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In this paper, aiming to achieve the target of carbon emission orientation, a multi-objective
optimization model of the multi-energy flow coupling system is proposed, in which all the
environmental protection, system economy, and energy efficiency are comprehensively
considered as the addressed objectives. To solve the developed model, by combining the
analytic hierarchy process (AHP) and the improved entropy weight method, a so-called
AHP-improved entropy weight method is proposed and utilized for weighting the
considered objectives, and the model is transformed into a single objective
optimization problem, namely, the collaborative optimization model. Then, to expedite
the process, a simplified primal dual interior point method is proposed to solve the model.
Finally, the results of a case study indicate that the proposed multi-objective collaborative
optimization can obtain the optimal solution of the system. In addition, the convergence
and global optimization ability of the simplified primal dual interior point method show
better characteristics when solving the proposed model.

Keywords: multi-energy flow coupling system, multi-objective collaborative optimization, combined weighting
method, simplified primal-dual interior point algorithm, carbon emission

1 INTRODUCTION

Energy is the basis and important guarantee for human survival. There are many problems in
traditional energy systems, such as independent energy supply, low cascade utilization level, energy
waste, and environmental pollution (Zhou et al., 2013; Fan et al., 2021; Hu et al., 2022). The multi-
energy flow coupling system (MEFCS) is an energy system form that integrates public cold, heat,
electricity, and gas. Its purpose is to integrate multiple energy sources, such as electric energy, natural
gas, and thermal energy in a certain area, so as to realize collaborative optimal operation,
collaborative management, and complementary mutual assistance among various forms of
energy subsystems (Zhao et al., 2018; Klyapovskiy et al., 2019). In addition, under the
background of “double carbon”, the transformation of clean and low-carbon energy is an
inevitable trend of global energy development.

Traditional energy systems are planned and operated independently, and only a single
situation needs to be considered in their optimal scheduling. However, for a multi-energy flow
coupling system, the correlation among energy subsystems should be considered in planning and
operation (Sirvent et al., 2017). In Liu et al. (2019), considering the multi-timescale
characteristics, an electrical and thermal energy sharing model of interconnected microgrids
with combined heating and power (CHP) and photovoltaic systems was built, in which CHP
could operate in a hybrid mode by selecting the operating point flexibly. In Wang et al. (2019), a
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multi-objective bi-level optimization model considering the
total cost and carbon dioxide emission was built, while the
energy efficiency of multi-energy flow coupling system was
ignored. In Barati et al. (2015) and Clegg and Mancarella
(2016), under the condition of meeting the basic needs of
power, gas, and heat loads, the coordinated planning of multi-
energy flow coupling system was considered, in order to reduce
the construction cost of transmission lines, gas pipelines, and
power plants as much as possible. In Koltsaklis and Knápek
(2021), the authors presented an optimization framework for
the optimal scheduling of a multi-energy microgrid, where a
number of aggregated end-users were considered. In Nicolosi
et al. (2021), a novel mixed integer linear programming
optimization algorithm has been developed to compute the
optimal management of a micro-energy grid, where the total
cost, the NOx, and the CO2 emissions of the system were taken
into consideration. To meet the safety constraints, in Wang D.
et al. (2018), an optimal coordination control strategy (OCCS)
for a hybrid energy storage system was developed considering
the state-space equation to describe the OCCS, the constraints
of the OCCS, and the objective function to express the optimal
coordination control performance. In Sun et al. (2020), the
authors considered the day ahead optimal scheduling problem
of electricity gas interconnected systems, where the two-way
energy flow was taken as a non-convex nonlinear mixed
integer linear programming problem, and a second-order
cone programming (SOCP) method has been proposed. In
Luo et al. (2018) and Zhang et al. (2021), the uncertainty
caused by renewable energy and multi-energy load was
considered, and the robust optimization and stochastic
optimization methods were adopted to deal with it
respectively, so as to ensure that the system can still
maintain stable operation under the worst conditions. In
Ghosh and Kamalasadan (2017), a grid-connected two mass
DFIG and a grid-supportive single mass squirrel cage
induction generator-based flywheel energy storage system
model have been considered for controller design and
proof-of-concept exploration. In Wang L. et al. (2021), the
flexible resources (FRs) on both the energy supply and load
sides were introduced into the optimal dispatch of the
integrated electricity-heat energy system (IEHES) and
further modeled to alleviate the renewable fluctuations, and
the solution for FRs participating in IEHES dispatch was given,
with goals of maximizing the renewable penetration ratio and
lowering operation costs. It can be seen that most of the
existing results consider optimization of the economic
objectives of the multi-energy flow coupling system, where
the index is relatively single, and less consideration is paid on
the carbon emission level in the operation of the system. At the
same time, the operation strategy is the lack of comprehensive
comparison and verification.

