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This article proposes a point cloud classification model based on group normalization to
increase the classification accuracy when the computing power of the terminal device is
limited. This model groups and normalizes the features of point cloud during inference
and increases the classification accuracy when the computing power is limited. The
group normalization first groups the features of point cloud by their channel, then
computes their statistic metrics and normalizes them. Also, one-dimensional
convolution layers are used to replace the fully connected layers to decrease the
model parameters and keep the model’s performance when the computing power is
limited. In the experiment, PointNet++ is used to pretrain on ModelNet40 and then fine-
tune on the point cloud data of transmission lines. The result shows that the proposed
method can effectively increase the classification accuracy and help the 3D modeling
process of the transmission line.
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1 INTRODUCTION

Transmission lines are the main part of power transmission and play a key role in the process of
power transmission. However, due to the rapid development of power grids in recent years and the
increasing length of transmission lines, manual inspections have become more time-consuming and
labor-intensive, and the use of unmanned aerial vehicle inspections has become a trend (Qin et al.,
2018; Yao et al., 2021). Equipped with a laser radar, an unmanned aerial vehicle can scan along the
transmission line to gather point clouds of the transmission line in three dimensions (Teng et al.,
2017; Li et al., 2021). Based on the classified point cloud data, various algorithms, such as clearance
anomaly detection (Chen et al., 2018), can be applied on the transmission lines. Therefore, how to
classify point cloud is an important topic in point cloud processing and analysis (Zhang et al., 2016;
Li et al., 2020). On the other hand, though the computing ability is limited on the unmanned aerial
vehicle, fast and real-time detection is effective when the internet is bad in the backcountry (Huang
et al., 2020).

Wang et al. (2014) proposed a multiscale and hierarchical point cluster method to classify point
clouds, which first resamples the point clouds into different scales, and the latent Dirichlet allocation
is used to reconstruct the features before an AdaBoost classifier classifies them. There are some
researchers who use conditional random fields (Niemeyer et al., 2012) to classify point clouds which
have a good generalization performance. In addition, the natural exponential function threshold can
also be used to split the point cloud into hierarchical clusters and then jointly use latent
Dirichlet allocation and sparse coding to extract and encode the shape features of the multilevel
point clusters (Zhang et al., 2016). Some other methods based on the connected component analysis
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and voxel can also be used to detect pylons and wires from point
cloud data (Awrangjeb et al., 2017; Munir et al., 2019).

However, these methods require data formats like image grids
or 3D voxels, which need data transformation from the original
point clouds and thus lose some space information.

In recent years, deep learning has shown good results in
many different tasks, such as image classification (He et al.,
2016; Szegedy et al., 2017), natural language processing
(Vaswani et al., 2017; Devlin et al., 2018), and automatic
speech recognition (Chan et al., 2015; Watanabe et al., 2017).
There are also some methods based on deep learning, such as
PointNet and PointNet++, that can be applied to point clouds
on classification (Qi et al., 2017a; Qi et al., 2017b). These
methods need no data preprocessing and can be applied to
the original point clouds, which keep the original space
information. Based on these works, there are some other
works focusing on data diversity or space information
(Zhang and Rabbat, 2018; Li et al., 2020). However, these
methods do not consider the condition where the model will
be loaded in a platform where the computing power is limited
(Zhao et al., 2019), such as an unmanned aerial vehicle, which
may cause precision loss. Similar work on spatial localization of
insulators exists, which can detect insulators in real-time with
an unmanned aerial vehicle (Ma et al., 2021). However, there are
few similar works in transmission line point cloud classification.

This article proposes an improved network that can resist
the precision loss when computing power is limited. The
improved network uses group normalization to replace
batch normalization, which will cause accuracy loss when
the batch size is small. To decrease the model size and
increase the inference speed, one-dimensional (1D)
convolution layers are used instead of the fully connected
layer. Transfer learning is also used to overcome the lack of
transmission line point clouds. The model is first trained on
ModelNet40 data set, and then fine-tuned on the transmission
line point clouds data set. The results on ModelNet40 are
compared to other networks. And ablation study on how the
batch size affects the accuracy of the model is done to show the
effect of the proposed method.

The main contributions of this article are as follows:

1) This article proposes an improvedmodel based on PointNet++,
which performs better when the computing power is limited
and batch size is small, such as an unmanned aerial vehicle that
inspections along transmission lines.

2) The proposed model has a smaller model size and faster
inference time while not losing much accuracy, which is
suitable for real-time detection on an unmanned aerial
vehicle.

This article is organized as follows. Section 2 introduces the
related works. Section 3 explains the proposed method. Section 4
is the experimental study and analysis. Finally, Section 5
concludes the article.

