
automated ITmodels and end-user devices. Internet of Things (IoT)
and cloud computing have become an integral part of the different
sectors in the world. The power system has also started to move in a
similar direction with the incorporation of such features. However,
as cloud computing would need larger time delays due to
communication and a larger size of data, it would be less suited
for protection systems that require fast response time. However, in
the case of edge computing, the data analytics and computation tasks
happen directly on the devices to which the sensors are connected

rather than on the centralized cloud server. Thus, it would be more
appropriate for application in the protection system of an ADN.
There are some attempts to apply edge computing in power system
protection. Sang et al. (2021) applied optimized simulated annealing
algorithm (OSAA)-based edge computing for extraction of the
forward and reverse traveling waves for relay protection of
intelligent substations. Potential applications of machine learning
techniques in protection and dynamic security assurance of
distribution systems are also reviewed by Aminifar et al. (2021).

A typical edge computing relay-based protection structure is
shown in Figure 1. The architecture involves different layers. The
first layer is where the sensors or meters are located. There will
also be devices that will collect the sensed or measured
information and may perform simple operations such as
opening and closing circuit breakers. The intermediary layer,
called the edge node, is where the actual data processing and
computations of fault detection and location will be performed.
The upper layer, called the cloud, includes cloud services where
higher-level computation on the utility grid level may be
performed. This includes big data analytics and processing,
presentation of compiled information and decision making on
recalibration of protection system, or changes to the lookup table
in cases where the system architecture is significantly altered.

The edge computing–based digital relay proposed in this study
involves the use of cognitive tools such as support vector machine
(SVM) and a deep learning tool called long short-term memory
(LSTM) network for detection and location of faults respectively.
Edge computing tools have the advantages of higher speed,
reliability, and being economical due to the fact that the
devices are located close to the terminal units or the user-end.

DATA AND METHODS

Generation of Data for Training and Testing
The devised fault detection and protection technique is tested
based on an active distribution network shown in Figure 2. The

FIGURE 1 | Structure of cloud-based grid infrastructure with edge computing protection devices.
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ADN is intentionallymade to comprise converter-based generators
and renewable resources. The main components of the ADN are
the utility grid and the other components specified in Table 1.

The data for training and testing the devised method is
generated from the recording of the voltage at each busbar
and the current in each branch of the circuit shown in
Figure 2. The set of disturbances and faults summarized
applied for generating the training data are

1. DG switching (ON and OFF)
2. Changing the reference settings for PQ mode DGs
3. Load switching (ON and OFF)
4. Changing the load values
5. Faults in each of the protection zones
6. All types of faults (LG, LL, 2LG, 3L, 3LG)

The fault resistance is taken to be 10Ω. The pseudocode
presented in Figure 3 shows the procedure followed in

deciding the sequence of events used for generating the
training and testing data. The testing data is generated by
randomly permuting the order of events applied for the
generation of the training data. The type of faults, regarding
the phases involved in the fault, are also randomly changed to be
different from that of the training data.

Each phase of the three-phase branch currents and busbar voltages
are sampled with with a sampling frequency of 1 kHz. The fault
locations and faulty sections as well as the different disturbances are
also recorded for future use to train the LSTM-based fault detection
model.

Variational Mode Decomposition Based
Feature Extraction
The use of signal processing techniques is becoming a customary
practice in digital protection relay studies. The signal processing
tools such as Wavelet transform, Fourier transform, Hilbert

FIGURE 2 | Single-line schematic diagram of the studied low-voltage active distribution network.

TABLE 1 | Parameters of components of the ADN.

Component Rated capacity

PV array 400 kWp
Wind turbine 300 kW
Supercapacitor 200 MW × 10 s
Battery energy storage system (BESS) 500 MW*4 h
Four loads 200 kW (variable), 100 kW, 200 kW (variable) and 100 kW
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transform, and mode decomposition techniques are used to
extract features from the measured current and voltage. Those
extracted signal features are expected to be more informative than
the original signals to detect and locate faults.

