
Voltage Optimization Control Strategy
for Islanded Microgrid
Source-Grid-Load Active-Reactive
Power Coordination Based on
Collaborative Di-MPC
Xiaojie Liu1, Zhaobin Du1,2*, Yefa Tan1 and Yao Liu1

1School of Electric Power Engineering, South China University of Technology, Guangzhou, China, 2Guangdong Province’ New
Energy Power System Intelligent Operation and Control Enterprise Key Laboratory, Guangzhou, China

To cope with the volatility and randomness of wind power, photovoltaic (PV) power, and
load demands in the islanded microgrid, and also to ensure the safety and economic
operation of the islanded microgrid system. A collaborative Distributed model predictive
control (Di-MPC) based voltage optimization control strategy is proposed, which considers
the strong coupling characteristic of active and reactive power due to the impedance ratio
of islandedmicrogrid, and the requirements of real-time and robustness in the optimization
as well. By coordinating the controllable devices in the source-grid-load side of the
islanded microgrid, the proposed strategy aims to make full use of the voltage
regulation capability of each controllable device. Firstly, by considering the different
operating characteristics of the controllable devices, a multi-time scale distributed
voltage optimal control model is established. It divides the optimal control process into
long-time scale and short-time scale and optimizes for respective objective functions and
control variables in different time scales. Secondly, a collaborative Di-MPC-based voltage
optimal control strategy is proposed. With the proposed collaboration mechanism, the
power output increments of the distributed generators (DGs) are solved in the short-time
scale, and the errors in the long-time scale control are also fixed. Finally, the simulation
results show that compared with a traditional optimal control method and a centralized
model predictive control (CMPC) method, the proposed voltage optimization control
strategy can effectively reduce the voltage deviation and fluctuation at each node while
ensuring the economic operation of the islanded microgrid system.

Keywords: distributed model predictive control, coordinated optimization of active-reactive power, optimal control
of voltage, islanded microgrid, collaborative method

1 INTRODUCTION

With the growing demand for clean energy in recent years, microgrids, as a limited integration of
multiple renewable power generation technologies, have the characteristic of flexibility, scalability,
and ease of establishment. It has helped to decentralize and decarbonize energy (Katiraei et al., 2008;
Morstyn et al., 2018) and was widely used in many countries (Jiayi et al., 2008), effectively increasing
the utilization of renewable energy. Microgrids are usually operated in two modes: grid-connected
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mode and islanded mode. Due to the small size of islanded
microgrids, their dynamic regulation capability is greatly
limited by the uncertainty of DGs, such as wind turbine (WT)
and PV stations. Moreover, the lack of reactive power support
from the external grid makes them more vulnerable to voltage
control problems compare to grid-connected microgrids (Han
et al., 2016; Mehmood et al., 2021).

At present, the main DGs in the islanded microgrid are WT and
PV. Both sources and the load demands have strong randomness and
volatility, which brings great uncertainty to the islanded microgrid
system. Due to the prediction error of the day beforehand, the system
uncertainty will gradually increase as the prediction time moves
forward, which makes it difficult to control the islanded microgrid
system optimally. To cope with the growing pressure of optimal
control for the islanded microgrid system, many works have been
done and reported. In contrast to the traditional single-time scale
open-loop optimal control method, model predictive control (MPC),
as a model-based finite-time rolling optimal closed-loop control
method (Ferrari-Trecate et al., 2004; Kouro et al., 2009; Villalon
et al., 2020; Hu et al., 2021), can better resist the impact of system
uncertainty and showgood robustness, and its application in the study
of optimal control of power systems has received wide attention. (Liu
And Kong, 2013; Wang et al., 2015). In (Raimondi Cominesi et al.,
2018), the authors presented a two-layer algorithm for the optimal
energy management in MGs, and combined the high-level off-line
economic optimization with the low-level online stochastic MPC. In
(Xia et al., 2019), to solve the problem of rapid and frequent voltage
fluctuations caused by the high proportion of wind power connected
to the grid, the authors introduced the multi-time scale optimal
control method based on MPC into the reactive voltage control
process, which enabled the system to respond to the predictable
changes in advance and track the fluctuation of the grid voltage in
time. Authors in (Xu et al., 2015) proposed anMPC-based automatic
wind farmvoltage controlmethod to coordinate theWTand static var
generators (SVG). It solved the problems of the time lag and
equipment incoordination brought by the traditional reactive
power optimization method based on the current time sections for
decision-making. In (Yan et al., 2019), the authors proposed a multi-
time scale reactive power voltage control method. To fully exploit the
dynamic reactive power voltage regulation capability of renewable
energy, a multi-time scale reactive power optimization model based
on MPC was established, and the voltage overrun caused by the
uncertainty factor was well suppressed. However, because of the
strong coupling characteristic of active and reactive power caused
by the high impedance ratio of islanded microgrid, it is not
comprehensive to implement the optimal voltage control while
only standing on the perspective of reactive power control. Such
an approach ignores the influence of the active power during the
voltage control process and limits the optimization space for optimal
voltage control in islanded microgrids.