2 RELATED WORKS

This article proposes a point cloud classification and recognition
model based on group normalization (Wu and He, 2018). In the
forward propagation of the model, point cloud features are
grouped and normalized to ensure the performance of the
model when the computing power is limited. In addition, 1D
convolution is used to replace the fully connected layer used in
the model for feature extraction and classification to accelerate
model training and reduce the model size. The experiment uses
the PointNet++ as the basic network for improvement. As there is
less point cloud data on the transmission line, transfer learning is
used for training. First, the model is trained on the public data set
ModelNet40 (Wu et al., 2015), which focuses on point cloud
classification and then uses the transmission line point cloud data
collected by laser radar to fine-tune the network and realize the
point cloud classification of the transmission line. The models
used and the improvements made will be discussed later.

2.1 Batch Normalization
It is an important assumption in machine learning that the
training data and test data are independent and identically
distributed. However, the distribution of data will shift in the
process of neural network training process, causing the
subsequent layers of the network to learn new distribution

FIGURE 1 | Diagram of the improved model.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8392732

Yin et al. Transmission Line Point Cloud Classification

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


changes, and the training speed becomes slower and more
difficult to converge than independent and identical
distribution. Batch normalization (Ioffe and Szegedy, 2015;
Santurkar et al., 2018) can be used to solve this problem.

For the input vector x1, x2, x3, . . .xN of dimension (N, C, H,
W), batch normalization is performed on the dimension C of the
batch size. The calculation process is as follows:

1) First the mean value of the input vector μB is calculated in the
entire batch:

μB � (1/N)∑N

i�1xi (1)

2) Then the variance σB2 is calculated:

σB
2 � (1/N)∑N

i�1(xi − μB)2 (2)

3) After obtaining the mean and variance, normalization is
performed:

x*i � (xi − μB)/ ������
σB

2 + ϵ
√

(3)
where ϵ is a very small number added for numerical stability, and
x*i is the result of xi after normalization.

4) Finally, the result of batch normalization yi can be obtained
after scaling of two trainable parameters:

yi � γx*i + β (4)
where γ and β are trainable parameters.

5) For the PointNet++ model using batch normalization, for the
input point cloud x � x1, x2, x3, . . .xN, its point cloud
category cls can be expressed as:

cls � fc⎛⎝∏2

i�1pointnet(sample (BN(x)))⎞⎠ (5)

2.2 One-Dimensional Convolution
Convolutional layers are always used to extract features. Among
the various types of convolutional layers, 2D convolutional layer is
often used in image-related tasks, such as image classification and
detection. 1D convolutional layer is often used in natural language
process–related tasks. Due to the high computing efficiency of
convolutional operators, in many recent works, it is a trend that
fully connected layers are replaced by several convolutional layers.

2.3 Transfer Learning
In the case of insufficient training data, there are several methods
to improve accuracy during the training stage, such as data
argumentation, meta learning, and transfer learning. Data
argumentation can expand the data set by applying different
transforms on the original data while meta learning focuses on
learning the method to learn.

Transfer learning depends on the similarity between the
source data and target data. When the target data are
insufficient, the model on a similar data set with enough data

is trained first, then the target data set is fine-tuned. This method
always performs better than when only training the model on the
target data set owing to the knowledge learned in the big data set.
It is a common method in image tasks when data are limited and
can also be applied to other domains.

3 PROPOSED MODEL

3.1 Normalization Improvement
Suppose the input data dimension is (N, C, H, W), then batch
normalization is performed on the channel of N. However, due to
the capacity of the graphics cards, N is generally not very large to
keep fast inference speed, which may result in poor batch
normalization. On the other hand, group normalization is
performed on the channel of C. Generally, C may reach a value
of 128 or 256, or even greater within the network, so it will not
adversely affect the result of normalization. Group normalization is
performed on the channel dimension, and therefore group
normalization can solve the problem of poor performance when
batch normalization is used with small batches. This is the reason
why this article uses group normalization in PointNet++ to replace
the original batch normalization to improve its accuracy.

The calculation process of group normalization is as follows:

1) Different from batch normalization, group normalization first
groups different channels and normalizes each group:

Si � {k | kN � iN, �kC/(C/G)� � �iC/(C/G)�} (6)
The meaning of �kC/(C/G)� � �iC/(C/G)� is to round the

quotient of the number of channels and the number of groups of
elements with indices k and i. If they are the same, then they are in

FIGURE 2 | Point cloud examples of ModelNet40.

TABLE 1 | Results comparison on ModelNet40.

Model Accuracy (%) Model size (MB) Inference time (ms)

3D ShapeNet 84.7 — -
Point 89.2 11.2 33
PointNet++ 91.9 40.7 312
Ours 90.7 7.8 24

The bold values means best in the column.
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the same group. The group size is a hyper-parameter and is generally
set to 32.

