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INTRODUCTION

For decades, solar energy has taken an increasingly important part, which will continue to rise, driven
by carbon peaking and carbon neutrality strategic goals, in the energy consumption of China (Yang
et al., 2021a; Mahidin et al., 2021). Due to the intermittence and volatility of sunlight, photovoltaic
(PV)1 power generation is more erratic than conventional power which results in some problems of
the grid: frequency instability (Liu et al., 2020; Murty and Kumar, 2020), dispatch difficulty (Peng
et al., 2020; Tummala, 2020), and voltage and current surges (Bozorg et al., 2020; Yang et al., 2021b).
Hence, accurately forecasting the power generation of the PV system is one of the major issues of PV
system’s engineering practice to settle the aforementioned problems (Huang et al., 2021a; Yang et al.,
2021c).

According to the modeling means of prediction, the prevailing PV power prediction methods are
broadly divided into three categories, namely, physical, statistical, and artificial intelligence (AI)
forecasting technologies (Yang et al., 2021d). Furthermore, the applicable ranges of different
forecasting technologies are given in Figure 1. Moreover, these PV power forecasting
technologies face different challenges. First, it is difficult for physical forecasting technology to
obtain accurate future weather forecast information and determine output characteristic model
parameters. Second, statistical forecasting technology is not demanding for geographical location
and other information of PV systems but requires masses of historical data to deduce statistics laws.
As for AI forecasting technology, it is easy to trap in the local optimum because of internal defects of
the AI algorithm. This work aims to clarify aforementioned problems and give some perspectives on
various PV power prediction methods.

PHYSICAL PREDICTION METHOD

The physical prediction method refers to a technology that excavates the factors related to PV power
generation from the principle and then creates a physical model. Specifically, physical method
modeling is based on numerical weather prediction (NWP) by utilizing atmospheric physical data
including wind speed, temperature, rainfall, humidity, length of day (Urquhart et al., 2013), and
cloud image via a total sky imager (Shen et al., 2019) or satellite (Tuohy et al., 2015). Besides, it can be
further classified as a simple physical model method and a complex physical model method. A simple
physical model needs power system parameters, weather data, satellite observations, and so on
(Hammer et al., 1999). The literature (Peder et al., 2009) applies a simple physical prediction model
combined with the HIRLAMmesoscale weather pattern to forecast the future power generation of 21
small PV power stations in the Jutland peninsula but obtains a relatively poor predictive value. The
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literature (Inman et al., 2013) verifies that the PV power
prediction model of wavelength-independent only absorbs
light of aqueous vapor after experiments. In order to ensure
the stable operation of the bulk power grid, the prediction of
power generation of the PV microgrid system must be more
accurate. In terms of this issue, work (Lorenz et al., 2011) creates a
complex physical prediction model based on the local weather
forecast data and performs prediction tests based on an actual PV
power station to assess the accuracy of the model.

NWP models which can be classified into two categories of
wide-area prediction models and local area models prediction are
utilized to forecast the solar illumination intensity and cloud
distribution. Local area models are usually used for short-term
forecasting of the PV plant power. So far, NAM (Mathiesen and
Kleissl, 2011), MM5 (Fernandez-Jimenez et al., 2012), and WRF
(Lima et al., 2016) are developed and applied in the PV power
prediction of local area models. NAM takes SURFRAD actual
measurement data as inputs and takes MBE and RMSE as the
evaluation index of the model performance. Moreover, the
prediction results utilizing with the NAM model prove that
applying the irradiance as the model output variable can
decrease the error and offset of power forecasting. The MM5
model can provide power production prediction values of each
hour in the following day through analyzing historical
information of hourly power outputs and estimation values of
climate parameters in the past 1.5 years. The investigation of the
wide-area PV power prediction model is worth paying more
attention due to its well accuracy in estimating cloudy and
cloudless sky situations. GFS and ECMWF (Mathiesen and
Kleissl, 2011) are two typical models for the wide-area PV
power prediction method.

Under the condition of reasonable model parameters, the
physical PV power forecasting method can accurately predict
the results of the future power output. However, the physical
forecasting approach has the disadvantage of requiring a complex

model of the solar radiation output and a characteristic model of
the PV power generation system, as well as the precise future
weather forecast information. In addition, determining the
parameter values of the output characteristic model is more
complicated for different types of generating unit systems
(Perez et al., 2002).

STATISTICAL PREDICTION METHOD

The statistical method needs to collect a large number of data
related to the power output of the PV power generation system to
regress some unknown constants and further obtain the
functional relationship between the output power and the
measurable unknown. According to the amount of unknowns,
the statistical method can be divided into the unary linear
regression method, multiple linear regression method, and
nonlinear regression method. Because there are many factors
affecting PV system power generation, the prediction result is not
satisfactory by using the unary linear regression method. The
multiple linear regression method adopted in the literature (Li
et al., 2011) takes solar radiation intensity and ambient
temperature as two main factors to build a multiple linear
regression model of the PV system and finally obtains the
linear function relation of the output power on six unknowns,
including radiation intensity and temperature. By using this
linear function, the output power of the PV power generation
system can be predicted as long as the value of corresponding
solar radiation and ambient temperature is obtained. The
literature (Li and Li, 2008) employs the support vector
machine (SVM) to design a regression algorithm of the solar
farm power prediction model. Because the SVM is based on the
principle of risk minimization and has a strong ability of
generalization, the error of solving results is relatively smaller
even though there are fewer training samples. Furthermore, the

FIGURE 1 | Prediction algorithm and its corresponding time/space horizon.
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SVM learning algorithm is used to solve the convex quadratic
optimization problem; hence, the solution obtained by the SVM is
the global optimal solution. In reference (Zhu and Tian, 2011),
the least squares support vector machine (LSSVM), which is the
improved version of the SVM mentioned earlier, is used to
predict the output power of the PV power generation system.