In addition, unlike the main grids, the spacing between source
and load in themicrogrids is shorter, which causes a strong coupling
between active and reactive power. It makes the node voltage not
only being affected by reactive power but also closely related to the
active power. Therefore, the unilateral analysis of active or reactive
power optimization inmicrogrids based on the traditional active and
reactive decoupling method is inadequate and inaccurate. In (Zhang

andWang, 2016), the authors proposed anMPC-based coordinated
optimization method of active and reactive power dispatching for
microgrid, considering voltage constraints. Then a real-time rolling
optimizationwas used to optimize the power outputs ofmicrosource
and energy storage system (ESS), which achieved the purpose of
economic and stable operation of the microgrid and reduced the
voltage deviation of nodes within the system. Authors in (Gao et al.,
2018) used the branch flowmodel-based relaxed optimal power flow
to optimize the robust coordinated optimization of active and
reactive powers, which is described as a mixed-integer second-
order cone programming problem. In order to address the
uncertainty of renewable energy and load demand, a two-stage
robust optimizationmodel was proposed. In (Zhang et al., 2017), the
authors proposed anMPC-based active-reactive power coordination
control method for distribution networks with distributed
photovoltaic stations, which performed separate MPC at different
time scales for respective control objectives and control variable,
then the established non-convex and non-linear model was solved
by using the second-order cone programming in a relaxed manner.
However, with the growing number of controllable DGs and devices
within the microgrid, centralized method like CMPC approach used
in the above-mentioned research will face great challenges. The
traditional centralized control method relies on global information,
and when the number of controllable devices increases, the pressure
on computation and communication will become intense.
Moreover, the original model has to be readjusted once there are
any devices withdrawn from failure, which makes the method less
robust and scalable, and cannot adapt to the requirements of
microgrid operation and control in the context of increasing
penetration of DGs.

Furthermore, in order to achieve the real-time and robust
requirements of voltage optimization control in the microgrids,
distributed control method like Di-MPC has been approached for its
advantages of high reliability, flexibility, and fast solution, and it also
overcomes the shortcomings of the traditional CMPC. In (Zheng
et al., 2018), authors combined the Di-MPC method to transform
the microgrid energy dispatching problem into several
interconnected non-linear and integer planning problems, which
simplifies the plug-and-play feature. The proposed method reduces
the computation of the problem to a large extent and improves the
solution efficiency. Authors in (Guo et al., 2019) combined with the
consistency-based distributed information synchronization and
estimation to coordinate and optimize the control of the active
and reactive power outputs of the wind farm, which ensures that the
WT tracks the reference frequency while reducing its fatigue load
through active power control, and reduces the deviation of the node
voltage through reactive power/voltage control. In (Zhao et al.,
2020), the authors proposed a control strategy based on Di-MPC
to optimize the economic scheduling of multi-microgrids on island
groups. The proposed strategy designed a trading mechanism by
using dynamic non-cooperative game theory to regulate trading
behavior between microgrids with different owners. Authors in (F.
et al., 2021) proposed a distributed model predictive control strategy
for the operation of isolated microgrids based on a consensus
strategy, which can tackle both the economic dispatch and
frequency restoration over the same time scale. It is also robust
to load variations and communication issues. Authors in (Fan et al.,
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2021) presented a distributed discrete-time control scheme for the
DCmicrogrids, and it had achieved the optimal coordination of CGs
and RGs, where the generation cost of the CGs isminimized, and the
energy utilization of RGs is maximized. In (Yang et al., 2021), the
authors proposed a novel distributed model predictive control
(DMPC) strategy for a DC microgrid based on voltage observers
for multiple energy storage systems (ESs) to achieve a tradeoff
between voltage regulation and power-sharing. In order to reduce
the impact of communication delay on voltage observers, an
improved DMPC consensus algorithm is proposed, which
effectively improves the robustness of the system to the delay.

Meanwhile, for multi-energy systems such as microgrids,
many works have also been done and reported (Li et al.,
2021). The authors in (Liu and Yang, 2022) established a
multi-objective optimization model with operating costs and
gas emissions as the competing objective functions,
simultaneously. To achieve the purpose of optimal energy
dispatching with reasonable operating costs and gas emissions,
a distributed algorithm with dynamic weights based on initial
values was proposed, where participants only need to share
information with neighboring controllers to achieve energy
management. In (Li et al., 2020), the authors established a
double-mode energy management model for the multi-energy
system, which modeled the islanded and network-connected
modes into a unified and distributed form. Then, a novel
distributed dynamic event-triggered Newton-Raphson
algorithm is proposed to solve the double-mode energy
management problem in a fully distributed fashion, in which
the adaptability and flexibility of the multi-energy system can be
enhanced. Therefore, distributed control methods are more in
line with the needs of the engineering practice for their real-time
and robust performance, which can better coordinate the
controllable devices within the multi-energy system.

Thus based on the collaborative Di-MPC, this paper proposes
a method for optimizing the active-reactive power coordinated
voltage control of islanded microgrid by considering multiple
controllable devices on the source-grid-load subsystems, which
divides the whole optimization control process into long-time
scale and short-time scale according to the different action speeds
and limits of the controllable devices. In different time scales,
different control objectives and control variables are optimized.
For long-time scale, based on the WT power, PV power, and load
demands day-ahead forecast data, the active and reactive power
outputs of each DG, the gear of on-load tap changer (OLTC), and
the number of capacitor banks (CB) are optimally solved to
minimize the system network losses. For short-time scale, the
results of the long-time scale optimization are used as the initial
values, and the voltage/reactive power sensitivity model is used as
the voltage prediction model, based on the real-time WT power,
PV power, and load demand forecast values. By calculating the
active and reactive power output increments of the micro gas
turbine (MT) and ESSs, as well as the reactive increments of WT
and PV stations, it aims to minimize the voltage deviation and
fluctuation so that the islanded microgrid system can run in a safe
and economical way.

Themain contributions and salient features of this paper are as
follows:

1. Considering the strong coupling characteristic of active and
reactive power that caused by the high impedance ratio of
islanded microgrid, also the uncertainty of renewable energy
and load. A multi-time scale source-grid-load active-reactive
coordinated voltage optimization control strategy is proposed,
which expands the optimization space of the traditional active-
reactive decoupling method. The proposed strategy also enhances
the ability of the islanded microgrid to cope with the uncertainty
through the collaborative regulation mechanism of controllable
devices in different time scales.

