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With the continuous increase of installed capacity of wind power, the influence of large-
scale wind power integration on the power grid is becoming increasingly apparent. Ultra-
short-term wind power prediction is conducive to the dispatching management of the
power grid and improves the operating efficiency and economy of the power system. In
order to overcome the intermittency and uncertainty of wind power generation, this article
proposes the differential evolution–back propagation (DE-BP) algorithm to predict wind
power and addresses such shortcomings of the BP neural network as its falling into local
optimality and slow training speed when predicting. In this article, the DE algorithm is used
to find the optimal value of the initial weight and threshold of the BP neural network, and the
DE-BP neural network prediction model is obtained. According to the data of a wind farm
in Northwest China, the short-term wind power is predicted. Compared with the
application of the BP model in wind power prediction, the results show that the
accuracy of the DE-BP algorithm is improved by about 5%; compared with the
genetic algorithm–BP model, the prediction time is shortened by 23.1%.
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1 INTRODUCTION

Wind energy is one of the renewable energy resources and the most available resource with the lowest
power generation cost. It can substantially reduce greenhouse gases and air pollution caused by the
use of traditional power generation systems (Xiong et al., 2020). Wind power technology is now
making a significant contribution to the growing global clean power market. However, the
intermittency and uncertainty of wind power generation pose challenges to power supply and
operation. The large-scale integration of wind power will affect the safety, stability, and power quality
of the power system. Therefore, the ultra-short-term power prediction of wind power generation
helps the dispatching department to make dispatch plans and avoid the risks in advance, so as to
improve the safety of the power system and the competitiveness of wind power generation. The ultra-
short-term wind power prediction will help the power system dispatching department to further
understand the wind power that will be connected to the grid and provide a basis for hourly power
generation operation dispatch (Wan et al., 2014).

At present, there are three types of the commonly used wind power prediction methods: the
physical (Agarwal et al., 2018), statistical (Sideratos and Hatziargyriou, 2007), and learning (Catalao
et al., 2009) methods. The physical method obtains the predicted power of the wind turbine by
refining the numerical weather forecast data into the wind speed and wind direction at the hub height
of the wind turbine under the actual terrain and landform conditions of the wind farm, considering
the influence of wake, and applying the predicted wind speed to the power curve of the wind turbine
(Chang et al., 2014). The disadvantage of this method is that it relies too much on the mastery of
meteorological knowledge and physical characteristics of the model itself. If the meteorological
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knowledge reserve is less or the physical characteristics are not
mastered enough, the model will be relatively rough, and the
prediction accuracy will be relatively poor (Chandra et al., 2013).

The statistical method establishes a predictive model by
finding the relationship between the historical wind farm data
(including power, wind speed, wind direction, etc.) and wind
speed or power of the wind farm (Foley et al., 2012), such as
regression analysis (Yuqin et al., 2014), exponential smoothing
method, time series method (Tasnim et al., 2014), Kalman filter
method (Babazadeh et al., 2012), etc., which are all based on
statistical models. These models make predictions by capturing
information related to time and space in the data. The application
of the statistical method is simple, and the original data are not
complicated, so its prediction accuracy will be limited, and the
prediction time will not be too long.

When using the physical or statistical method to predict wind
power generation, the prediction results will also be affected by
data quality and collection methods. Wind power prediction
requires a large amount of data, such as historical wind farm
data, numerical weather prediction data, and the Supervisory
Control And Data Acquisition system real-time data, etc.
However, these data are often abnormal and incomplete. If
statistical methods are used for prediction, the prediction
accuracy and reliability will be affected due to insufficient data
(Wu et al., 2016). Automatic communication equipment plays an
important role in the power system (Yan et al., 2017). Automatic
communication failures cause errors in data collection,
transmission, and conversion, which will bring about data
distortion or loss, and have adverse effects on the accuracy of
wind power prediction (Zhang et al., 2020).

The learning method addresses some of the shortcomings of
physical and statistical methods in predicting wind power. It uses
artificial intelligence methods to learn and train large amounts of
data to obtain the nonlinear relationship between input and
output. The learning method can adaptively predict the output
power of different wind farms, independent of the geographic
location of the wind farm. The learning methods for wind power
prediction include the neural network method (Bhaskar and
Singh, 2012), support vector machine (Liu et al., 2016), and
wavelet analysis method (Zhao, 2016). Different from
statistical prediction, the learning method predicts that there is
no definite functional relationship between the input and output
in the model, that is, there is no specific functional expression.
Haque et al. (2013) proposed a new hybrid intelligent algorithm
based on the wavelet transform and fuzzy ARTMAP network,
which predicts the power output of wind farms using
meteorological information, for instance, wind speed, wind
direction, temperature, etc. Compared with the physical
method, the amount of calculation is reduced in this method,
but it is greatly affected by the weather and other factors. Tan et al.
(2020) proposed an ultra-short-term wind power prediction
model based on the Salp Swarm algorithm–extreme learning
machine, but this method is complicated to determine
network parameters. Paula et al. (2020) applied different
machine learning strategies, such as the random forest, the
neural network, and the gradient boosting, to predict long-
term wind data. Zhang et al. (2019) designed fractional gray

models of different orders for prediction and established a
combined prediction model based on the neural networks.
Considering the limitations of the single convolution model
when predicting wind power, Ju et al. (2019) proposed an
innovative integration of the LightGBM classification
algorithm in the model to improve the prediction accuracy
and robustness. Li et al. (2020) proposed a kernel extreme
learning machine using differential evolution (DE) and cross-
validation optimization methods to predict short-term wind
power generation. The DE algorithm was applied to optimize
the regularization coefficient and kernel width of the kernel
extreme learning machine to improve the prediction accuracy.