NARX and NARMAX (Di Piazza et al., 2016) are
representative nonlinear regression models which take solar
irradiance, temperature, and day time as input variables of
prediction models. The literature (Bouzerdoum et al., 2013)
proposes the SARIMA model and studies its performance in
power prediction of solar farms. Moreover, SARIMA enhances
the prediction accuracy of real solar farms. In the literature
(Pedro and Coimbra, 2012), the ARIMA model which is the
linear non-stationary method is applied to forecast a local
1 MW PV plant. This model takes hourly power output values
for the past half year as input variables and the mean absolute
percentage error (MAPE) calculated by Eq. 1 as the performance
metrics of the model. The experimental results indicate that the
ARIMA model is more sensitive and accurate in reflecting the
shape changes of solar irradiance. Similarly, the ARIMAX (Pedro
and Coimbra, 2012) model which adopts the former solar
irradiance as inputs also achieves approximate goals compared
to the ARIMA model. However, the influence of weather factors
other than solar illumination is not fully considered for both
ARIMA and ARIMAX models.

MAPE � 100
n

∑
n

t�1

∣∣∣∣∣∣∣
Ppre − Pmeas

P0

∣∣∣∣∣∣∣, (1)

where Ppre is the predicted power value, Pmeas represents the
mean of actual power values, P0 is the capacity of tested solar
farm, and n is the sample size.

These aforementioned regression prediction models try to
modify the models through the deviation between the
measured and predicted values of PV power generation. In
particular, the multiple linear regression method can enhance
the prediction accuracy without extra measurement data, which is
a method worthy of further study. The merits of the statistical
method are simple operation, fast prediction, and good relation
expression between the factors and the output power, hence more
suitable for fitting the new situation. However, the statistical
method has the complexity and difficulty in establishing the
regression equation due to its high accuracy demand of the
distribution rule and historical sample data. Thus, it has a
lower prediction accuracy.

AI PREDICTION METHOD

Nowadays, PV power forecasting based on the AI algorithm is a
very popular research area because of its strong self-learning and
self-adaptation ability. In the literature (Kaushika et al., 2014), the
PV array generation sequence, weather type, irradiance intensity,
and temperature are adopted to build the backpropagation (BP)
neural network prediction model. But this method requires a
large number of historical power data and massive calculation.
Moreover, it is not suitable for new or under-construction power
stations due to unavailable historical data. In the literature (Tang
et al., 2016), the extreme learning machine (ELM) is employed to
forecast the extracted power of solar farms. Particularly,
combined entropy is introduced to the prediction model and
observably promotes the forecasting accuracy and the
convergence. However, neural networks often need a large
number of training samples to obtain a good accuracy and
generalization ability (Huang et al., 2021b; Yang et al., 2021e).

TABLE 1 | Classification of PV power prediction methods.

Basis of
classification

Prediction methods Definition Characteristic

Forecasting
process

Direct prediction
method

Direct prediction based on historical PV power data Suitable for cases of sufficient historical PV power data;
difficult for modeling

Indirect prediction
method

Power forecasting combined with the correlation model based
on the solar irradiance prediction of PV panels

Suitable for cases of lacking historical data but available
solar irradiance and temperature historical data

Time scale Short-term prediction PV power forecasting of 1 day Providing power variation information in short-term; used
to make the power market scheduling plan

Medium- and long-
term prediction

PV power forecasting of 1 day to 1 year Forecasting PV power information for a long term in the
future

Spatial scale Single-plant prediction
method

Power prediction for a single PV system Applied to the optimal operation of the PV system

Regional prediction
method

Power prediction for all PV systems in an area Helpful for dispatching departments to predict the
fluctuation of PV power

Modeling method Physical prediction
method

Power prediction by the power calculation model based on the
solar altitude angle, geographic location, temperature, and solar
irradiance etc.

Complex models; highly depend on reasonable
parameters

Statistical prediction
method

Power prediction based on the statistical relationship between
input and output data of the prediction model

Not require physical internal information of the PV plant

AI prediction method Training the prediction model by AI algorithms with sample data Strong self-learning and self-adaptation ability; need lots
of historical data
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As a result, its prediction performance will be greatly reduced
in the case of small samples. In addition, the structure and
parameters of the neural network are not easy to determine.
Moreover, the existing training algorithms often lead to
parameters falling into local minimum (Zhang et al.,
2021). Therefore, it is urgent for developing a new training
algorithm to train the neural network model of PV power
prediction.

DISCUSSION AND CONCLUSION

The efficient PV power forecasting technology can not only
improve the grid connection ability and security but also
effectively reduce light discarding. Also, various prediction
technologies of the aforementioned PV plant are summarized
and evaluated in Table 1.

But the PV power forecasting technology still faces many
challenges. Recommendations and limitations for future research
studies are shown as follows:

1) Pre-processing of the mass of experimental data is manually
performed; hence, efficient algorithms should be developed to
effectively summarize and extract information data and
establish connections among them;

2) It is urgent for developing a swarm intelligence algorithm to
train the neural network model of PV power prediction;

3) Regional prediction is important for power dispatching which
should be further analyzed and studied;

4) Many works only consider cloud cover as a meteorological
factor to represent the extent of sky cover but ignore that the
partial shading of the PV panel caused by a cloud will lead to
the multi-peak phenomenon of the PV curve. This issue
requires further research for more accurate power prediction.
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