In solving the MEFCS collaborative optimization model,
when considering multiple optimization objectives including
carbon emission, investment and operation cost, and energy
utilization, the traditional single objective optimization
algorithm may be difficult to ensure that the solution result
is the optimal solution of the original problem. In Wang W.

et al. (2021), the load characteristics and various constraints of
the integrated community energy system were considered, and
the operating model with the goal of minimizing operating
costs was optimized. In Ma et al. (2018), the energy
consumption cost and environmental cost of the multi-
energy flow coupling system were considered
comprehensively, the optimal scheduling model of multi-
energy flow coupling system was proposed, and the optimal
scheduling model was transformed into a mixed integer linear
programming problem. In Xiao et al. (2018), the method of the
probability scenario had been used to model the uncertainties
of the distributed renewable energies (DREs) and loads, which
could better characterize the impact of uncertainty on the
planning and design of the MEFCS. In Yang et al. (2018), a
two-stage robust generation scheduling model was proposed
for the dynamic safety constraints of the natural gas pipeline
network and the uncertainty of wind power, and a new
solution method was developed to avoid the nonlinearity of
gas flow constraints. In Wu et al. (2021), the multi-objective
optimization model was transformed into a single objective
optimization model through the multi-objective programming
hierarchical solution method, and the primal dual interior
point method was used to solve the model. Based on the fast
particle swarm optimization algorithm, in Qu et al. (2021), a
dual-decomposition-based distributed algorithm was designed
to address the problem that the data and information of the
EHs during the operation were confidential and should be kept
by each owner, where the optimal consensus problem was used
for the dual problem to update the multipliers, in Li et al.
(2020), the proposed MEFCS planning model, formulated as a
two-stage MILP problem, was solved by the Benders
decomposition (BD) method to determine the optimal
capacity of each component in MEFCS planning.

To be pointed out that, the research on the optimization of
multi-energy flow coupling system at home and abroad mainly
focuses on the simplification of the optimization model.
However, on the one hand, it will lead to the reduction of
solution accuracy, at the same time, because the models are
more and more complex, which are difficult to be simplified.
Therefore, the heuristic algorithm has become an important
way to deal with optimization problems. However, the
traditional heuristic algorithm has the problems of poor
convergence and easy to fall into local optimization, and
how to find a simplified and better algorithm is another
motivation of this paper. Based on the above discussions, in
this paper, the environmental protection goal is taken as the
leading factor, the economic and energy efficiency goals are
comprehensively considered, the multi-objective collaborative
optimization model is developed for the multi-energy flow
coupling system, which can be transformed into a single
objective optimization model through the linear
combination of the analytic hierarchy process and the
improved entropy weight method, and then the model can
be solved by using the simplified primal dual interior point
method. The results avoid falling into local optimization and
accelerate convergence. Case studies verify the effectiveness of
the proposed algorithm.
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2 MODELING OF MULTI-ENERGY FLOW
COUPLING SYSTEM

A typical multi-energy flow coupling system structure is shown in
Figure 1, which is internally connected through the power grid,
thermal pipe network, and cooling transmission network. The
equipment involved distribution power source includes a wind
turbine (WT) and photovoltaic (PV). Cogeneration includes
CHP, a gas turbine (GT), a waste heat boiler (WHB), a
ground source heat pump (HP), an electric refrigerator (ER),
an absorption refrigerator (AR), and other energy conversion
equipment, as well as electric energy storage (EES), heat energy
storage (HES), and other energy storage equipment.

2.1 Modeling of Distributed Generations
2.1.1 Wind Turbine

PWT
t � 1

2
ηwπr2ρv3t , (1)

where PWT
t indicates the wind turbine generation power (kW) in

time period t, ηw is the wind energy utilization efficiency of the wind
turbine, r represents the blade radius (m), ρ represents the air density
(kg/m3), and vt is the air velocity (m/s) in time period t.

2.1.2 Photovoltaic

⎧⎪⎪⎨⎪⎪⎩
PPV
t � PtestL

ac
t [1 +K(θst − θrt)]

Ltest
,

θst � θoutt + 30Rt,

(2)

where PPV
t refers to the output power (kW) of photovoltaic

equipment during the period t, Ptest represents the test power
(kW) under standard conditions t, Lact refers to the light intensity
(W/m2) in the period t, Ltest is the test light intensity (W/m2) under

standard conditions,K is the power temperature coefficient, which is
taken as −0.0047; θst , θrt , and θoutt represent the solar panel
temperature, reference temperature, and external ambient
temperature (°C), respectively; normally the reference
temperature is taken as 25 °C; and Rt expresses the solar
radiation intensity (kW/m2) in time period t.