Liu et al. (2021) bettered the beetle antennae search algorithm
in the iterative process by improving a single beetle into a
population. The improved beetle antennae search–BP model
not only effectively avoids the possibility of the local
minimum but also achieves higher prediction accuracy and
stronger robustness. Yang et al. (2019) applied the
Levenberg–Marquard (LM)–BP neural network model to the
intrusion detection systems and optimized the weight
threshold of the traditional BP neural network by using the
characteristics of fast optimization and strong robustness of
the LM algorithm. Compared with the traditional models, this
model has a higher detection rate and a lower false alarm rate.
Shen et al. (2020) proposed a particle swarm evolution (PSE)–BP
algorithm to predict microchannel resistance factors. Compared
with the BP algorithm, the PSE-BP algorithm can dramatically
improve ANN training efficiency. The microchannel resistance
coefficient predicted by the ANN model and trained by the PSE-
BP algorithm is in accordance with the simulation samples.

In the learning method, some basic algorithms are easy to fall
into the problem of local optimum, and some complex algorithms
take a long time to train. Therefore, this article presents a short-
term prediction method of wind power based on the DE–back
propagation (BP) neural network. First, the BP neural network is
initialized and the gradient descent and BP are used to adjust the
weights and thresholds of the network to build a BP neural network
model; second, the global search capability of the DE algorithm is
introduced to optimize the initial connection weights and neuron
thresholds of the BP neural network. The DE algorithm performs
accurate local gradient search in the region, converges
continuously in the search space to obtain the global optimal
solution and establishes a BP neural network short-term prediction
model of wind power based on the DE algorithm.

The innovation of this article lies in the following:
1. This model reduces the BP neural network’s sensitivity to

the initial connection weights and neuron thresholds, improves
the speed and accuracy of the network, and shortens the training
time by 23.1% when compared with the genetic algorithm
(GA)–BP model;

2. The DE algorithm is introduced to optimize the initial
connection weights and neuron thresholds of the BP neural
network. Compared to the application of the BP model in
wind power prediction, the results show that the accuracy of
the DE-BP algorithm is improved by about 5%.

The structure of this article is organized as follows: Section 1 is
the introduction; Section 2 describes the BP neural network, GA,
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and DE algorithm models; and then Section 3 proposes an
improved DE-BP hybrid intelligent algorithm prediction
program. Section 4 includes the analysis results and the
conclusion of this article.

2 BASIC MODEL

2.1 BP Neural Network Model
The back propagation (BP) neural network is a multilayer
feedforward neural network. The training process of the BP
neural network is the process of continuously adjusting the
weights and thresholds of the network to make its prediction
results meet the requirements. It can be divided into two
elements: the forward propagation and the BP. The forward
propagation refers to the transfer of information from the
input layer to the output layer of the neural network, and the
output result is obtained (Wu et al., 2005).The BP refers to the
neural network adjusting and modifying the weights and
thresholds layer by layer by means of the backward
transmission of errors (Liu, 2019). This article chooses to
construct a single hidden layer neural network, and its
structure is shown in Figure 1.

Here, n andm are the dimensions of the input layer and output
layer data sets, corresponding to the number of independent
variables and dependent variables in the actual research problem,
p is the number of neurons in the hidden layer, and the number of
neurons in each layer can also be called the number of nodes. ωij

(i = 1, 2, . . . , n) and vjk (j = 1, 2, . . . , p; k = 1, 2, . . . , m)are the
connection weights between the layers, respectively. The steps of
the classic BP algorithm are as follows:

Step 1. Forward calculation for unit j on the lth layer

v l( )
j n( ) � ∑P

i�0
ω l( )
ji n( )y l−1( )

j n( ), (1)

where y(l−1)
j (n) is the signal transmitted by unit i of the previous

layer (l-1). If the function of unit j is the Sigmoid function, then

y l( )
j n( ) � 1

1 + exp −v l( )
j n( )[ ] (2)

and

φj vj n( )[ ] � zy l( )
j n( )

zvj n( ) � exp −v l( )
j n( )[ ]

1 + exp −v l( )
j n( )[ ] � y l( )

j n( ) 1 − y l( )
j n( )[ ].

(3)
If neuron j belongs to the first hidden layer (l = 1),then

y 0( )
j n( ) � xj n( ). (4)

If the neuron belongs to the output layer (l = L), then

y L( )
j n( ) � Oj n( ) (5)

and

ej n( ) � dj n( ) − Oj n( ). (6)
Step 2. Reverse calculation δ. For output units

δ L( )
j n( ) � e L( )

j Oj n( ) 1 − Oj n( )[ ]. (7)
For Hidden Units

δ L( )
j n( ) � y l( )

j n( ) 1 − y l( )
j n( )[ ]∑

k

δ l+1( )
k n( )w l+1( )

kj n( ). (8)

Step 3. Correct the weights.

w l( )
ji n + 1( ) � w l( )

ji n( ) + ηδ l( )
j n( )y l( )

i n( ). (9)
In actual situations, the degree of weight change will become
more and more intense as the value of η increases, resulting in
oscillations. On the contrary, if the value of η is smaller, the
corresponding learning process will become more convergent,
and the learning speed will also slow down.

Step 4. n = n + 1, enter a new sample until the expected
requirements are met.

Although the BP neural network is the most widely used
algorithm in artificial neural network, there exist the following
defects (Huang et al., 2020; Yang et al., 2019).

1. The problem of local minimization. The traditional BP neural
network is a local search optimization method. The weights of
the network are adjusted gradually along the direction of local
improvement. This makes the algorithm trap into a local
extremum, and the weights converge to the local minimum.