Variational mode decomposition (VMD) is one of the signal
decomposition techniques that has become more popular in
recent years after being proposed in 2014 by Dragomiretskiy
and Zosso (Dragomiretskiy and Zosso, 2014). VMD decomposes
a parent signal into an ensemble of modes and their respective
center frequencies. For an original current or voltage signal of f(t),
the VMD decomposition into K components called “intrinsic
mode functions” (IMFs) can be expressed as

f(t) � ∑K

k�1uk(t) (1)
where uk(t) are the decomposed components or IMFs, which will
have a cosine function waveform and slowly varying and positive
envelopes. Each of the decomposed IMFs have instantaneous
frequencies that vary slowly in a nondecreasing pattern and are
concentrated around a central frequency wk.

The VMD procedure can be summarized into the following
three steps:

1. Hilbert transform: To acquire the unilateral frequency
spectrum (δ(t)+(j/πt)) p uk(t) for is extracted each mode uk
using Hilbert transform

2. Frequency mixing: An exponential term is added to the
analysis signal of each mode to adjust its estimated center
frequency and the spectrum of each mode modulated to the
corresponding base frequency band [(δ(t) + (j/πt)) p uk(t)]
e−jωkt.

3. Heterodyne demodulation: The gradient squared L2 bound
norm of the demodulation signal is calculated, and the signal
bandwidth of each mode is estimated.

The core process involved in VMD is finding a discrete set of
IMFs uk(t)with respective central frequencies wk(t) that minimize
the constrained variational problem defined by Eq. 2
(Dragomiretskiy and Zosso, 2014):

min
{uk},{wk}

⎧⎨⎩∑
k

�������zt[(δ(t) + j

πt
)puk(t)]e−jwkt

�������22 ⎫⎬⎭
Such that∑

k
uk � f

(2)

where δ is the Dirac function, ‖.‖2 is the L2 distance, and * is
convolution operation.

The minimization problem can be solved as the saddle point of
the augmented Lagrangian L through a method called alternate
direction method of multipliers (ADMM). ADMM procedure
involves in a sequence of iterative sub-optimization steps that will
update un+1k , wn+1

k , and λn+1k .

un+1
k � argmin

⎧⎨⎩α
��������������zt[(δ(t) + j

πt
)puk(t)]e−jωkt

�������22
+
���������f(t) −∑

i

ui(t) + λ(t)
2

���������2
2

⎫⎬⎭ (3)

ωn+1
k � argmin

ωk

⎧⎪⎨⎪⎩∫∞
0

(ω − ωk)2
∣∣∣∣∣∣∣∣∣∣∣û(ω)∣∣∣∣2dω⎫⎪⎬⎪⎭ (4)

The equations are transformed from time domain to
frequency domain, whose quadratic optimization final
solutions are given as

ûn+1
k (ω) � f̂(ω) − Σi≠ kû(ω) + (λ̂(ω)/2)

1 + 2α(ω − ωk)2 (5)

ωn+1
k � ∫∞

0
ω
∣∣∣∣∣û(ω)∣∣∣∣2dω∫∞

0

∣∣∣∣∣û(ω)∣∣∣∣2dω (6)

FIGURE 3 | Pseudocode for the procedure of generating the training
and testing data.

TABLE 2 | Parameters of VMD decomposition and LSTM network.

Parameters of VMD decomposition Parameters of LSTM network

Parameter Value Parameter Value

Number of decomposition IMFs 3 Sequence input layer size 1
Maximum number of optimization iterations 500 Number of hidden units 100
Mode convergence tolerance/absolute tolerance 5.00E-06 Number of classes/fully connected layers Number of protection zones + 1(7)
Method to initialize the central frequencies “peaks”a Maximum epochs 100
Penalty factor for reconstruction fidelity 1000 Minimum batch size 265
Update rate for the Lagrange multiplier in each iteration 0.01 Solver name Adaptive moment estimation (ADAM)

aInitialize the central frequencies as the peak locations of the signal in the frequency domain.
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where^= Fourier transform, n = iteration number.
In this article, the busbar voltages and branch currents are

measured and processed though VMD to generate the features to
be used for fault detection and location. The fault detection is
based on voltage features, while both voltage and current features
are used together with other variables for the fault location
procedure. The feature extraction procedure involves applying
VMD on the measured voltage and current signals first. The

number of IMFs to be extracted is an important parameter.
Though repeated attempts, it was observed that a large
number of IMFs would result in noisy and less informative
IMFs, while the opposite would cause missing of informative
IMFs. The number of IMFs is finally decided to be three. The
details of the VMD applied are shown in Table 2.