2.2 Modeling of Energy Conversion Unit
2.2.1 Cogeneration Unit
The cogeneration unit generates electric energy and heat energy
at the same time by consuming natural gas. Its operation mode
can be expressed as

{PCHP
t � ηP,CHPGCHP

t ,
HCHP

t � ηH,CHPGCHP
t ,

(3)

where PCHP
t , HCHP

t , and GCHP
t are the electric power, thermal

power, and gas power consumed by the internal cogeneration
unit in scheduling period t, respectively, and ηP,CHP and ηH,CHP

are the power generation efficiency and heating efficiency of
cogeneration units, respectively.

2.2.2 Gas Turbine and Waste Heat Boiler
The gas turbine generates electric energy by consuming natural
gas, and part of the discharged flue gas can be transformed into
available calorific value through a waste heat boiler. Their
working characteristics can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

PGT
t � ηGTLgasV

gas
t

t
,

HGT
t � PGT

t

(1 − ηGT − ηl)
ηGT

,

HWHB
t � ηWHBH

GT
t ,

(4)

wherePGT
t andHGT

t indicate the gas turbine generation power andflue
gas waste heat power during the period t, respectively; Lgas represents

FIGURE 1 | Typical structure of the multi-energy flow coupling system.
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the low calorific value of natural gas, which is set as 9.78 kWh/m3 in
this paper; Vgas

t expresses the natural gas consumption during the
period t; t is the scheduling period; ηGT and ηl represent the power
generation efficiency and loss rate of gas turbine, respectively; ηWHB is
the recovery efficiency of the waste heat boiler; and HWHB

t is the heat
recovery power of the waste heat boiler in time period.

2.2.3 Ground Source Heat Pump
The heat pump is a high-efficiency and energy-saving equipment
in the multi-energy flow coupling system. It can convert low-
grade heat energy into high-grade heat energy by consuming
electric energy. Its operation mode is given by

HHP
t � ηHPP

HP
t , (5)

whereHHP
t andPHP

t represent the heat energy generated and electric
energy consumed of the ground source heat pump during the period
t, respectively; and ηHP is the conversion efficiency of the heat pump.

2.2.4 Electric Chiller and Absorption Chiller
The electric chiller generates cold power by consuming electric power
during operation, and the absorption chiller generates cold power by
absorbing thermal power. Its mathematical model is as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

CEC
t � ηECP

EC
t ,

ηAC � ηAC0 βAC
aAC(βAC)2 + bACβAC + cAC

,

CAC
t � ηACH

AC
t ,

(6)

whereCEC
t andCAC

t represent the cool power generated in time period
t of the electric chiller and absorption chiller, respectively; ηEC and ηAC
represent the conversion efficiency of the electric chiller and absorption
chiller, respectively; PEC

t indicates the electric energy consumed of the
electric chiller during the period t; HAC

t represents the heat energy
consumed of the absorption chiller during the period t; ηAC0 is the rated
conversion efficiency of the absorption chiller; aAC, bAC, and cAC are
the refrigeration coefficient of the absorption chiller, respectively; and
βAC is the load rate when the absorption chiller is working.

2.3 Modeling of Energy Storage Equipment

Ei,t � Ei,t−1(1 − σ i) + Pc
i,tη

c
i − Pd

i,t/ηdi , (7)
where Ei,t represents the energy storage of energy storage
equipment i in time period t, Pc

i,t and Pd
i,t are the charging

power and discharging power of energy storage equipment i in
time period t, ηci and ηdi represent the charging efficiency and
discharging efficiency of energy storage equipment i, and σ i is the
consumption rate of energy storage equipment i.

3 MODELING OF MULTI-OBJECTIVE
COLLABORATIVE OPTIMIZATION

In the multi-objective collaborative optimization of MEFCS
considering carbon emissions, the optimization objectives

considered in this paper include the environmental
protection objective, economic objective, and energy
efficiency objective.

3.1 Each Optimization Objective Function
3.1.1 Environmental Protection Objective
Aiming at minimizing the CO2 emission of MEFCS in 1 day, the
optimization model can be established as follows:

min F1 � ∑24

t�1[αgas · (PGT
t + GCHP

t ) + αgrid · (PHP
t + PEC

t )], (8)
where αgas and αgrid represent the CO2 emission coefficient
corresponding to the combustion of natural gas and the
consumption of electric energy; in this paper, they are taken
as 184 g/kWh and 877 g/kWh, respectively.

3.1.2 Economic Objective
In order to minimize the operation cost of MEFCS in 1 day, the
optimization model can be formulated as

⎧⎪⎪⎨⎪⎪⎩
min F2 � ∑24

t�1(cgridPgrid
t + cgasG

gas
t ) +∑N

i�1c
ma
i Pi,

Pgrid
t � PHP

t + PEC
t ,

Ggas
t � PGT

t + GCHP
t ,

(9)

where cgrid and cgas are the cost coefficients corresponding to the
electric energy and natural gas consumed by the system,
respectively; cma

i is the maintenance cost of equipment i; Pi is
the rated capacity of equipment i; and N represents the total
amount of equipment.