2. The convergence speed is slow. Since the BP neural network
algorithm is essentially a gradient descent method, the
objective function to be optimized is very complex, so the
“sawtooth phenomenon” will appear, and when the neuron
output is approaching 0 or 1, some flat areas appear, in which
the weight error changes little, making the training process
almost come to a halt. The traditional one-dimensional search
method cannot be used in the BP neural networkmodel to find
the step length of each iteration, but the updated rule of the
step length must be preassigned to the network.

3. The overfitting phenomenon of predictive ability. In general,
the predictive ability increases with the improvement of
training ability. But this trend is not fixed. When reaching
the limit, with the improvement of training ability, the
predictive ability will decrease instead, hence appearing the
“overfitting” phenomenon. This phenomenon is attributed to

FIGURE 1 | Back propagation neural network structure.
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the fact that the network has grasped too many sample details,
and the learned model cannot reflect the laws contained in the
samples any more.

4. Sample dependency problem. The approximation and
generalization ability of the network model is strongly linked to
the typicality of the learning samples, and there exist difficulties to
select typical samples from the problems to form the training set.

2.2 Genetic Algorithm Prediction Model
The GA is a parallel random search optimization method put
forward by Professor Holland in 1962 to simulate natural genetic
mechanisms and biological evolution theory (Bodenhofer, 2003). It
introduces the biological evolution principle of “natural selection
and survival of the fittest” in nature into the coded tandem
population formed by optimized parameters. Individuals are
screened according to the selected fitness function and through
selection, crossover, and mutation in heredity, such that individuals
with good fitness value are retained, while those with poor fitness
value are eliminated. The new population inherits the previous
generation’s information and also performs better than the previous
generation. This cycle is repeated until the conditions are met.

GA optimizes the ownership and threshold of the BP neural
network using GAs. Each individual in the population contains a

network ownership value and threshold. The individual calculates
the individual fitness value through the fitness function. The GA
finds the corresponding individual of the optimal fitness value
through selection, crossover, and mutation. The BP neural
network prediction obtains the optimal individual through the
GA to assign initial weights and thresholds to the network, and
the network is trained to predict the output of the function. The
formula of the mean square error fitness function is:

f � 1
N

∑N
i�1

ti − oi( )2 , (10)

where N represents the number of data items in the training data
set, and ti and oi are the expected target and training output,
respectively.

3 WIND POWER PREDICTION MODEL
BASED ON DIFFERENTIAL
EVOLUTION–BACK PROPAGATION
In order to overcome the BP local minimum problem caused by
the initial random weight parameters of the network, this article

FIGURE 2 | Flowchart of differential evolution algorithm.
FIGURE 3 | Flowchart of differential evolution–back propagation
algorithm.
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introduces the DE algorithm, combined with the global search
evolution algorithm and the local search gradient algorithm, to
overcome the local minimum problem with high generalization
and fast convergence speed.

3.1 The Optimization Characteristics of
Differential Evolution Algorithm
The DE algorithm is an efficient global optimization algorithm
which is a heuristic search algorithm based on population, and

each individual in the population corresponds to a solution vector
(Das and Suganthan, 2010).

The DE algorithm generates population individuals by using
floating-point vectors for encoding (Fan, 2009). In the process
of DE algorithm optimization, first, two individuals are selected
from the parent individuals to generate a difference vector;
second, another individual is selected to sum with the difference
vector to generate the experimental individual; the parent
individual and the corresponding experimental individual are
cross-operated to generate new offspring individuals; finally,
the selection is made between the parent individuals and the
qualified individuals are saved for the next generation
population (Chidambaram et al., 2017; Ramos and Susteras,
2006).

The standard DE algorithm consists of four steps:
initialization, mutation, crossover, and selection. As shown in
Figure 2, this article adopts the DE/rand/1/bin mechanism. The
details of each step are as follows:

Step 1. Initialization operation: The DE algorithm in this
article adopts the real number coding method. In this step, the
parameters are first initialized, including the population size N,
gene dimension D, mutation factor F, crossover factor CR, and
the value range of each gene [Umin, Umax], and then, the
population is initialized randomly, as shown in the formula:

xij � Umin + rand × Umax − Umin( ), (11)
where i = 1, 2, . . . , N; j = 1, 2, . . . , D; rand is a random number
that obeys a uniform distribution.

Step 2. Mutation operation: For each target vector
xG
i , i � 1, 2, . . . , N, the standard DE algorithm generates a

corresponding mutation vector by the formula:

TABLE 1 | Wind power changes on 10 October 2016.

Time Power (MW) Time Power (MW) Time Power (MW) Time Power (MW)

00:00:00 2.22 06:00:00 1.25 12:00:00 0.15 18:00:00 2.2
00:15:00 2.23 06:15:00 1.23 12:15:00 0.15 18:15:00 2.1
00:30:00 2.25 06:30:00 1.21 12:30:00 0.15 18:30:00 1.91
00:45:00 2.28 06:45:00 1.19 12:45:00 0.15 18:45:00 1.73
01:00:00 2.3 07:00:00 1.17 13:00:00 0.15 19:00:00 1.54
01:15:00 2.29 07:15:00 1.1 13:15:00 0.16 19:15:00 1.38
01:30:00 2.25 07:30:00 0.98 13:30:00 0.18 19:30:00 1.24
01:45:00 2.22 07:45:00 0.85 13:45:00 0.19 19:45:00 1.09
02:00:00 2.18 08:00:00 0.73 14:00:00 0.21 20:00:00 0.95
02:15:00 2.15 08:15:00 0.62 14:15:00 0.27 20:15:00 0.87
02:30:00 2.13 08:30:00 0.5 14:30:00 0.38 20:30:00 0.87
02:45:00 2.12 08:45:00 0.39 14:45:00 0.49 20:45:00 0.87
03:00:00 2.1 09:00:00 0.28 15:00:00 0.61 21:00:00 0.86
03:15:00 2.04 09:15:00 0.21 15:15:00 0.81 21:15:00 0.91
03:30:00 1.94 09:30:00 0.19 15:30:00 1.11 21:30:00 1
03:45:00 1.83 09:45:00 0.16 15:45:00 1.41 21:45:00 1.09
04:00:00 1.72 10:00:00 0.13 16:00:00 1.71 22:00:00 1.19
04:15:00 1.66 10:15:00 0.12 16:15:00 1.92 22:15:00 1.25
04:30:00 1.66 10:30:00 0.13 16:30:00 2.03 22:30:00 1.28
04:45:00 1.65 10:45:00 0.14 16:45:00 2.14 22:45:00 1.31
05:00:00 1.64 11:00:00 0.15 17:00:00 2.3 23:00:00 1.34
05:15:00 1.63 11:15:00 0.15 17:15:00 2.27 23:15:00 1.32
05:30:00 1.62 11:30:00 0.15 17:30:00 2.25 23:30:00 1.23
05:45:00 1.61 11:45:00 0.15 17:45:00 2.23 23:45:00 1.15