After decomposing the voltage and current signals, the IMFs
with better information for detecting and locating faults are
identified through visual inspection. As a result, the first IMF
of the current signals and the second IMF of the voltage signals
are used. The next step is calculating the total energy in each cycle
for the VMD decomposed components using Frobenius norm as
in equation.

EVMD,i �

�������������∑N
k�1

[VMDi(k)]2
√√

(7)

where EVMD,i is the energy for ith IMF of a signal (voltage or
current) for a cycle, VMDi is the ith IMF, and N is the number of
data points in a cycle (20 in our case). The procedure followed in
extracting features for fault detection and location using VMD is
summarized in Figure 4.

Support Vector Machine Based Fault
Detection
Support vector machines are one of the machine learning tools
that are applicable for classification and regression analysis tasks.

FIGURE 4 | VMD-based feature extraction procedure.

FIGURE 5 | Structure of LSTM network.
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SVM is a non-probabilistic binary linear classifier. SVM has the
advantage of being memory efficient and versatile.

In SVM algorithm, each data item is plotted as a point in
n-dimensional space (where n represents the number of features
in the data) with the value of each feature being the value of a
particular coordinate. The classification is then performed by
searching for an optimal hyperplane that can separate the
dataset into two classes though maximizing the space that

does not contain any observations. For a linear SVM score
function of the form f(x) = x′β+b with x representing the
observations, β being the coefficients vector and b being the
bias term, the root of function f(x) for particular coefficients
defines a hyperplane, and the SVM algorithm searches for the
maximum margin length. The algorithm uses the Lagrange
multipliers method for the optimization, which are intended
to minimize the term in Eq. 8:

FIGURE 6 | Flowchart of procedure followed.

FIGURE 7 | Structure of designed digital protection relay.
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0.5∑n
j�1
∑n
k�1

αjαkyjykx
′
jxk −∑n

j�1
αj (8)

with respect to the n coefficients α1, α2...,αn subject to∑ αjyj � 0,
αj ≥ 0 for all j = 1,2...,n.

An SVM model for two-class classification supports mapping
the predictor data—in our case, the features extracted from the
busbar voltage signals using kernel functions—and supports
sequential minimal optimization for objective-function
minimization. The general algorithm for such a two-class
learning with cost matrix Γ is updating the class prior
probabilities p to pc by incorporating the penalties described
in Γ.

The SVM model used in this study for the fault detection
procedure uses Sequential Minimal Optimization (SMO)
solver and a linear Kernel function. The outlier fraction is
set to be zero, as there are no expected outlier observations in
the training set. The observation data points are given equal
weights, with the vector of observation weights set as a vector
of ones with the size of the vector equal to the length of the
input data.

LSTM-Based Fault Location
The later stage of the methodology, which locates the faulty zone,
deploys a deep learning network that learns features of the VMD
decomposed current and voltage signals. The specific technique
used is a Long Short-Term Memory (LSTM) network. It is a type
of recurrent neural network (RNN), which works well with
sequence and time-series data because of its capability to learn
long-term dependencies between time steps of sequence data. The
fact that these recurrent networks possess a certain type of
memory makes them analogous with the memory system in
the human brain.

The computations in LSTM networks involve simple algebraic
equations, unlike the intelligence in its overall learning capability,
which allows fast computation speed and also makes the method

suitable for real-time application. LSTM networks were first
introduced by Hochreiter and Schmidhuber (1997) and have
since been modified considerably through the contributions of
many. The algorithm has become popular due to its capability to
avoid the vanishing gradient issue in RNNs, where influence of a
given input decays exponentially as it cycles around the network’s
recurrent connections. This feature allows LSTM networks to
store and access information over long periods of time. Figure 5
shows the general structure of an LSTM network where f, g, h are
non-linearity functions. Table 2 presents the description of
parameters of the LSTM network used for fault location in
this article.

Devised Protection Scheme and
Procedures
The method applied in this article involves the steps shown in
Figure 6. The first step is modeling the ADN using PSCAD/
EMTDS software and generating the data for training and testing
of the devised fault detection scheme. The later stage involves
virtual mode decomposition of the collected current and voltage
records. In the next step, SVM and LSTM models are developed
for fault detection and location. An SVM model and an LSTM
network are trained for each phase using the features extracted
from the VMD decomposition. The trained models are tested
based on data generated from different sets of events. The steps
are discussed in detail in this section.