3.1.3 Energy Efficiency Objective
Primary energy utilization is defined as the ratio of MEFCS load
to MEFCS primary energy input in a day. Aiming at the
maximum utilization of primary energy, the optimization
model can be formulated as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max F3 � WPL +WHL +WCL

∑24

t�1(Pgrid
t

1 − ζ
+ Ggas

t )
,

WPL � ∑24

t�1P
L
t ,

WHL � ∑24

t�1H
L
t ,

WCL � ∑24

t�1C
L
t ,

(10)

whereWPL,WHL, andWCL represent the total load of the system
in a day, respectively, and ζ represents the network loss rate of
transmission line, which is usually chosen as 5%.

3.2 Constraint Condition
3.2.1 Energy Balance Constraints
1) Power balance constraint

Pgrid
t + PCHP

t + PGT
t + PWT

t + PPV
t + PES,d

t

� PL
t + PHP

t + PES,c
t + PEC

t .
(11)

2) Heat energy balance constraint
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HCHP
t +HHP

t +HWHB
t +HHS,d

t

� HL
t +HHS,c

t +HAC
t .

(12)

3) Cool energy balance constraint

CEC
t + CAC

t � CL
t . (13)

3.2.2 Upper and Lower Limits of Equipment Output

0≤Oi,t ≤Pi, (14)
where Oi,t represents the output power of equipment i in
period t.

3.2.3 Energy Storage Constraints

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Pc
i,t ≤ υ�P

c
i ,

Pd
i,t ≤ (1 − υ)�Pd

i ,
υ ∈ {0, 1},
Ei,1 � Ei,24,
μi Pi ≤Ei,t ≤ �μiPi,

(15)

where �Pc
i and �Pd

i represent the upper limit of charging and
discharging power of energy storage equipment i, respectively;
υ represents 0–1 variable; Ei,t is the energy storage of equipment i
in period t; and �μi and μi represent the upper and lower limits of
the charging and discharging state of the energy storage
equipment i, respectively.

3.3 Collaborative Optimization Objective
The developed optimization model is a multi-objective
optimization problem. First, the optimal solution of each
objective is obtained through single objective optimization,
and then the optimization results of each objective are
standardized, so the multi-objective optimization is
transformed into single objective optimization with the
help of the linear weighting method. Finally, the single
objective optimization algorithm can be solved.

3.3.1 Normalization and Standardization
As the environmental protection goal and economic goal belong
to very small goals, that is, the smaller the final result, the better,
while the energy efficiency goal belongs to maximum goals, the
larger the final result, the better. Therefore, before establishing the
collaborative optimization objectives, each single objective should
be normalized and standardized, which can be expressed as
follows:

S1(Fi) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, Fi ≤Fi,min,

Fi,max − Fi

Fi,max − Fi,min
,

0, Fi >Fi,max,

Fi,min <Fi ≤Fi,max, (16)

S2(Fi) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, Fi ≤Fi,min,

Fi − Fi,min

Fi,max − Fi,min
,

1, Fi >Fi,max,

Fi,min <Fi ≤Fi,max, (17)

where S1 and S2 represent the membership function of very small
target and maximum target, respectively, Fi is the ith objective
function, and Fi,min and Fi,max are the minimum and maximum
of the ith objective function, respectively.

3.3.2 Index Weighting
Generally, the methods of weighting indicators can be divided
into subjective method, objective method, and the combination of
subjective and objective methods. The subjective weighting
method is simple to operate and does not need the support of
original data, but the subjectivity of weighting results is often too
large. The objective weighting method can show the relationship
between indicators well, but it has high requirements for the
original data. Therefore, in this paper, a new combinationmethod
based on the analytic hierarchy process (AHP) and the improved
entropy weight method is adopted.

The analytic hierarchy process first judges the relative
importance of each index through decision-making experts
and scores each index with an integer between 1 and 9, and
then the judgment matrix is obtained,

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 a12 / a1n
a21 a22 / a2n
..
. ..

.
1 ..

.

an1 an2 / ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (18)

where n denotes the number of indicators. A is a positive
reciprocal matrix, which satisfies aij � 1/aji.

To be noted that, due to the environmental protection goal is
taken as the leading factor in this paper, when forming the
judgment matrix, the score of the environmental protection
index is relatively high so that the final weight is relatively
maximum.

Then check the consistency of the judgment matrix,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CR � CI

RI
,

CI � λmax − n

n − 1
,

(19)

where CR represents the consistency proportion. If CR< 0.1, the
consistency verification passes, otherwise the judgment matrix
needs to be modified. CI and RI represent the consistency index
and average random consistency index, respectively. λmax is the
maximum eigenvalue of judgment matrix A.