FIGURE 4 | Wind speed distribution.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8441115

Li et al. Wind Power Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


V G+1( )
i � xG

r1
+ F × xG

r2
− xG

r3
( ). (12)

Step 3.Crossover operation: Crossover operation generates an
experimental individual by the formula:

uG+1
ij � vG+1ij , r j( )#rn i( )

xG
ij

{ , (13)

where r(j) is a random number uniformly distributed among
[0,1]; j represents the jth gene; the range of CR is [0,1]. In order to
ensure the obtaining of at least one-dimensional variable of the
experimental individual from the mutated individual, set rn(i) ∈
[1, 2, . . . , D] as a randomly selected gene dimension index. The
smaller the CR, the better the global search effect.

Step 4. Selection operation: DE uses a greedy search strategy.
Each target individual xG

i competes with its corresponding
experimental individual uG+1i , and their fitness values are
compared. Only when the fitness value of the experimental
individual is better than that of the target individual can it be
selected as the offspring. If not, the target individual is directly
taken as the offspring. Taking minimization optimization as an
example, the selection is demonstrated in Eq. 14, where f(.) is a
fitness function:

xG+1
i � uG+1

i , f uG+1
i( )<f xG

i( )
xG
i , otherwise

{ . (14)

As a new and efficient heuristic parallel search technology, the
DE algorithm possesses such advantages as fast convergence, few
control parameters, simple setting, and robust optimization
results (Neri and Tirronen, 2010). It has important academic
significance for the theory and application of evolutionary
algorithms. However, the standard DE algorithm also has the
phenomenon of high pressure of control parameter selection and
the contradiction between search ability and development ability,

which tends to cause such problems as premature convergence of
individuals of the population and search stagnation.

3.2 Wind Power Prediction Method Based
on Differential Evolution–Back Propagation
Neural Network
Considering the shortcomings of the BP algorithm tending to fall
into local optima, and the shortcomings of individual
premature convergence and search stagnation of DE
algorithm population, this article proposes a DE-BP
algorithm for wind power prediction. First, the number of
nodes of input, output, and hidden layer of the BP neural
network are initialized, and traditional gradient descent and
BP to adjust the weights and thresholds of the network to
construct the BP neural network model are used. Secondly, the
DE algorithm is introduced to optimize the initial connection
weights and neuron thresholds of the BP neural network, which
can avoid its falling into the local optimum. This article
establishes a DE-BP neural network model based on the DE
algorithm, which reduces the sensitivity of the BP neural
network to the initial connection weights and neuron
thresholds. The DE-BP model improves the speed and
accuracy of network training. Since the BP algorithm is easy
to fall into the local optimal value when predicting, the DE
algorithm is introduced to optimize this shortcoming. The DE
algorithm is used to optimize the initial weights and thresholds
of the BP neural network, such that the optimized BP neural
network can better predict samples. After the DE algorithm is
optimized, the best initial weight and threshold matrix are
obtained, and the initial weight and threshold are substituted
into the network to obtain the training error value, predicted
value, prediction error, and training error. The process of
optimizing the BP neural network with the DE algorithm is
shown in Figure 3.

The initialization step of the DE algorithm first initializes the
population sizeN, the individual gene dimensionD, the maximum
number of iterations G, the mutation factor F, the value range of
each gene [Umin, Umax], and the crossover factor CR:

xij � Umin + rand × Umax − Umin( ), (15)
where i = 1, 2, . . . , N; j = 1, 2, . . . , D; rand is a random number
that obeys the uniform distribution. It is determined whether the

TABLE 2 | Differential evolution–back propagation algorithm parameter selection.

Parameter F = 0.1 F = 0.2 F = 0.3 F = 0.4 F = 0.5 F = 0.6 F = 0.7 F = 0.8 F = 0.9

CR = 0.1 17.232 2 17.387 5 17.231 1 17.262 7 17.258 7 17.263 5 20.370 3 17.215 8 17.231 4
CR = 0.2 17.226 5 17.196 4 17.224 1 17.241 8 17.243 1 17.227 7 17.419 9 17.235 9 17.545 6
CR = 0.3 17.237 3 17.260 8 17.254 7 20.693 1 17.236 4 17.127 5 17.212 9 17.239 1 17.236 2
CR = 0.4 17.244 2 17.218 3 17.214 8 17.285 4 17.229 1 17.261 0 32.244 2 17.309 1 17.320 2
CR = 0.5 17.253 1 17.235 1 17.438 0 17.258 4 17.276 4 17.248 9 20.178 9 17.251 0 17.217 5
CR = 0.6 17.766 5 17.253 0 17.217 3 21.020 1 17.034 4 17.075 9 17.252 0 17.272 5 19.391 4
CR = 0.7 17.447 4 17.188 6 17.243 8 23.924 6 17.219 8 17.271 5 19.214 2 17.336 9 17.182 1
CR = 0.8 17.238 1 18.055 1 17.273 7 17.166 1 17.241 5 17.207 0 17.726 6 17.307 5 17.220 3
CR = 0.9 17.234 6 17.255 7 17.252 0 17.238 6 18.752 7 17.217 1 17.403 5 17.339 7 17.228 3

TABLE 3 | Comparison of wind power prediction error results between back
propagation (BP) and differential evolution (DE)–BP algorithms.