2) After the grouping, the process of group normalization is
similar to batch normalization, assuming that the input vector
in the same group is:

Si � x1, x2, x3, . . .xN (7)

3) First the mean value of the input vector in the entire group μB
is calculated:

μB � (1/N)∑N

i�1xi (8)

4) Then the variance σB2 is calculated:

σB
2 � (1/N)∑N

i�1(xi − μB)2 (9)

5) After obtaining the mean and variance, normalization can be
performed:

x*i � (xi − μB)/ ������
σB

2 + ϵ
√

(10)

6) Finally, the result of batch normalization can be obtained after
the scaling of two trainable parameters γ and β:

yi � γx*i + β (11)

7) For the PointNet++ model using batch normalization, for the
input point cloud x � x1, x2, x3, . . .xN, its point cloud
category cls can be expressed as:

cls � fc⎛⎝∏2

i�1pointnet(sample(GN(x)))⎞⎠ (12)

3.2 Proposed Model Structure
The proposed model uses PointNet++ as the basic model to
improve. Group normalization is used to replace batch
normalization, and the fully connected layer is replaced with
several 1D convolutional layers. The network structure is shown
in Figure 1, which contains two cascaded sampling modules with
a feature extraction module, then the feature is fed to three
cascaded 1D convolutional layers to get the final classification.

Suppose the inputs ∈ x � {x1, x2, . . .xN}, where xi is a d
dimension vector, and the feature extracted by the PointNet
layer has a dimension of C. The input point cloud should be
sampled first, and a subset of N1 points is sampled from the
initial N points. The sampling method adopts the farthest point
sampling method that the farthest point is selected each time to
maximize the mutual distance between the points in the

FIGURE 3 | Point cloud of transmission lines.

FIGURE 4 | Examples of the transmission line point cloud data set.

TABLE 2 | Distribution of transmission line point cloud data set.

Device type Number of instances

Transmission lines 97
Pylons 81
Grounds 87
Vegetation 78

TABLE 3 | Classification accuracy when computing power is enough or not
enough.

Accuracy (%) Batch size

2 24

Ours (with BN) 92.4 94.9
Ours (with GN) 94.6 95.1

BN, Batch Normalization; GN, Group Normalization
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sampling subset. The sampling result obtained by this sampling
method is easier to converge than the result obtained by random
sampling. Then, for each point in the subset, K points are
selected with the closest distance, and (N1, K, d + C)
neighboring points are extracted in total, and these points
are sent to the PointNet layer to extract the resulting
(N1, d + C1) features. After this, through a sampling and
feature extraction module of the same structure, (N2, d + C2)
features are extracted. Then, the extracted (N2, d + C2) features
by the two cascading sampling and PointNet modules are sent to
the final PointNet layer to extract the (1, C4) features. The
PointNet layer is the same as in PointNet++, which includes
multilayer perceptron and max pooling layers. Then, three
cascading 1D convolution layers are used to get the final
classification and the numbers of the features decreased after
each 1D convolution layer. Assuming the final classification
category as cls, then cls � conv1d(∏2

i�1pointnet sample(x))

4 COMPUTATIONAL ANALYSIS

4.1 Data Set Description and Model
Pretraining
The deep learning model is a data-driven model. Because of the
small amount of power equipment data, it is necessary to pretrain
on a large public data set first, and then fine-tune on the collected
power equipment data set. The public data set ModelNet40 is
used to pretrain the model. ModelNet40 was released in 2015,
containing 3D models of 40 categories (including computers,
bottles, airplanes, etc.). Figure 2 shows some examples of
ModelNet40. This data set is collected by the Princeton Vision
and Robotics Laboratory. It is often used to evaluate point cloud
deep learning models for semantic segmentation, instance
segmentation, and classification.

ModelNet40 contains a total of 12,311 point cloud models,
each of which includes three models which have 512, 1024, or
2048 points. Among them, there are 9843 point cloud models in
the training set, and the remaining 2468 point cloud models are
divided into test sets. The improved PointNet++ model is
pretrained using point clouds with a single model point cloud
number of 1024.

The pretraining is based on the Ubuntu 18.04 platform, the
graphics card model is 16 GB Telsa T4, and the PyTorch (Paszke
et al., 2019) version is 1.6.

The training parameters are configured as follows. The
training epochs are set to 200, the batch size is 24, and the
initial learning rate is 0.001. After every 20 rounds, the learning

rate decays to 0.7 times. The optimizer is the Adam optimizer
(Kingma and Ba, 2014), and the momentum parameter is set to
0.9, and the L2 decay is set to 0.0001.

After 200 epochs of training, the accuracy of the model on
ModelNet40 reaches 92.9% at the instance level, and the average
accuracy on the class is 90.7%. Subsequent experiments are fine-
tuned on this pretrained model. The comparison of the results
between our model and previous networks is shown in Table 1.