When the judgment matrix A passes the consistency check,
the eigenvector corresponding to its maximum eigenvalue λmax is
obtained and normalized, that is, the weight vector is obtained by
the analytic hierarchy process,

ω1 � [ω1
1,ω

1
2,/,ω1

n]T. (20)
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The entropy weight method reflects the amount of
information contained in each index through the entropy
value of each index. Generally speaking, the smaller the
entropy value, the greater the amount of index information
and the greater the weight should be set. Since the standard
entropy weight method is mainly applied tomultiple schemes, the
entropy weight method can be improved by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pi � 1 + Si(1 + Si,min) + (1 + Si) + (1 + Si,max),
Hi � pi,min lnpi,min + pi lnpi + pi,max lnpi,max

ln 3
,

(21)

where pi represents the characteristic specific gravity of the ith
target,Hi is the entropy of the ith target, and Si is the membership
function of the ith objective.

To be noted that, this improvement is mainly to adapt to the
optimization model. The objective functions have been processed
and converted into the form of membership function. Therefore,
in order to adapt to this form, the index value is replaced by
membership Si. Because this is not an evaluation problem, there
are no multiple schemes to be evaluated. Therefore, the possible
maximum and minimum values of each membership degree are
substituted into the formula to reduce the individual deviation. In
this way, there are three evaluation schemes in terms of quantity,
that is, m � 3. Therefore, the above formula is obtained.

According to the calculation results of entropy value of each
index, the weight of each index can be obtained by

ω2
i �

1 −Hi

n −∑n
i�1Hi

. (22)

Therefore, the weight vector is obtained by the improved
entropy weight method,

ω2 � [ω2
1,ω

2
2,/,ω2

n]T. (23)
In order to obtain the combined weight of AHP and improved

entropy weight method, the coupling vector is taken as follows:

[θ1, θ2] � [θ11, θ12,/, θ1n, θ
2
1, θ

2
2,/, θ2n], (24)

where θ1i and θ2i represent the coupling weight of index I for
weight coefficients ω1

i and ω2
i , respectively, which can be

expressed as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ1i �

ω1
i

ω1
i + ω2

i

,

θ2i �
ω2
i

ω1
i + ω2

i

.

(25)

Therefore, the weight after coupling is

ωp
i � θ1iω

1
i + θ2iω

2
i . (26)

Normalize it, one has

ωi � θ1iω
1
i + θ2iω

2
i∑n

i�1(θ1iω1
i + θ2iω

2
i ). (27)

Then, the combined weight of the AHP improved entropy
weight method can be finally expressed as

ω � [ω1,ω2,/,ωn]T. (28)

3.3.3 Collaborative Optimization Objective
After obtaining the index weight, combined with the standardized
objective function in the above sections, we can obtain the
comprehensive satisfaction goal, that is, the collaborative
optimization objective is given as

max F � ω1S1(F1) + ω2S1(F2) + ω3S2(F3). (29)

4 OPTIMIZATION ALGORITHM

Based on the above analysis, it can be found that the multi-
objective collaborative optimization of the multi-energy flow
coupling system considered in this paper is a complex
nonlinear programming problem. In order to make the
solution speed and convergence meet the requirements of
practical problems, the simplified primal dual interior point
algorithm is used in this paper. For the sake of brevity, first,
the optimization model described above is transformed into the
following general form:

⎧⎪⎨⎪⎩
max F(x),
s.t. h(x) � 0,
gmin ≤g(x)≤gmax,

(30)

where x is the state variable, including the output power, external
power purchase, gas purchase, etc., of each equipment, h(x) is the
equality constraint, including the power balance constraint of the
system, the energy balance constraint at the beginning and end of
the scheduling cycle of energy storage equipment, etc.; g(x) is the
inequality constraint, including the upper and lower limits of
equipment output, energy storage charge and discharge
constraints, etc.; and gmax and gmin represent the upper and
lower bounds of the inequality, respectively.

When dealing with this optimization model with the
traditional interior point algorithm, relaxation variables u �
[u1,/, ur]T and l � [l1,/, lr]T are introduced first, where r
represents the number of inequality constraints; thus, the
original inequality constraints are transformed into the
equality constraints. The resulting optimization model is
formulated as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min − F(x),
s.t. h(x) � 0,

g(x) + u � gmax,
gx − l � gmin,
u> 0, l> 0.

(31)

At the same time, the size of relaxation variables u and l should
be restricted to ensure that the objective function F(x) is always
far away from the solution boundary so that it can be solved in the
feasible domain as follows:
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⎧⎪⎪⎨⎪⎪⎩
min − F(x) − μ∑r

i�1
log(li) − μ∑r

i�1
log(ui),

s.t. h(x) � 0,
g(x) + u � gmax,
g(x) − l � gmin,

(32)

where μ represents the introduced disturbance factor.
At this point, the inequality constraints contained in the

optimization model described in this paper have all been
converted into the equality constraints, and the
Lagrange function for this optimization problem can be
expressed as

L � −F(x) − yTh(x)
−zT[g(x) − l − gmin]
−wT[g(x) + u − gmax]
−μ∑r

i�1
log(li) − μ∑r

i�1
log(ui),

(33)

where y, z, and w all represent the Lagrange operators, also
known as the dual variables. By deriving this Lagrange function,
the optimal solution to this optimization problem can be
obtained.