Predictive Models MAE MSE RMSE

BP 10.172 4 39.765 1 44.983 4
GA-BP 11.274 4 37.982 0 45.736 3
DE-BP 8.328 9 36.023 4 41.334 1

MAE, mean absolute error; MSE, mean squared error; RMSE, root mean square error;
GA, genetic algorithm.
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DE algorithm reaches the termination condition of the iteration.
If it does, the DE process is stopped and the best individual is
outputted; otherwise, the following operations are continued;

According to the adaptive mutation, crossover, and selection
operation methods of the DE algorithm, the next generation of
individuals xG+1i is obtained; for each target vector xGi , i � 1, 2,
. . . , N, the DE algorithm generates a corresponding mutation:

FIGURE 5 | Comparison of prediction errors between differential evolution algorithm and other algorithms in each season: (A) spring, (B) summer, (C) fall, (D)
winter.

FIGURE 6 | Comparison of the predicted value of differential evolution
algorithm with other algorithms.

TABLE 4 | Comparison of wind power prediction error results between back
propagation (BP) and differential evolution (DE)–BP algorithms.

Times BP GA-BP DE-BP

1 18.285 4 9.216 6 8.691 3
2 10.845 2 8.152 8 7.642 8
3 12.127 4 8.892 3 8.375 5
4 13.572 9 10.715 3 8.188 8
5 11.775 8 12.203 9 7.580 7
6 18.306 6 9.236 6 7.571 4
7 38.205 4 9.944 8 8.711 3
8 7.443 0 16.682 9 8.156 1
9 23.024 1 15.483 3 9.421 1
10 10.024 2 12.226 8 7.896 7

GA, genetic algorithm.
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vG+1i � xG
r1
+ F × xG

r2
− xG

r3
( ), (16)

CR g + 1( ) � CR g( ) − CR 0( ) − CRmin

GenM
, (17)

where xG
r1
, xG

r2
, xG

r3
are the three individuals with different serial

numbers. Among them, the individual serial numbers r1, r2, and
r3 are randomly selected, and they are different from each other
and also different from the target individual’s serial number i, so
the population size N ≥ 4, among them:

F � Fmin + Fmax − Fmin( ) × e1−
GenM

GenM−G+1, (18)
where CR(g) represents the mutation probability of generation

g; CR (g + 1), the mutation probability of generation g + 1; Fmin is
the smallest mutation factor; Fmax is the largest mutation factor;
GenM is the maximum number of iterations; G the current
number of iterations; CR (0) is the initial value of the
mutation factor; and CRmin is the minimum value of the
mutation factor in the evolution process.

After the next generation of individuals is obtained, the fitness
value of their population is evaluated. The minimum fitness value
is the current global minimum value, and the corresponding
individual is the current global optimal individual; then, let G =
G + 1, returning to the judgment operation, the judgments are
made based on the conditions. The optimal individual output
optimized by the DE algorithm is used as the initial weight and
threshold of BP, and the network is trained with a training set to
obtain the optimal DE-BP prediction model. As shown in
Figure 3, when the global minimum is ≤ μ or G ≥ GenM, the
optimal individual is outputted and the DE operation ends. The
termination condition in judging whether the DE algorithm
reaches the termination condition of the iteration is: the
minimum fitness value reaches the set error precision
requirement μ or the algorithm has reached the maximum
iteration number GenM.

4 EXPERIMENT RESULTS

This article selects the historical data from a wind farm in
Northwest China from October 2016 to April 2018, and
samples wind speed, wind direction, temperature, and air
pressure at the height of the turbine every 15 min. The 24-h
wind power changes on 10 October 2016 are shown in Table1.

A total of 5,000 samples and 4,000 sets of model parameter
training samples were tested, and 1,000 samples were used as new
data to verify the model. All algorithms were programmed by
MATLAB, and 4,000 sets of data were randomly trained and
1,000 sets of data were tested. The corresponding wind speed
fluctuations with time during wind power output are shown in
Figure 4.

The error is shown in Table 2, when selecting a different
mutation factor F and crossover factor CR for prediction. From
Table 2, when F = 0.5 and CR = 0.6, the prediction error is the

FIGURE 7 | Differential evolution–back propagation algorithm fitness
function changes.

TABLE 5 | Training time of wind power prediction model.

Times GA-BP DE-BP

1 88.453 1 65.906 3
2 85.390 6 63.781 3
3 87.812 5 64.765 6
4 86.203 1 65.359 4
5 83.437 5 67.843 8
6 84.296 9 69.250 0
7 88.140 6 64.828 1
8 81.015 6 68.640 6
9 86.203 1 68.453 1
10 91.500 0 64.468 8
Average 86.245 3 66.329 7

GA-BP, genetic algorithm–back propagation; DE-BP, differential evolution–back
propagation.

FIGURE 8 | Error of wind power prediction model.
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smallest, so this parameter is selected as the DE-BP prediction
model parameter.