2. Considering the requirements of real-time and robustness of
the regulation method in short time scale optimization stage. A
source-load collaboration mechanism based on Di-MPC was
proposed. In the proposed mechanism, the coordination problem
between the agents is reduced to a cooperative gamewhere they have
to choose one out of the three strategies, and only two rounds of
information interactions are required to reach an agreement.
Therefore, it has a good performance of real-time and robustness.

2 ACTIVE-REACTIVE POWER
COORDINATED OPTIMAL CONTROL
STRATEGY BASED ON DISTRIBUTED
MODEL PREDICTIVE CONTROL

2.1 Collaborative Distributed Model
Predictive Control Theory
MPC is a model-based finite-time domain closed-loop
optimization control algorithm, which is a process control
method with easy modeling, good applicability, and high
robustness. Based on this feature, MPC is widely used in the
field of optimal control of power systems as a control algorithm
with both applicability and robustness, and its basic framework
consists of three major parts: predictive model, cost function, and
solving algorithm (Villalon et al., 2020; Hu et al., 2021). The first
element of the control sequence is applied to the controlled object,
and at the next sampling moment, the optimal control problem is
reconstructed based on the system state and the new measurement
values after the control execution in the previous moment, and the
above process is repeated (Rawlings and Mayne, 2009).

Traditional CMPC has a simple structure, and it is easy to
implement because only one centralized controller needs to be
designed to control the whole interconnected system. However,
on the one hand, with the increasing number of distributed
devices in the interconnection system, the computation burden
of the centralized controller increases significantly, which has a
significant impact on performing the real-time online rolling
optimization. On the other hand, it lacks robustness since when
one of the subsystems fails and withdraws from the
interconnection system, the CMPC needs to correct the model
in time to avoid wrong control command, which will cause the
crash of the system. The correction is very time-consuming and
complicated. Considering the shortcomings of CMPC, this paper
adopts the collaborative Di-MPC to solve the voltage
optimization problem. Di-MPC firstly decomposes the
interconnected system into several subsystems with coupling

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8808253

Liu et al. Distributed Voltage Optimization Control Strategy

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


relationships, and each subsystem can obtain the global
information of the interconnected system through
communication. Compared with CMPC, Di-MPC decouples a
large online optimization problem and distributes them to each
subsystem for a solution. Each sub-optimization problem is not
only independent but also coupled, and each sub-optimization
problem can be independently and parallelly solved, thus it
greatly reducing the scale and complexity of solving the online
optimization problems and improving the solution efficiency
while ensuring the control performance (Le et al., 2020).

2.2 Multi-Time Scale Source-Grid-Load
Active-Reactive Power Coordination and
Optimal Control Strategy Based on
Collaborative Distributed Model Predictive
Control
In addition, the network-side devices have a slow response time
when participating in the voltage regulation, so they should not be
operated frequently. On the contrary, each DG in the source side
is connected to the islanded microgrid through the inverter, and
the fast response characteristics of the inverter itself enable the
DGs to operate in a short time during the voltage regulation
process. So the proposed collaborative Di-MPC carefully
considers the operating characteristics of the above devices
and comprehensively utilizes the regulatory potentials in the
source-grid-load side. Based on the collaborative Di-MPC, a
multi-time scale distributed voltage optimal control model is
established in this paper proposes. The long-time scale optimal
control model ensures the safety and the economic operation of
the system, and the short-time scale optimal control further

optimizes the voltage control effect. Thus each DG can ensure
the economical and safe operation of the system while making full
use to the voltage regulation capability of each controllable device
in the source-grid-load side. The schematic diagram of the multi-
time scale optimal control is shown in Figure 1.

3MULTI-TIME SCALEOPTIMALMODELOF
ACTIVE-REACTIVE POWER
COORDINATED VOLTAGE OPTIMIZATION
CONTROL

3.1 Long-Time Scale Optimal Control Model
The long-time scale optimal control model takes the active and
reactive power outputs of ESS andMT, the reactive power outputs
of WT and PV stations, as well as the gear of the OLTC and the
number of the CB as control variables, and the predicted data of
wind power, photovoltaic power and load demands as input
variables. Then by using 1 h as the optimization time window to
optimally solve the above control variables.

3.1.1 Optimization Objective
The optimization objective of the long-time scale optimal control
is to ensure the economical operation of the islanded microgrid
system and reduce the network losses, so the objective function is
designed to minimize the system network losses, described as:

minf1 � min ∑NC,1h

t�1
∑N
j�1
Ploss
j,t (1)

FIGURE 1 | Multi-time scale optimal control schematic.
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where NC,1h is the optimization cycle of the long-time scale
optimal control model; N is the total number of nodes; Ploss

j,t is
the active loss in node j at time t.

3.1.2 Constraints
1) Power flow constraints

The used LinDistflow model (Baran and Wu, 1989; Šulc et al.,
2014) can linearize the original non-linear and non-convex power
flow constraint, as well as the on-load tap changer constraint,
which allows it to solve the original optimal control problem in a
more efficient manner without affecting the precision,
described as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k: (j,k)

Pjk,t � Pij,t − pj,t

∑
k: (j,k)

Qjk,t � Qij,t − qj,t

Vj,t � V1 − ∑
i∈[2,j]

(rijPij,t + xijQij,t)/V1

pj,t � pc
j,t − pg

j,t

qj,t � qcj,t − qgj,t

(2)

where k: (j, k) denotes the set of all line end nodes with node j as
the start node; Pij,t,Qij,t are the active and reactive power flowing
through branch ij at time t, respectively; pj,t, qj,t are the active and
reactive power injected in node j at time t, respectively; pc

j,t, q
c
j,t

are the active and reactive power demanded in node j at time t,
respectively; pg

j,t, q
g
j,t are the microsource active and reactive

power outputs in node j at time t, respectively; Vj,t is the voltage
magnitude in node j at time t; rij and xij are the resistance and the
reactance of branch ij, respectively; V1 is the voltage reference
values, V1 � 1.0p.u.