In this paper, by simplifying the original dual interior point
algorithm, the simplified original dual interior point method can

FIGURE 2 | Calculation flow of multi-objective collaborative optimization.
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be utilized to solve the optimization model, and the simplified
process is to rewrite the inequality constraint to

⎧⎪⎨⎪⎩
ĝ(x)≤ ĝmax,

ĝ(x) � [g(x),−g(x)]T,
ĝmax � [gmax,−gmax]T,

(34)

where ĝ(x) and ĝmax represent the generalized inequality
constraints and generalized upper bounds, respectively.

It can be found from the traditional interior point algorithm
that in the process of dealing with inequality constraints, the

upper and lower bounds of inequality constraints need to be
relaxed, and then converted into equality constraints,
respectively. At the same time, Lagrange operators are also
introduced for equality constraints converted from upper-
bound inequality constraints and lower-bound inequality
constraints, respectively, which introduce more variables in
the Lagrange function. This simplification algorithm greatly
reduces the relaxation variables and corresponding Lagrange
operators introduced in the optimization model, improves the
convergence speed of the algorithm while guaranteeing the

FIGURE 3 | Flowchart of the collaborative optimization of MEFCS.
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calculation accuracy, and reduces the amount of programming
to a certain extent. The rest of the algorithm is handled
similarly to the traditional algorithm, which are not
discussed here. For ease of understanding, the multi-
objective collaborative optimization calculation flow of the
multi-energy flow coupling system based on the simplified
primal dual interior point algorithm is shown in Figure 2,
where rgap is the dual gap, ε represents the convergence
accuracy, which is taken as 10–6 in this paper, and Kmax

represents the maximum number of iterations, normally is
set as 300.

Based on the above analysis, the collaborative optimization of
MEFCS dominated by the carbon emission targets in this paper
can be summarized as the following steps:

Step 1. Enter parameter information of the multi-energy flow
coupling system, such as system load, rated capacity of each unit,
equipment parameters, and time-of-use electricity price.

Step 2. Establish the steady-state operation model of each
equipment, as shown in Eqs 1–7.

Step 3. Establish the objective functions and constraints of the
MEFCS, as shown in Eqs 8–15.

Step 4. Weight each objective function using the analytic
hierarchy process-improved entropy weight method, as shown
in Eqs 18–28.

Step 5. Convert each objective function into a collaborative
optimization objective through the membership function and the
obtained weight information, as shown in Eqs 16, 17, 29.

Step 6. Solve the MEFCS collaborative optimization model by
the primal dual interior point algorithm until the optimal
solution is obtained or the algorithm does not converge.

The above steps can be clearly represented by the flowchart
shown in Figure 3.

5 CASE STUDY

5.1 Case Description
In this paper, the typical multi-energy flow coupling system shown
in Figure 1 is selected as an example. The capacity of each
equipment is as follows: one photovoltaic generator unit with a
rated output of 700 kW and one wind turbine generator unit with a
rated output of 500 kW, one cogeneration unit with a rated output of
3MW, one gas turbine with a rated output of 2MW, one waste heat
boiler with a rated output of 1MW, four heat pumps with a rated
output of 500 kW, four electric refrigerators and four absorption
refrigerators with a rated output of 200 kW, and four batteries and
heat storage equipment with a rated capacity of 500 kwh. Other
economic and technical parameters of the equipment can be found
in Wang Y. et al. (2018) and Huang et al. (2019). The time of use
electricity price information of the multi-energy flow coupling
system is shown in Figure 4, and the price of natural gas is 2.71
yuan/m3 (Shen et al., 2020). The load data of the system are shown in
Figure 5.

5.2 Results Analysis
The output curve of each equipment is shown in Figure 6. It can be
seen that the supply of electric energy and heat energy of the system
is mainly guaranteed by a gas turbine and heat pump, but only the
output of each equipment is not enough to meet the load demand
during the peak load period of the system. At this time, the system

FIGURE 4 | Power purchase price of MEFCS.
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needs to purchase electricity from the external power grid to jointly
supply energy to the load. In addition, it can be seen from the figure
that the discharge time of the power storage equipment is 03:00–21:
00, and the heat release time of the heat storage equipment is 06:
00–19:00. In other periods, that energy storage equipment is in the
charged states.

While using the multi-objective collaborative optimization
model proposed in this paper to solve the multi-energy flow
coupling system, three separate objectives are solved respectively.
After finding the individual optimization of each objective, its
state variables are substituted into the other two objectives to
obtain the respective results of the three objectives in this case.

FIGURE 6 | Output of each equipment of MEFCS.