The following three error assessment criteria analyze the
feasibility and effectiveness of each model, that is, the mean
absolute error (MAE), mean squared error (MSE), and root mean
square error (RMSE). The formulas are as follows:

MAE � 1
N

∑N
t�1

|y t( ) − ŷ t( )| (19)

MSE � 1
N

∑N
t�1

ŷ t( ) − y t( )( )2, (20)

RMSE �



















1
N

∑N
t�1

ŷ t( ) − y t( )( )2√√
. (21)

Table 3 lists the errors of using the BP neural network, GA-BP
neural network, and DE-BP neural network to predict short-
term wind power. The results show that, compared with other
models, the DE-BP model has a higher prediction accuracy and
stronger ability to track actual wind power. It can realize real-
time wind power dispatching, reduce the damage to the wind
power grid caused by random changes in wind power, and
strengthen the emergency measures of dispatching organization
for sudden wind power instability during the process of grid
connection.

This article extracts 70 pieces of historical data as training
samples and uses the trained network to predict the ultra-short-
term wind power within 2 h after the prediction point. The
prediction samples of each model are 30 prediction samples
on a certain day. Taking into account the influence of the
different climates and other factors throughout the year on
wind power fluctuation, the wind power of each season is
predicted, as shown in Figures 5A–D, representing spring,
summer, autumn and winter, respectively.

Figure 6 shows the comparison of the prediction curves of
short-term wind power prediction using each model. When the
power fluctuation range is large, the DE-BP model has better
tracking ability than the GA-BP and BP models. Combined with
the error indicators in Table 4, the prediction error of the DE-BP
model is relatively small.

After the training of the BP neural network, the minimum
fitness is found by the DE algorithm. The population size of the
DE algorithm is 50, the number of iterations is 300, F = 0.5, and
CR = 0.6, and the optimal individual fitness curve in the
optimization process is shown in Figure 7. The optimal
individual fitness value obtained by the DE-BP algorithm is
less than 2.2 × 10–3 and close to 0, indicating the effectiveness
of the method.

The training time used by the two optimization models is
shown in Table 5. The average training time of the GA-BP model
is 86.245 3 s and that of the DE-BP model is 66.329 7 s. The
parameters of the BP neural network can be optimized by the DE
algorithm, which effectively improves the training time by 23.1%.

The corresponding errors of the three models in predicting
short-term wind power are shown in Figure 8. It can be seen that

the DE-BP wind power prediction model has the smallest error,
which effectively improves the accuracy of the prediction.

5 CONCLUSION

In recent years, as the proportion of wind power generation
continues to increase, the research on the accuracy of wind power
prediction has become extremely important. This article proposes
a hybrid method for wind power prediction, which is based on a
feedforward neural network trained through a combination of the
DE and BP algorithms.

This article mainly studies the objective function and
parameter optimization. The DE algorithm is used to optimize
the weight threshold of the BP neural network, and its average
MSE is used as the objective function to improve the stability and
generalization performance of the model, and the prediction
accuracy is more than 95%. The average MAE during model
testing was 7.48, highlighting the effectiveness of the proposed
method. Compared with the traditional BP and GA-BP
algorithms, the accuracy is improved. Finally, the above
optimization algorithm is applied to wind power prediction to
improve the prediction accuracy and stability, improve the wind
power absorption capacity, and provide a reference for power grid
dispatching. By preprocessing the historical data of a wind farm
in Northwest China, the classic BP prediction, GA-BP prediction,
and DE-BP prediction models are established and compared
through simulation. It is verified that the DE-BP model is
superior to the other models in terms of prediction, fills the
gap of DE-BP in the field of wind power prediction, and has good
prospect of engineering research value.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

NL is the corresponding author and takes primary responsibility.
YW contributed for analysis of the work and wrote the first draft
of the manuscript. All authors contributed to manuscript
revision, and read and approved the submitted version.

FUNDING

This work was supported in part by the National Natural Science
Foundation of China (52177193); China Scholarship Council
(CSC) State Scholarship Fund International Clean Energy
Talent Project (Grant No (2018)5046,(2019)157); and Open
Research Fund of Jiangsu Collaborative Innovation Center for
Smart Distribution Network, Nanjing Institute of Technology
(XTCX202107).

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8441119

Li et al. Wind Power Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


REFERENCES

Agarwal, P., Shukla, P., and Sahay, K. B. (2018). “AReview on Different Methods of
Wind Power Forecasting,” in Proceeding of the 2018 International Electrical
Engineering Congress (iEECON), Krabi, Thailand, 7-9 March 2018 (IEEE),
1–4. doi:10.1109/IEECON.2018.8712262

Babazadeh, H., Gao, W., Cheng, L., and Lin, J. (2012). “An Hour Ahead Wind Speed
Prediction by Kalman Filter,” in Proceeding of the 2012 IEEE Power Electronics and
Machines in Wind Applications, Denver, CO, USA, 16-18 July 2012 (IEEE), 1–6.

Bhaskar, K., and Singh, S. N. (2012). Awnn-assistedWind Power Forecasting Using
Feed-Forward Neural Network. IEEE Trans. Sustain. Energ. 3, 306–315. doi:10.
1109/tste.2011.2182215

Bodenhofer, U. (2003). “Genetic Algorithms: Theory and Applications,” in Lecture
Notes, Fuzzy Logic Laboratorium Linz-Hagenberg, Winter 2004.