2) Voltage constraints

Vmin
j ≤Vj,t ≤Vmax

j (3)
where Vmin

j , Vmax
j are the lower and upper limits of the voltage

amplitude in node j, respectively.

3) DGs and other devices operating constraints

1) WT operation constraints

⎧⎨⎩ PWT
j,t � PWTpre

j,t(PWT
j,t )2 + (QWT

j,t )2#(SWTmax
j )2 (4)

where PWT
j,t , QWT

j,t are the active and reactive power outputs of the
WT in node j at time t, respectively; SWTmax

j is the inverter

capacity of theWT in node j; PWTpre
j,t is the predicted active power

outputs of the WT in node j at time t.
2) PV stations operation constraints

⎧⎨⎩ PPV
j,t � PPVpre

j,t(PPV
j,t )2 + (QPV

j,t )2#(SPVmax
j )2 (5)

where PPV
j,t , Q

PV
j,t are the active and reactive power outputs of the

PV station in node j at time t, respectively; SPVmax
j is the inverter

capacity of the PV station in node j; PPVpre
j,t is the predicted active

power outputs of the PV station in node j at time t.
3) MT operation constraints

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(PMT
j,t )2 + (QMT

j,t )2 ≤ (SMTmax
j )2

0≤PMT
j,t ≤PMTmax

j

PMT
j,t − PMT

j,t−1 ≤ δ
MT up
j

PMT
j,t−1 − PMT

j,t ≤ δMT down
j

(6)

where PMT
j,t , QMT

j,t are the active and reactive power outputs of the
MT in node j at time t, respectively; SMTmax

j is the capacity of the
MT in node j; PMTmax

j is the maximum active power outputs of
the MT in node j; δMT up

j , δMT down
j are the upper and lower limits

of the ramping rate of the MT, respectively.
4) ESS operation constraints

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0≤PESScha
j,t ≤ δESScha,tP

ESS
chamax

0≤PESSdis
j,t ≤ δESSdis,tP

ESS
dismax

δESScha,t + δESSdis,t ≤ 1(PESScha
j,t )2 + (QESS

j,t )2#(SESSmax
j )2

(PESSdis
j,t )2 + (QESS

j,t )2#(SESSmax
j )2

(7)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Esoc,t � Esoc,t−1 + ηchaPESScha
j,t Δt/E

− PESSdis
j,t

ηdisE
Δt

Esocmin ≤Esoc,t ≤Esocmax

(8)

where PESScha
j,t is the charging power of the ESS in node j at time t;

PESSdis
j,t is the discharging power of the ESS in node j at time t;

δESScha,t, δ
ESS
dis,t are the charging and discharging status flags of the ESS

at time t, respectively, and are 0–1 variables; PESS
chamax, P

ESS
dismax are

the maximum charging and discharging power of the ESS,
respectively; QESS

j,t is the reactive power outputs of the ESS in
node j at time t; SESSmax

j is the inverter capacity of ESS in node j;
Esoc,t is the stored power of the ESS at time t; ηcha, ηdis are the
charging and the discharging efficiencies of the ESS, respectively;
Esocmax, Esocmin are the upper and lower limits of stored power of
the ESS, respectively; Δt is the amount of change in time. E is the
battery capacity of the ESS.

5) OLTC operation constraints

⎧⎪⎨⎪⎩
kij,t � kij,0 + Tij,tΔkij
Tmin
ij ≤Tij,t ≤Tmax

ij∣∣∣∣Tij,t − Tij,t−1
∣∣∣∣≤Tonesmax

ij

(9)

where kij,t is the ratio of the OLTC at branch ij at time t; Δkij is the
adjustment step length of the OLTC ratio; kij,0 is the initial value of
the OLTC ratio at branch ij; Tij,t is the OLTC step at branch ij at
time t; Tmax

ij , Tmin
ij are the upper and lower limits of the adjustable

step of the OLTC at branch ij, respectively; Tonesmax
ij is the limit

value of the single adjustment step of the OLTC.
For the branch containing the OLTC, the voltage constraint is

modified as
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Vj,t � kij,tV1 − (rijPij,t + xijQij,t)/V1 (10)
6) CB operation constraints

⎧⎪⎨⎪⎩
Qj,t � mj,tΔQj

mmin
j ≤mj,t ≤mmax

j , mj,t ∈ Z∣∣∣∣mj,t −mj,t−1
∣∣∣∣≤Monesmax

j

(11)

where Qj,t is the amount of reactive power compensation of the
CB in node j at time t; ΔQj is the amount of reactive power
compensation of a single group of the CB; mj,t is the number of
groups of CB being put into operation or removed in node j at
time t;mmax

j ,mmin
j are the upper and lower limits of the number of

groups that can be put into operation or removed of the CB,
respectively; Monesmax

j is the limit value of the number of groups
that can be put into operation or removed in a single adjustment
of the CB group.

3.2 Short-Time Scale Optimal Control Model
The short-time scale optimal control model takes the active
and reactive power output increments of MT and ESS, the
reactive power output increments of WT and PV station as the
control variables. It also takes the power outputs and actions of
each DG and controllable device, and the voltage of each node
solved by the long-time scale optimal control as the input
variables. Then by using 15 min as the optimization time
window in this stage to optimally solve the above control
variables.