FIGURE 5 | Load of MEFCS
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The comparison between the operation results of each scheme
and the operation results of multi-objective collaborative
optimization is shown in Table 1. It can be found from
Table 1 that the CO2 emission under multi-objective
collaborative optimization increases by 3.8% compared with
that under single objective F1 optimization, the system
operation cost increases by 6.1% compared with that under
single objective F2 optimization, and the primary energy

utilization rate decreases by 7.2% compared with that under
single objective F3 optimization. Although each objective
under multi-objective collaborative optimization is not the
optimal solution, the contradiction and conflict between each
single objective are balanced in the optimization process. On the
premise of taking the minimum carbon emission of the system as
the leading objective, the comprehensive satisfaction of the
system is significantly higher than the solution results of each

FIGURE 7 | Period by period analysis of single objective and multi-objective optimization results. (A) Comparison of environmental protection objectives by period.
(B) Period by period comparison of economic objectives. (C) Period by period comparison of energy efficiency objectives.

TABLE 1 | Comparison between multi-objective collaborative optimization and single-objective optimization.

Operation form Multi-objective
collaborative optimization

Single objective optimization

F1 optimal F2 optimal F3 optimal

F 0.9685 0.8943 0.8304 0.8612
F1 (kg) 10,403.5 10,022.2 15,113.3 10,543.7
F2 (yuan) 14,568.8 16,205.2 13,727.1 14,037.3
F3 (%) 79.04 81.67 67.94 86.33
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single objective, and a relatively satisfactory optimal scheduling
scheme is given.

In order to further compare the differences between the multi-
objective collaborative optimization proposed in this paper and
the traditional single objective optimization, the optimization
results of each single objective and the multi-objective
collaborative optimization results are analyzed period by
period, as shown in Figure 7. In the figure, F123−1, F123−2, and
F123−3 represent the environmental protection objective,
economic objective, and energy efficiency objective under
collaborative optimization, while F11, F22, and F33 represent
the environmental protection objective, economic objective,
and energy efficiency objective under single objective
optimization. Figure 7A shows the carbon emissions in each
period of the two optimization methods. It can be seen from the
figure that the two carbon emission curves cross each other.
Except that the carbon emissions during collaborative
optimization in 17:00–21:00 are significantly higher than those
in single objective optimization, they are very close in other times.
It shows that when taking the minimum carbon emission as the
leading objective, the effect of collaborative optimization is not
different from the single objective optimization with the
minimum carbon emission, and the working state of each
equipment is also relatively stable. Figure 7B shows the cost
curves of the two optimization methods. During 3:00–12:00, the
cost of multi-objective collaborative optimization is about 100
yuan/h higher than that of single objective optimization, and the
two curves almost coincide after 12:00. It can be seen from
Table 1 that the comprehensive satisfaction of multi-objective
collaborative optimization is obviously higher than that of single
objective optimization. On this basis, it ensures that the operation
cost of the system is not too high, and it is almost the same as that
of single objective optimization in most periods, indicating that
the result of multi-objective collaborative optimization is ideal.

Figure 7C shows the comparison of energy efficiency of the two
methods in each period. Although the operation energy efficiency
of multi-objective optimization in each period is not as good as
that of single objective energy efficiency optimization, the overall
operation result is relatively stable, indicating that each
equipment can achieve stable energy supply and continuous
output during the operation of the system, and the working
state is not easy to fluctuate violently.

In order to highlight the effectiveness of the simplified primal
dual interior point method proposed in this paper, the particle
swarm optimization (PSO) algorithm is selected to compare with
the algorithm proposed in this paper. The solution process curves
of the simplified primal dual interior point method and particle
swarm optimization algorithm for the system comprehensive
satisfaction objective are shown in Figures 8A,B, respectively.
They tend to converge at the 25th and 65th iterations,
respectively. It can be seen that the convergence of the
simplified primal dual interior point method is better than
that of the particle swarm optimization algorithm. In addition,
from the solution results of the two algorithms, it can be seen that
the simplified primal dual interior point method finally converges
near 0.9685, while the particle swarm optimization algorithm
finally converges only near 0.8352, which still has a certain
deviation from the global optimal solution. Therefore, the
global optimization ability of the simplified primal dual
interior point method proposed in this paper is also stronger
than that of the particle swarm optimization algorithm.