The first stage of microgrid protection, which is fault
detection, is carried out using the SVM model. The scheme is
selected for its effectiveness in mapping more than one input
parameter to a binary classification variable, which in our case is
the existence or absence of fault in the ADN. Each phase has one
SVM model, and the inputs for the model are the VMD
decomposed components of the busbar voltages.

After the decision regarding occurrence of fault is made
using the SVM models, the location of the faults is evaluated

FIGURE 8 | VMD decomposition of Phase A (A) current (Branch 1) and (B) voltage (Busbar 1).
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using an LSTM network which is one of the deep learning
tools. The VMD decomposed features of branch currents and
bus voltages, the status of circuit breakers, and the output of
the SVM fault detection model are trained against the location
of faults using the LSTM network. The choice of LSTM
network or generally recurrent neural network is traced to
the capability of the scheme to handle multi-dimensional
time-sequence data for classification applications. More
than one parameter exists in an observation, making the
input parameter multi-dimensional, so other methods such
as SVM or ANFIS would not be capable of dealing with it as an
LSTM network would. The structure of the designed cognitive
edge computing based digital protection relay is shown in
Figure 7. The sequence of operation of the relay and the
circuit breakers starts with the fault detection step, and the
state of the microgrid is judged as faulty or not based on the
extracted voltage and current features. Once a fault is
detected, the faulted zone is identified by the fault location
component and the zones are translated into the respective

circuit breaker/s that need to be opened based on a lookup
table.

The fault detection and location algorithms require features of
the measured voltage and current extracted by VMD. Thus, a 20-
data-point (equivalent to one cycle) measurement is required to
initiate the protection action. There could also be an additional
intentionally added delay that determines whether the incident
has sustained for a specified number of sample points to avoid
false tripping. However, such a delay, and the physical and
communication related latencies, are not considered in this
study. Aside from such delays, the fault detection and location
are performed in real time.

In order to evaluate the performance of the devised fault
detection scheme in this study, the confusionmatrix and accuracy
measures of f-score, recall, and precision parameters are used as
defined by Fei andMoses (2019). The parameters are expressed in
percentage forms in the following equations:

Precision � TP

TP + FP
p100% (9)

FIGURE 9 | Energy of second IMF of voltage signal serving as input for SVM-based fault detection.

TABLE 3 | Accuracy of fault detection using SVM-based model.

TP FP TN FN Precision Recall F-score

Phase A 92 0 434 4 100 95.83 97.87
Phase B 62 0 466 2 100 96.88 98.41
Phase C 31 0 498 1 100 96.88 98.41

FIGURE 10 | Error in fault detection (Phase A). FIGURE 11 | Predicted fault location using LSTM model (Phase A).
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Recall � TP

TP + FN
p100% (10)

F − Score � 2p
PrecisionpRecall

Precision + Recall′ (11)

where TP = true positive, FP = false positive, TN = true negative,
and FN = false negative.

F-score is a convenient way to show the performance of
such a classification model. The correctness of the model relies
on estimating positives more than on estimating negatives,
because faults are the concern here. The system is going to be
operating normally with no fault (which means “negative”) for
most of the time. Thus, evaluating the performance of the
model for both positives and negatives together (assessing the
very large number of “true negatives”) would give an
exaggerated measure of accuracy. F-score, on the other
hand, allows the performance of the model to be evaluated
more critically.

Accuracy of the fault location model is evaluated using a
confusion chart and respective accuracies of the
classification for each protection zone using the following
equation:

Accuracy � Count(Pred Loc � Act Loc)
Count (Act Loc) p100% (12)

where Pred_Loc = predicted location (zone) and Act_Loc = actual
location (zone).

RESULTS AND DISCUSSION

VMD Decomposition Results
The first important stage in the devised protection scheme is the
extraction of features for fault detection and location using
VMD decomposition. The decomposition assists in extracting
features of the measured voltage and current signals, which can
provide information for the detection and location of faults
(Figure 8).