3.2.1 Optimization Objective
The optimization objective of the short-time scale optimal
control aims at further reducing the voltage fluctuations
based on the long-time scale optimal control regulation,
which are due to the fluctuations of the wind power,
photovoltaic power, and load demands. The optimization
objective function is described as:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
minf3 � min ∑NC,15min

t�1
∑N
j�1

∣∣∣∣∣Vpre
j,t − ΔVj,t − Vref

j,t

∣∣∣∣∣
minf4 � min ∑NC,15min

t�1
∑N
j�1

∣∣∣∣∣Vpre
j,t − ΔVj,t − Vj,t−1

∣∣∣∣∣
(12)

where NC,15min is the optimization cycle of the short-time scale
optimal control; Vpre

j,t is the predicted voltage value in node j at
time t, which is calculated based on the steady-state node voltage
and voltage/power sensitivity solved on a long-time scale; ΔVj,t is
the voltage variation in node j at time t due to the variation of the
injected active-reactive power; Vref

j,t is the reference voltage in
node j at time t obtained after the optimal control calculation on
the long-time scale; Vj,t−1 is the actual voltage value in node j at
time t-1.

3.2.2 Constraints
The constraints in short-time scale contain the operation
constraints of DGs and ESS as shown in Eq. 13, Eq. 14,
respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(PWT
j,t )2 + (QWT

T1j,t + ΔQWT
j,t )2#(SWTmax

j )2
PWT
j,t � PWTpre

j,t(PPV
j,t )2 + (QPV

T1,j,t + ΔQPV
j,t )2#(SPVmax

j )2
PPV
j,t � PPVpre

j,t(PMT
T1j,t + ΔPMT

j,t )2 + (QMT
T1j,t + ΔQMT

j,t )2#(SMTmax
j )2

0≤PMT
T1j,t + ΔPMT

j,t ≤PMTmax
j(PMT

T1j,t + ΔPMT
j,t ) − (PMT

T1j,t−1 + ΔPMT
j,−1)≤ δMTup

j(PMT
T1j,t−1 + ΔPMT

j,t ) − (PMT
T1j,t + ΔPMT

j,−1)≤ δMTdown
j

(13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0≤PESScha
T1j,t +ΔPESScha

j,t ≤δESScha,tP
ESS
cha,max

0≤PESSdis
j,t +ΔPESSdis

j,t ≤δESSdis,tP
ESS
dis,max

δESScha,t +δESSdis,t≤1

(PESScha
T1j,t +ΔPESScha

j,t )2 + (QESS
T1j,t +ΔQESS

j,t )2≤(SESSmax
j )2

(PESSdis
T1j,t +ΔPESSdis

j,t )2 + (QESS
T1j,t +ΔQESS

j,t )2≤(SESSmax
j )2

Esoc,t �Esoc,t−1 +ηcha(PESScha
T1j,t +ΔPESScha

j,t )Δt/E−PESSdis
T1j,t +ΔPESSdis

j,t

ηdisE
Δt

Esocmin≤Esoc,t≤Esocmax

(14)
where QWT

T1j,t, Q
PV
T1,j,t are the long-time scale reactive power

output results of the WT and PV station in node j at time t,
respectively; ΔQWT

j,t , ΔQPV
j,t are the reactive power output

increments of WT and PV station in short-time scale
optimal control in node j at time t, respectively; PMT

T1j,t is the
long-time scale active power output results of MT in node j at
time t; ΔPMT

j,t is the active power output increments of MT in
node j at time t; QMT

T1j,t is the long-time scale reactive
power output results of MT in node j at time t; ΔQMT

j,t is the
reactive power output increments of MT in node j at time t;
PESScha
T1j,t , PESSdis

T1j,t are the long-time scale charging and
discharging power results of the ESS in node j at time t,
respectively; ΔPESScha

j,t , ΔPESSdis
j,t are the charging and

discharging power of the ESS in node j at time t,
respectively; QESS

T1j,t is the long-time scale reactive power
output results of the ESS in node j at time t; ΔQESS

j,t is
the reactive power output increments of the ESS in node j
at time t.

3.2.3 Voltage Prediction Model Based on Voltage/
Power Sensitivity
Islanded microgrids are mainly powered by renewable energy
sources such as wind power and photovoltaic power, which are
subjected to environmental uncertainties. Combined with the
characteristics of the islanded microgrid transmission lines, the
voltage of each node will be affected when the output of WT
and PV stations fluctuates due to environmental impacts. In
order to control the DGs in time to achieve the purpose of
voltage regulation, it is necessary to predict the node
voltage fluctuations caused by the fluctuation of wind power,
photovoltaic power, and load demands. Then reasonably arrange
the power outputs of each DG to reduce the voltage deviation and
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fluctuation. In this paper, from the perspective of active-reactive
power coordination control, in order to regulate the system voltage,
the active and reactive power outputs of DGs inside the islanded
microgrid is regulated under different stages. Based on the
conventional AC power flow equation, the non-linear power flow
is linearized at the steady-state solution of the power flow, and the
following matrix can be obtained (Wang et al., 2005):

[ ΔP
ΔQ] �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
zP

zθ

zP

zV

zQ

zθ

zQ

zV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[ΔθΔV] � J[ΔθΔV] (15)

where ΔP, ΔQ are the node active and reactive power injection
variation matrix, respectively; Δθ is the node voltage phase angle
variation matrix; ΔV is the node voltage magnitude variation
matrix; J is the Jacobi matrix.

The inverse of this matrix expression yields:

[ΔθΔV] � J−1[ΔPΔQ] � S[ΔPΔQ]
� [ SPθ SQθ

SPV SQV
][ΔPΔQ] (16)

where SPV, SQV are the voltage-active and voltage-reactive sensitivity
factors, respectively, indicating the degree of voltage variation at each
node when the node is injected with unit active and reactive power;
SPθ , SQθ are the phase-angle-active and phase-angle-reactive
sensitivity factors, respectively, indicating the degree of voltage
phase angle change at each node when the node is injected with
unit active power and reactive power. Based on these matrixes, the
relationship between the voltage variation at each node and thematrix
of the change in active and reactive power injected into the node can
be expressed by the following equation:

ΔV � SPVΔP + SQVΔQ (17)
Then the voltage in node j at time t can be expressed as

Vpre
j,t � V0

j,t +∑N
j�1
SPVΔPj,t +∑N

j�1
SQVΔQj,t (18)

Equation 18 will be used as the predictive model in the short-
time scale optimal control process, which can forecast the node
voltage under fluctuating wind power and photovoltaic output as
well as load demand.