4.2 Transmission Line Point Cloud Data Set
The RS-Ruby laser radar of Sagitar can be used to collect the point
cloud data of the transmission line. Using CloudCompare point
cloud processing software, cloud points of the transmission line
are collected by the laser radar and can be segmented and marked
as different types. Figure 3 shows the point cloud distribution of
the transmission line data set.

In this article, four commonly used categories of transmission
lines: transmission lines, transmission towers, ground, and
vegetation are segmented and labelled, and a labelled data set
with 343 instances was obtained. Figure 4 shows some examples
of the transmission line data set. The number of labelled instances
of each type of equipment is shown in Table 2.

The transmission line point cloud data set is divided by
random selection, 80% of which is used for training on the
basis of the pretrained PointNet++, and the rest is used for
testing.

4.3 Fine-Tune Results
First, the proposed model with batch normalization is trained.
The training parameter configuration is as follows: the training
epochs are set to 100, the batch size is 24, the initial learning rate is
0.001, the initial 10 rounds learning rate linearly rises from 0 to
0.001, and after this, the learning rate decays to 0.99 times in each
round. The optimizer uses the SGD optimizer, the momentum is
set to 0.9, and the L2 decay is set to 0.0001. After 100 epochs of
training, the accuracy of the model on the transmission line point
cloud data set reached 94.9%.

In the case of limited computing power, the proposed model
with group normalization was also trained to compare between
two normalization methods. The training parameters are the
same as before except the batch size is set to 2. After 100 rounds of
training, the accuracy of the model on the transmission line point
cloud data set reached 92.4%.

It can be seen from the results shown in Table 3 that the
recognition accuracy is also affected due to the limited computing
power. Analyzing the model structure, it can be found that when
the batch size is reduced, the number of participants in the batch
normalization at the same time is decreased, which leads to the

TABLE 4 | Results comparison on transmission line data set.

Model Accuracy (%) Model size (MB) Inference time (ms)

PointNet 93.2 11.2 33
PointNet++ 95.4 40.7 312
Ours (with BN) 94.9 7.8 25
Ours (with GN) 95.1 7.8 24

The bold values means best in the column.
BN, Batch Normalization; GN, Group Normalization

TABLE 5 | Classification accuracy with different normalization methods and batch
size.

Accuracy (%) Batch size

2 4 8

Ours (with BN) 92.4 93.7 94.4
Ours (with GN) 94.6 94.7 94.7

BN, Batch Normalization; GN, Group Normalization
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loss of training accuracy. Through group normalization, only in
the normalization process, the advantage of being affected by the
number of channels, not related to the batch size, improves the
normalization effect of the model, thereby improving the
performance of the model.

To show the effectiveness of the proposed model, we also tried
PointNet and PointNet++ in our transmission lines data set when
the batch size was 24, and the results are shown in Table 4. The
results show that the proposed model can achieve a similar
accuracy with PointNet++ while having a faster inference
speed and smaller model size.

4.4 Ablation Study
Using the same training parameters as the previous training, the
training batch size was only changed and the experiments were
performed when the batch sizes were 2, 4, and 8; the experimental
results are shown in Table 5. It can be seen from the table that
when the batch size becomes smaller, the model accuracy of the
batch normalization method decreases. As the batch size
increases, the model accuracy also increases; while the
accuracy with group normalization method is stable, leading
to more suitable scenarios where the computing power of the
device is limited. And even when the batch size is 2, the accuracy
achieved can be 94.6, which is not much smaller than 95.4 that
PointNet++ achieves when the batch size is 24.

Figure 5 shows the visualized results of the part of our
transmission lines data sets. It can be seen that the transmission
lines and pylons are classified well. And if more data are collected,
the vegetation and grounds can also be classified better.

5 CONCLUSION

In this article, point cloud data of the transmission line are collected
by laser radar and are labeled to four point cloud categories. Due to
less cloud data of the transmission line, the transfer learning
method is used during training. First, the ModelNet40 data set
is used to pretrain the improved PointNet++, and then the data of
the transmission line is used to fine-tune the pretrained network to

realize the classification of the point cloud of the transmission line.
The experimental results show that when the batch size is small, the
improved PointNet++ model proposed in this article can
effectively classify the point cloud of the transmission line.

In the case of limited computing power and the batch size
being small, the model classification accuracy will be impaired.
This article proposes to use group normalization instead of batch
normalization to improve the classification accuracy.
Experiments show that group normalization improves the
accuracy of the model when the batch is small, and it is not
limited by the batch size during model training when compared
with batch normalization. The point cloud classification and
recognition model based on group normalization has an
accuracy of 94.9% for the point cloud classification of the
transmission lines, which can effectively classify the point
cloud of the transmission line.
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FIGURE 5 | Visualized classification results. (A) Front view. (B) Vertical view.
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