Fault Detection Results
The fault detection procedure based on SVM binary classification
is tested based on the test data set generated by applying the
disturbances mentioned in 3.1. The energies of VMD
decomposed components of the five busbars in the ADN are
used as input in the fault detection module of the protection
system (see Figure 9).

Individual SVMmodels are used to detect faults in each of the
phases. The receiver operating characteristic (ROC) of the SVM
classifier, which is 0.978, indicates the developed model is a
perfect classifier and hence a perfect fault detector. The
models were able to detect all kinds of (both balanced and
unbalanced) faults with 100% precision, as shown in Table 3.
The F-score measure also shows that each of the phase fault
detection models have F-score values of around 98%. Only a few
points were observed to create confusion in the fault detection
model. It is also important to note that there is no “false positive”

FIGURE 12 | Confusion chart for locating faults involving (A) Phase A, (B) Phase B, and (C) Phase C.
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in the results (Table 3). Thus, the confusion will not cause any
false tripping of breakers. The only few “false negative” points
occurred at the ends of the faults, as shown in Table 3 and
Figure 10. This is nothing but the protection system signaling a
reclose order to the circuit breaker just one cycle before actual
fault clearing. This can be addressed with a delay feature that
waits to see if the fault detection signal persists for a few more
time steps. The output of the fault detectionmodule is provided to
the fault location module, whose results are discussed next.

Fault Location Results
The fault location model is based on an LSTM network. Energies
of the VMD decomposed components of the branch currents and
bus voltages are supplied as input together with the status of the
circuit breakers and output of the fault detection module. As with
the fault detection procedure, individual LSTM networks are
trained for each phase. The accuracy of the network at the end of
the training is close to 100%.

The LSTM network was able to locate the faults with 100%
accuracy. Figure 11 shows the result of the fault location testing.
Because the actual fault location and the location estimated by the
LSTM network perfectly fit with each other, the graphs would
normally overlap and only one color would be visible for most of
the simulation period. In the Figure 11, we intentionally picked
the time zone with an error in locating the fault so that both lines
could be noted. As the Figure 12A–C shows, the fault location
model using LSTM networks were able to locate the faults with an
accuracy of more than 99%. In the few points where the fault
location model mislocated the faults, the estimated zone is seen to
be a neighboring one to the actual faulted zone. Hence, the very
few erroneous results will simply result in the isolation of a
neighboring zone.

After the faults are detected and located through the fault
detection and location units, the appropriate fault clearing action
will be carried out through a breaker opening command that can
be generated based on a lookup table that associates the
protection zones with the circuit breakers.

CONCLUSION

This article discusses the development of a cognitive edge
computing–based digital relay for the protection of a low
voltage ADN. The devised relay is based on an architecture
composed of three layers: a lower-level sensor and
measurement type layer; a second layer with edge nodes where
the cognitive computing-based fault detection and location are
undertaken; and the top layer – i.e., the cloud – where the
information from the edge nodes are compiled and further
processed. The cognitive edge computing–based relay
comprises a fault detection module and a fault location
module. The fault detection is achieved through an SVM-
based model, while the later uses an LSTM network.

The effectiveness of the devised fault detection and location
techniques are verified based on test data generated using an
ADN test model simulated in PSCAD-EMTDS. The proposed

methods were proven to be effective in addressing the challenges
specific to ADNs and general protection issues related to high
impedance faults. The fault detection unit of the relay was able
to identify diverse fault types based on the features of the voltage
extracted by VMD decomposition. The fault detection unit was
effective in detecting myriad types of faults; only a very few false
negatives occurred at the en of very few fault events. Although
this has no significant impact on the protection system, it may
be served better by backup protection or if the method is used as
a backup. The LSTM-based fault location unit used the features
extracted from the bus voltage and branch currents as well as the
status of the breakers and the output of the fault detection unit
as inputs. It also performed at close to 100% accuracy in locating
all types of faults in the ADN. The technique is advantageous in
that adaptive adjustment of protection relay settings is not
needed and the complex fault conditions related to the plug
and play features of an ADN and the generation variation from
renewable DGs are learned easily by the LSTM and SVMmodels
and the relay was able to respond properly under varying
conditions of generation and loading. The proposed method
has proven effective under various arrangements within the
ADN with components taken out and brought back to the
network. However, the models used for fault detection and
location need to be trained again in cases where new
components are added to the network or the architecture is
altered significantly.
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