4 ACTIVE-REACTIVE POWER
COORDINATED VOLTAGE OPTIMIZATION
CONTROL BASED ON COLLABORATIVE
DISTRIBUTED MODEL PREDICTIVE
CONTROL

4.1 Problem Description of The Optimal
Control Model
The islanded microgrid source-grid-load active-reactive power
coordinated voltage optimization control problem studied in this

paper contains continuous control variables, which are the power
output of DGs and ESS. The problem also contains discrete
control variables, which are the gear of OLTC, the switching
group of CB, and the charging and discharging states flags of ESS.
All the above variables form a multi-variable mixed integer
programming problem with multiple constraints. According to
the operating characteristic of the devices placed in the source,
network, and load side, the problem is divided into long-time
scale and short-time scale and solved.

4.2 Collaborative Control Mechanism
4.2.1 Long-Time Scale Optimal Control
The main optimization objectives in the long-time scale
optimal control is to minimize the active network losses of
the day-ahead islanded microgrid system, ensure the safety
and economic operation of the islanded microgrid, and
provide the initial reference voltage and the initial values
of the active and reactive power outputs of each DG for the
intra-day rolling voltage optimization. Among them, ESS is
considered as the load-side device in this paper due to its
charging and discharging power characteristics. The main
control member in the long-time scale optimal control are
WT, PV stations, and MT, which are considered as source-
side devices. The on-load tap changer and capacitor banks are
as considered as network-side devices.

4.2.2 Short-Time Scale Optimal Control
In the short-time scale optimal control, since it is not suitable for
network-side devices such as OLTC and CB to operate in a short
time period, only the source-side and load-side devices are
optimized and controlled. The source-side devices and load-
side devices of the islanded microgrid system are regarded as
two interconnected subsystems, and corresponding agents under
the structure of DI-MPC are set in each subsystem to carry out the
coordinated control of active and reactive power. After receiving
the optimization results of the long-time optimal control, the first
communication between the agents of each subsystem is carried
out. The source and load-side agents calculate their own selfish
solutions and altruistic solutions through information interaction
and then carry out the second communication. Each agent
generates a 3 × 3 strategy table according to the obtained
conservative solutions, selfish solutions, and altruistic
solutions. Since both agents contain the same information of
the system at this time, both agents finally choose the same
control strategy in the strategy table that makes the global
objective function optimal.

To better describe the proposed mechanism, the following
definitions are introduced (Maestre et al., 2011):

Ui: is the input sequence of agent i at future moments, and the
elements in the sequence represent the decision variables in the
online optimization problem solved by each agent.

UA �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
uA,1

uA,2

..

.

uA,NP

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, UB �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
uB,1

uB,2

..

.

uB,NP

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)
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Ji: is the global objective function.
Ud

i (t): is the optimal input sequence for agent i at time t. The
defined equation is as follows:

Ud
A(t) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ud
A,1

ud
A,2

..

.

ud
A,NP

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Ud
B(t) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ud
B,1

ud
B,2

..

.

ud
B,NP

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)

US
i (t): is the conservative solution sequence of agent i at time t,

and is the remaining sequence of the optimal control sequence
excluding the first element at time t-1

US
A(t) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ud
A,2

..

.

ud
A,Np−1
ud
A,Np

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, U
S
B(t) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ud
B,2

..

.

ud
B,Np−1
ud
B,Np

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

Up
i (t): is the sequence of selfish solutions for agent i at time t. It

is the sequence of solutions obtained by solving the following
problem under the assumption that the neighboring agents use
the conservative solution control sequence.

⎧⎪⎪⎨⎪⎪⎩
Up

A(t) � argmin
UA

JAp(xA(t), UA, U
s
B(t))

Up
B(t) � argmin

UB

JBp(xB(t), UB, U
s
A(t)) (22)

Uω
i (t): is the sequence of altruistic solutions for agent i at time

t. It is the sequence of solutions obtained by solving the following
problem under the assumption that the local agent uses a selfish
solution sequence.

⎧⎪⎪⎨⎪⎪⎩
Uω

B|Ap(t) � argmin
UB

JAω(xA(t), Up
A(t), UB)

Uω
A|Bp(t) � argmin

UA

JBω(xB(t), Up
B(t), UA) (23)

To discuss the designed inter-agent collaborationmechanism in
terms of the game theory. At each time step of the collaborative Di-
MPC, both source and load agents can be regarded as participating
in a mutual cooperation game, each subsystem agent interacts with
each other in two rounds of computation, the source agent sends
the selfish solution U*

A(t), the altruistic solution Uω
A|Bp(t) to the

load agent and receives the selfish solutionU*
B(t) and the altruistic

solution Uω
B|Ap(t) from the load agent, then both the source and

load agents contain three different control sequences:

UA � {US
A(t), Up

A(t), Uω
A|Bp(t)}

UB � {US
B(t), Up

B(t), Uω
B|Ap(t)} (24)

The cooperative game can be represented by a 3 × 3 strategy
table. Each row of the table represents one of the three possible
strategies of the source agent, and each column represents one of
the three possible strategies of the load agent, and each cell
contains the sum of the respective objective functions of each
agent for the specified future input control sequence. That is, at
each time step, each agent selects the control sequence
combination that minimizes the sum of the objective

functions. Because both agents share the same information
with each other, in the end, they will choose the same
combination of control sequences, and this combination of
control sequences is the optimal strategy at the current
moment. The 3 × 3 strategy table is shown in Table 1.