Catalao, J. P. S., Pousinho, H. M. I., and Mendes, V. M. F. (2009). “An Artificial
Neural Network Approach for Short-Term Wind Power Forecasting in
portugal,” in Proceeding of the 2009 15th International Conference on
Intelligent System Applications to Power Systems, Curitiba, Brazil, 8-12
Nov. 2009 (IEEE), 1–5. doi:10.1109/ISAP.2009.5352853

Chandra, D. R., Kumari, M. S., and Sydulu, M. (2013). “A Detailed Literature
Review on Wind Forecasting,” in Proceeding of the 2013 International
Conference on Power, Energy and Control (ICPEC), Dindigul, India, 6-8
Feb. 2013 (IEEE), 630–634.doi:10.1109/ICPEC.2013.6527734

Chang, W.-Y. (2014). A Literature Review of Wind Forecasting Methods. Jpee 02,
161–168. doi:10.4236/jpee.2014.24023

Chidambaram, B., Ravichandran, M., Seshadri, A., and Muniyandi, V. (2017).
Computational Heat Transfer Analysis and Genetic Algorithm–Artificial
Neural Network–Genetic Algorithm-Based Multiobjective Optimization of
Rectangular Perforated Plate Fins. IEEE Trans. Components, Packaging
Manufacturing Technology 7, 208–216. doi:10.1109/TCPMT.2016.2646718

Das, S., and Suganthan, P. N. (2010). Differential Evolution: A Survey of the State-Of-
The-Art. IEEE Trans. Evol. Comput. 15, 4–31. doi:10.1109/TEVC.2010.2059031

Foley, A. M., Leahy, P. G., Marvuglia, A., and McKeogh, E. J. (2012). Current
Methods and Advances in Forecasting of Wind Power Generation. Renew.
Energ. 37, 1–8. doi:10.1016/j.renene.2011.05.033

Haque, A. U., Mandal, P., Meng, J., Srivastava, A. K., Tseng, T.-L., and Senjyu, T.
(2013). A Novel Hybrid Approach Based on Wavelet Transform and Fuzzy
Artmap Networks for Predicting Wind Farm Power Production. IEEE Trans.
Ind. Applicat. 49, 2253–2261. doi:10.1109/tia.2013.2262452

Hongmei Fan, H. (2009). Using Radiating Near Field Region to Sample Radiation
of Microstrip Traces for Far Field Prediction by Genetic Algorithms. IEEE
Microw. Wireless Compon. Lett. 19, 272–274. doi:10.1109/lmwc.2009.2017586

Huang, Y., Xiang, Y., Zhao, R., and Cheng, Z. (2020). Air Quality Prediction Using
Improved Pso-Bp Neural Network. Ieee Access 8, 99346–99353. doi:10.1109/
access.2020.2998145

Ju, Y., Sun, G., Chen, Q., Zhang, M., Zhu, H., and Rehman, M. U. (2019). A Model
Combining Convolutional Neural Network and Lightgbm Algorithm for Ultra-
short-term Wind Power Forecasting. Ieee Access 7, 28309–28318. doi:10.1109/
access.2019.2901920

Li, N., He, F., Ma, W., Wang, R., and Zhang, X. (2020). Wind Power Prediction of
Kernel Extreme Learning Machine Based on Differential Evolution Algorithm
and Cross Validation Algorithm. IEEE Access 8, 68874–68882. doi:10.1109/
access.2020.2985381

Liu, L. (2019). Recognition and Analysis of Motor Imagery Eeg Signal Based on Improved
Bp Neural Network. IEEE Access 7, 47794–47803. doi:10.1109/access.2019.2910191

Liu, Y., Sun, Y., Infield, D., Zhao, Y., Han, S., and Yan, J. (2016). A Hybrid Forecasting
Method for Wind Power Ramp Based on Orthogonal Test and Support Vector
Machine (Ot-svm). IEEE Trans. Sustainable Energ. 8, 451–457. doi:10.1063/1.4950972

Liu, Z., Tan, Q., Zhou, Y., and Xu, H. (2021). Syncretic Application of Ibas-Bp
Algorithm for Monitoring Equipment Online in Power System. IEEE Access 9,
21769–21776. doi:10.1109/access.2021.3055247

Neri, F., and Tirronen, V. (2010). Recent Advances in Differential Evolution: a Survey and
Experimental Analysis. Artif. Intell. Rev. 33, 61–106. doi:10.1007/s10462-009-9137-2

Paula, M., Marilaine, C., Jose Nuno, F., and Wallace, C. (2020). Predicting Long-
TermWind Speed in Wind Farms of Northeast brazil: A Comparative Analysis
through Machine Learning Models. IEEE Latin Am. Trans. 18, 2011–2018.
doi:10.1109/tla.2020.9398643

Ramos, D. S., and Susteras, G. L. (2006). Applying Genetic Algorithms for
Predicting Distribution Companies Power Contracting. IEEE Latin Am.
Trans. 4, 268–278. doi:10.1109/tla.2006.4472123

Shen, T., Chang, J., and Liang, Z. (2020). Swarm Optimization Improved Bp
Algorithm for Microchannel Resistance Factor. IEEE Access 8, 52749–52758.
doi:10.1109/access.2020.2969526

Sideratos, G., and Hatziargyriou, N. D. (2007). An Advanced Statistical Method for
Wind Power Forecasting. IEEE Trans. Power Syst. 22, 258–265. doi:10.1109/
TPWRS.2006.889078

Tan, L., Han, J., and Zhang, H. (2020). Ultra-short-termWind Power Prediction by
Salp Swarm Algorithm-Based Optimizing Extreme Learning Machine. IEEE
Access 8, 44470–44484. doi:10.1109/access.2020.2978098

Tasnim, S., Rahman, A., Shafiullah, G., Oo, A. M. T., and Stojcevski, A. (2014). “ATime
Series Ensemble Method to Predict Wind Power,” in Proceeding of the 2014 IEEE
symposium on computational intelligence applications in smart grid (CIASG),
Orlando, FL, USA, 9-12 Dec. 2014 (IEEE), 1–5. doi:10.1109/CIASG.2014.7011544