6 CONCLUSION

In this paper, the multi-objective collaborative optimization model
of MEFCS has been developed considering each of the
environmental protection, system economy, and energy efficiency

FIGURE 8 | Solving process of the comprehensive satisfaction objective for MEFCS. (A) Simplified primal dual interior point method. (B) Particle swarm
optimization algorithm.
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as the objectives of this study, in which the carbon emission
orientation goal could be achieved. Moreover, the simplified
primal dual interior point method has been used to solve the
constructed model. According to the obtained results, the
following findings have been concluded: 1) The contradiction
and conflict between the three objectives (CO2 emission, system
operation cost, and primary energy utilization rate) were relatively
balanced under the proposed collaborative optimization operation,
which have clearly demonstrated that the satisfaction of
collaborative optimization operation considering multiple
objectives could be higher than that considering a single
objective of the system. 2) Each equipment of the system could
achieve stable energy supply as well as continuous output
throughout the whole operation process, whereas the working
state was difficult to fluctuate sorely. 3) At the same time, the
operator could adjust the weight of the three objectives through his
own will, so as to get the best operation results that meet his
requirements. 4) In addition, the simulation results have illustrated
that the simplified primal dual interior point method being adopted
in this paper has better convergence and global optimization ability
in multi-objective collaborative optimization. However, more
investigations are needed regarding the sensitivity analysis on the

critical parameters of the multi-energy flow coupling system, which
will be considered in our future research work.
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GLOSSARY

Acronyms

AHP Analytic hierarchy process

AR Absorption refrigerator

BD Benders decomposition

CHP Combined heating and power

DRE Distributed renewable energy

EES Electric energy storage

ER Electric refrigerator

FRs Flexible resources

GT Gas turbine

HP Heat pump

HES Heat energy storage

IEHES Integrated electricity-heat energy system

MEFCS Multi-energy flow coupling system

OCCS Optimal coordination control strategy

PV Photovoltaic

SOCP Second-order cone programming

WHB Waste heat boiler

WT Wind turbine

Parameters

ηw Wind energy utilization efficiency

r Blade radius

ρ Air density

Ptest Test power under standard conditions

Ltest Test light intensity under standard conditions

K Power temperature coefficient

ηP,CHP Power generation efficiency

ηH,CHP Heating efficiency of cogeneration units

Lgas Low calorific value of natural gas

ηGT Power generation efficiency

ηl Loss rate of gas turbine

ηWHB Recovery efficiency of waste heat boiler

ηHP Conversion efficiency of the heat pump

ηEC ηAC Conversion efficiency of electric chiller and absorption chiller

ηAC0 Conversion efficiency of absorption chiller

aAC bAC cAC Refrigeration coefficients of absorption chiller

βAC Load rate

αgas αgrid CO2 emission coefficient corresponding to the combustion of
natural gas and the consumption of electric energy

cgrid cgas Cost coefficients corresponding to the electric energy and natural
gas consumed by the system

N Total amount of equipment

WPL WHL WCL Total load of the system in a day

ζ Network loss rate of transmission line

CR Consistency proportion

CI Consistency index

RI Average random consistency index

Variables

PWT
t Wind turbine generation power in period t

vt Air velocity in period t

PPV
t Output power of photovoltaic equipment in period t

Lact Light intensity in period t

θst Solar panel temperature in period t

θrt Reference temperature in period t

θoutt External ambient temperature in period t

Rt Solar radiation intensity in period t

PCHP
t Electric power consumed by internal cogeneration unit in period t

HCHP
t Thermal power consumed by the internal cogeneration unit in

period t

GCHP
t Gas power consumed by the internal cogeneration unit in

period t

PGT
t Gas turbine generation power in period t

HGT
t Flue gas waste heat power in period t

Vgas
t Natural gas consumption during in period t

HWHB
t Heat recovery power of the waste heat boiler in period t

HHP
t Heat energy generated of the ground source heat pump in period t

PHP
t Electric energy consumed of the ground source heat pump in

period t

CEC
t Cool power generated of EC in period t

CAC
t Cool power generated of AC in period t

PEC
t Electric energy consumed of the electric chiller in period t

HAC
t Heat energy consumed of the absorption chiller in period t

Ei,t Energy storage of energy storage equipment i in period tEnergy storage of
equipment i in period t

Pc
i,t P

d
i,t Charging power and discharging power of energy storage equipment i

in period t

Oi,t Output power of equipment i in period t

�Pc
i
�Pd
i Upper limit of the charging and discharging power of energy storage

equipment i

Ei,t Energy storage of energy storage equipment i in period tEnergy storage of
equipment i in period t

σ i Consumption rate of energy storage equipment i

cma
i Maintenance cost of equipment i

Pi Rated capacity of equipment i

�μi μi Upper and lower limits of the charging and discharging state of the
energy storage equipment i

S1 S2 Membership function of a very small target and maximum target

Fi ith objective function
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Fi,min Fi,max Minimum and maximum of the ith objective function

ηci ηdi Charging efficiency and discharging efficiency of energy storage
equipment i

λmax Maximum eigenvalue

pi Characteristic specific gravity of the ith target

Hi Entropy of the ith target

Si Membership function of the ith objective

x State variable

h(x) Equality constraint

g(x) Inequality constraint

gmax gmin Upper and lower bounds of inequality

ĝ(x) Generalized inequality constraints

ĝmax Generalized upper bounds
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