The nine strategies in the table are expanded and as shown in
the following equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1 � JA(xA(t), Us
A, U

s
B) + JB(xB(t), Us

B, U
s
A)

J2 � JA(xA(t), Us
A, U

p
B) + JB(xB(t), Up

B, U
s
A)

J3 � JA(xA(t), US
A, U

W
B/Ap) + JB(xB(t), UW

B/Ap , US
A)

J4 � JA(xA(t), Up
A, U

s
B) + JB(xB(t), Us

B, U
p
A)

J5 � JA(xA(t), Up
A, U

p
B) + JB(xB(t), Up

B, U
p
A)

J6 � JA(xA(t), Up
A, U

W
B/Ap) + JB(xB(t), UW

B/Ap , Up
A)

J7 � JA(xA(t), UW
A/Bp , U

s
B) + JB(xB(t), Us

B, U
W
A/Bp)

J8 � JA(xA(t), UW
A/Bp , U

p
B) + JB(xB(t), Up

B, U
W
A/Bp)

J9 � JA(xA(t), UW
A/Bp , U

W
B/Ap) + JB(xB(t), UW

B/Ap , UW
A/Bp)

(25)

The algorithm flowchart of the collaborative Di-MPC-based
islanded microgrid source-grid-load active-reactive power
coordinated voltage optimization control strategy is shown in
Figure 2. T1, T2 are the optimal time cycles of long-time scale
optimal control and short-time scale optimal control,
respectively.

5 CASE RESULTS AND DISCUSSION

5.1 Parameter Setting
In this paper, we adopt the adapted IEEE 33-BUS system,
which is used for simulation analysis and as shown in
Figure 3. The reference value of the microgrid is set to: SB
= 1 MVA, UB = 12.66 kV, and the access location of each DG
and other controllable devices are shown in Table 2. More
simulation parameters can be seen in Table 3. The day-ahead
forecast and real-time active power outputs of PV stations
and WT are given in Figure 4, and the day-ahead and ultra-
short-term active/reactive load demands forecast are given in
Figure 5. The case study in this paper is based on a computer
with a central processing unit of Intel(R) Core (TM) i7-9700
@ 3.00 GHz and 16 GB of RAM, modelled with
MATLAB software and YALMIP toolbox, and the
CPLEX optimization solver is used to solve the
optimization model.

In order to verify the effectiveness of the proposed strategy,
two other active-reactive coordinated voltage optimization
strategies are compared to solve the same study case.

Strategy 1: Single-time scale conventional optimal control.

TABLE 1 | Objective function-based strategy table.

Variables Us
B Up

B UW
B/Ap

Us
A J1 J2 J3

Up
A J4 J5 J6

UW
A/Bp J7 J8 J9
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FIGURE 2 | Algorithm flowchart of the collaborative Di-MPC for islandedmicrogrid source-grid-load active-reactive power coordinated voltage optimization control
strategy.
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With the objectives of minimizing the active network losses, as
well as the total voltage deviation of each node and the minimum
voltage fluctuation in adjacent time periods, a traditional optimal

control strategy with a single-time scale is used to optimally
control all the devices involved in the voltage regulation within
the islanded microgrid.

Strategy2: Multi-time scale CMPC.
With the objective of minimizing active network losses, the

OLTC and CB switching schedule (24×1 h) and the active and
reactive power outputs of DG are uniformly optimized before the
day. During the day, the active and reactive power
output increments of each DG are optimized on a rolling basis
(96 × 15 min) using CMPC with the objective of minimizing the
total voltage deviation of each node, as well as the

FIGURE 3 | Adapted IEEE 33-BUS system.

TABLE 2 | Place location of DGs and other devices.

Device Node Device Node

MT 1 OLTC Between 1 and 2
PV 5, 16 CB 22, 33
WT 11, 29 ESS 5, 11, 16, 29

TABLE 3 | Simulation parameters.

Variables Parameter value Variables Parameter value Variables Parameter value Variables Parameter value

SWT max
j 0.5 MVA PESS

chamax
0.05 MW Esocmax 0.9 Tonesmax

ij 1

SPV max
j 0.2 MVA PESS

dismax
0.05 MW Esocmin 0.4 ΔQj 0.005 Mvar

PMT max
j 0.3 MW SESSmax

j
0.1 MVA kij,0 1 mmax

j 6

SMT max
j 0.45 MVA E 0.3 MWh Δkij 0.0025 p.u. mmin

j 0

δMT up
j

0.03 MW/min ηcha 0.9 Tmax
ij 20 Monesmax

j 1

δMT down
j

0.03 MW/min ηdis 0.8 Tmin
ij −20 — —

FIGURE 4 | (A) Day-ahead forecast and real-time active power outputs of PV stations. (B) Day-ahead forecast and real-time active power outputs of WT.
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voltage fluctuation in adjacent time periods (Liu et al., 2016). All
the control instructions are performed through one centralized
controller in this strategy.

Strategy 3: Multi-time scale collaborative Di-MPC.
With the objective of minimizing active network losses, the

OLTC and CB switching schedule (24×1 h) and the active
and reactive power outputs of DG are uniformly optimized
before the day. During the day, the active and reactive power
output increments of each DG are optimized on a rolling basis (96
× 15 min) using collaborative Di-MPC with the
objective of minimizing the total voltage deviation of
each node, as well as the voltage fluctuation in adjacent time
periods. The final control instruction is generated and performed
after the interaction between the two agents is complete.

5.2 Optimal Control Results Under Normal
System State
1) Network losses result analysis

The system network losses result after applying three different
optimal control strategies is shown in Figure 6. It can be seen that
the network losses change under the multi-time scale optimal
control strategy and all have the same trend. When the PV power
decreases and the load demands increase in the evening hours, the
network losses increase. Then by adjusting the DGs in the system,
their output increases, and the network losses decrease.
Through the vertical comparison, the proposed strategy can
significantly reduce the network losses, and the maximum

FIGURE 5 | (A) Day-ahead and ultra-short-term active load damands forecast. (B) Day-ahead and ultra-short-term reactive demands load forecast.