Wan, C., Xu, Z., Pinson, P., Dong, Z. Y., and Wong, K. P. (2014). Probabilistic
Forecasting of Wind Power Generation Using Extreme Learning Machine.
IEEE Trans. Power Syst. 29, 1033–1044. doi:10.1109/TPWRS.2013.2287871

Wu, W., Feng, G., Li, Z., and Xu, Y. (2005). Deterministic Convergence of an
Online Gradient Method for BpNeural Networks. IEEE Trans. Neural Netw. 16,
533–540. doi:10.1109/tnn.2005.844903

Wu, Y.-K., Su, P.-E., and Hong, J.-S. (2016). “An Overview of Wind Power
Probabilistic Forecasts,” in Proceeding of the 2016 IEEE PES Asia-Pacific
Power and Energy Engineering Conference (APPEEC), Xi’an, China, 25-28
Oct. 2016 (IEEE), 429–433. doi:10.1109/APPEEC.2016.7779540

Xiong, L., Liu, X., Liu, Y., and Zhuo, F. (2020). Modeling and Stability Issues of
Voltage-Source Converter Dominated Power Systems: A Review. CSEE J. Power
Energ. Syst. doi:10.17775/CSEEJPES.2020.03590

Yan, J., Zhang, H., Liu, Y., Han, S., Li, L., and Lu, Z. (2017). Forecasting the High
Penetration ofWind Power onMultiple Scales UsingMulti-To-Multi Mapping.
IEEE Trans. Power Syst. 33, 3276–3284. doi:10.1109/TPWRS.2017.2787667

Yang, A., Zhuansun, Y., Liu, C., Li, J., and Zhang, C. (2019). Design of Intrusion
Detection System for Internet of Things Based on Improved Bp Neural
Network. IEEE Access 7, 106043–106052. doi:10.1109/access.2019.2929919

Yuqin, X., Yang, N., and Wenxia, L. (2014). “Predicting Available Transfer
Capability for Power System with Large Wind Farms Based on
Multivariable Linear Regression Models,” in Proceeding of the 2014 IEEE
PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong
Kong, China, 7-10 Dec. 2014 (IEEE), 1–6. doi:10.1109/APPEEC.2014.7066008

Zhang, H., Liu, Y., Yan, J., Han, S., Li, L., and Long, Q. (2020). Improved Deep
Mixture Density Network for Regional Wind Power Probabilistic Forecasting.
IEEE Trans. Power Syst. 35, 2549–2560. doi:10.1109/tpwrs.2020.2971607

Zhang, Y., Sun, H., and Guo, Y. (2019). Wind Power Prediction Based on Pso-Svr
and Grey Combination Model. IEEE Access 7, 136254–136267. doi:10.1109/
access.2019.2942012

Zhao, R. (2016). “The Study of Wind Power Predict Model Based on Wavelet
Transform and Elman Neural Network,” in Proceeding of the 2016 Chinese
Control and Decision Conference (CCDC), Yinchuan, China, 28-30 May 2016
(IEEE), 6026–6030.doi:10.1109/CCDC.2016.7532077

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li, Wang, Ma, Xiao and An. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 84411110

Li et al. Wind Power Prediction

https://doi.org/10.1109/IEECON.2018.8712262
https://doi.org/10.1109/tste.2011.2182215
https://doi.org/10.1109/tste.2011.2182215
https://doi.org/10.1109/ISAP.2009.5352853
https://doi.org/10.1109/ICPEC.2013.6527734
https://doi.org/10.4236/jpee.2014.24023
https://doi.org/10.1109/TCPMT.2016.2646718
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1016/j.renene.2011.05.033
https://doi.org/10.1109/tia.2013.2262452
https://doi.org/10.1109/lmwc.2009.2017586
https://doi.org/10.1109/access.2020.2998145
https://doi.org/10.1109/access.2020.2998145
https://doi.org/10.1109/access.2019.2901920
https://doi.org/10.1109/access.2019.2901920
https://doi.org/10.1109/access.2020.2985381
https://doi.org/10.1109/access.2020.2985381
https://doi.org/10.1109/access.2019.2910191
https://doi.org/10.1063/1.4950972
https://doi.org/10.1109/access.2021.3055247
https://doi.org/10.1007/s10462-009-9137-2
https://doi.org/10.1109/tla.2020.9398643
https://doi.org/10.1109/tla.2006.4472123
https://doi.org/10.1109/access.2020.2969526
https://doi.org/10.1109/TPWRS.2006.889078
https://doi.org/10.1109/TPWRS.2006.889078
https://doi.org/10.1109/access.2020.2978098
https://doi.org/10.1109/CIASG.2014.7011544
https://doi.org/10.1109/TPWRS.2013.2287871
https://doi.org/10.1109/tnn.2005.844903
https://doi.org/10.1109/APPEEC.2016.7779540
https://doi.org/10.17775/CSEEJPES.2020.03590
https://doi.org/10.1109/TPWRS.2017.2787667
https://doi.org/10.1109/access.2019.2929919
https://doi.org/10.1109/APPEEC.2014.7066008
https://doi.org/10.1109/tpwrs.2020.2971607
https://doi.org/10.1109/access.2019.2942012
https://doi.org/10.1109/access.2019.2942012
https://doi.org/10.1109/CCDC.2016.7532077
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	A Wind Power Prediction Method Based on DE-BP Neural Network
	1 Introduction
	2 Basic Model
	2.1 BP Neural Network Model
	2.2 Genetic Algorithm Prediction Model

	3 Wind Power Prediction Model Based on Differential Evolution–Back Propagation
	3.1 The Optimization Characteristics of Differential Evolution Algorithm
	3.2 Wind Power Prediction Method Based on Differential Evolution–Back Propagation Neural Network

	4 Experiment Results
	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