FIGURE 6 | System network losses under three different strategies.
FIGURE 7 | DGs active power output results in the islanded microgrid.
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intra-day reduction is 65.38% compared with the conventional
optimal control method, which can ensure the safe and cost-
effective operation of the islanded microgrid system.

2) DGs output results analysis

The active power outputs of each DG in the islandedmicrogrid
are shown in Figure 7. From the figure, we can see that wind
power and PV power undertake the majority of the active load
demands, which significantly reduce the phenomenon of wind
and light abandonment and improves the effective utilization rate
of DGs. The surplus power that occurs is stored by ESS. Figure 8
shows the reactive power outputs of each DG and CB. The results
demonstrate that, although the frequency and amplitude
fluctuations of each DG are large, the total reactive power
outputs still match the trend of reactive load demands. The
reactive power regulation limit of each DG depends on its
active power outputs and rated capacity. The anti-peak
regulation characteristic of WT is conducive to the expansion
of its reactive power regulation space during the daytime, so that
PV has sufficient reactive power margin when it is not generating

FIGURE 8 | DGs reactive power output results in the islanded microgrid.

FIGURE 9 | (A) Voltage control result of node 5. (B) Voltage control result of node 11. (C) Voltage control result of node 18.
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at night, and the reactive power compensation is limited by the
centralized power outputs during the daytime, forming a
complementary trend with wind power.

3) Voltage control results analysis

The voltage control results of nodes 5, 11, and 18 under three
optimal strategies are shown in Figure 9.

As shown in Figure 9, although the three strategies used in the
study case can control the voltage of the three typical nodes
within the safe limits, the voltage fluctuations of nodes 5, 11, and
18 are greater under the conventional optimal control method
with a single time scale. In contrast, while under the multi-time
scale optimization control method, the overall voltage fluctuation
trend of node 5 at the beginning of the transmission line is gentle,
and the voltage fluctuation increases as the position moves back,

FIGURE 10 | System network losses under three different strategies.

FIGURE 11 | (A) Voltage control result of node 5. (B) Voltage control result of node 18.
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but the voltage fluctuation of each node is the smallest with the
third strategy compared to other strategies, which demonstrate
the best voltage control effect.

5.3 Optimal Control Results Under Faulty
System State
In order to reflect the applicability and robustness of the proposed
strategy, it is assumed that the PV station originally placed at the
No. 16 node is out of operation due to a failure, which is a large
system state changing for the island microgrid system with weak
adjustment capability. At this time, it is necessary to appropriately
optimize and control the controllable devices in the system to deal
with the failure and avoid larger problems. The applicability and
robustness of the proposed strategy are reflected by comparing
the network losses and voltage fluctuation of the key nodes under
the three different strategies.

1) Network losses results analysis

As can be seen from Figure 10, compared with the system
under normal state, both the amplitude and fluctuation range of
the network losses have increased, indicating that the self-
regulation ability of the islanded microgrid system will be
weakened when facing the generator failure. It is more
necessary to reasonably coordinate the controllable devices to
make up for the lack of regulation ability. In addition, we can see
that among the three optimal control strategies adopted, the
strategy proposed in this paper significantly reduces the network
losses by 76% at the moment of the maximum network losses in
the daily time. Therefore, the proposed strategy can still
effectively reduce network losses when dealing with system
failures and shows certain applicability and robustness.

2) Voltage control results analysis

From Figure 11A, we can see that compared to the normal system
state, due to the connection of PV station and ESS at node-5, although
the voltagefluctuation at node-5has increased, the overall trend remains
consistent with the level before the fault. However, node 18 is at the end
of the transmission line, which has a large voltage fluctuation. Node 16,
which is related to node-18, was in the middle section of the
transmission line, and it is connected with a PV station as well as
an ESS.When the PV station and the ESS were out of operation, node-
18 needs to deal with its own load fluctuations while facing a longer
power transmission distance, which will make the voltage regulation of
the node more difficult. As can be seen from Figure 11B, the proposed
strategy primely solved the voltage fluctuation problem faced by node-
18 and reflects a better voltage control effect as well as robustness
compared to the other two strategies.

6 CONCLUSION

In this paper, a collaborative Di-MPC-based source-grid-
load active-reactive power coordinated voltage optimization
control strategy is proposed. It considers the strong coupling

characteristic of active and reactive power caused by the
high R/X ratio of the islanded microgrid, as well as the
difficulty of real-time online optimization and low
robustness of the centralized method. The simulation case
of a modified islanded microgrid is analyzed, and the results
show that:

The proposed active-reactive power coordinated optimal
control strategy can significantly reduce the system network
losses. Furthermore, it gives priority to the consumption of
wind power and photovoltaic when the load fluctuates, which
reduces the wind power and photovoltaic curtailment and
ensures the safe and economic operation of the islanded
microgrid system.

The proposed collaborative Di-MPC-based voltage
optimization control strategy can fully mobilize the voltage
regulation potential of the source-grid-load triad, and it
effectively suppresses the voltage deviation and fluctuations
caused by the uncertainty of DGs and load demand.

From the perspective of modeling, this paper only
considered the participation of conventional DGs in
voltage regulation. In fact, multiple types of DG and other
controllable device have already connected to the multi-
energy system like microgrids, such as intelligent
terminals, and electric vehicles, which are challenging to be
considered in the optimization model. Therefore, more
coordination possibilities by considering more DGs and
controllable devices will be the research focus in our
future work.

From the perspective of the collaboration mechanism, the
proposed mechanism still needs some information interaction
during the optimization process. This means that if there is any
interaction failure appears or information losses, the real-
time and robustness of the mechanism will be affected.
Therefore, how to better deal with the failure and information
losses during the interaction will be the research focus in our
future work.
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