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Accurate wind resource assessments are necessary for cost effective offshore wind
energy developments. The wind field offshore depends on the sea state. In coastal
areas, where wind farms are usually built today, wind and waves are often not in full
balance. In addition, wind farms modify their surrounding wind and turbulence field,
especially downwind. These wind farm wakes, in turn, interact with the wave field,
creating a complex dynamical system. To fully capture the dynamics in such a system
in a realistic way, a coupled atmosphere-wave modelling system equipped with a
wind farm parameterization should be applied. However, most conventional resource
assessment relies on standalone atmosphere model simulations. We compare the wind-
wave-wake climate predicted from a coupled modelling system, to one predicted from
a standalone atmosphere model. Using a measurement-driven statistical-dynamical
downscaling method, we show that about 180 simulation days are enough to represent
the wind- and wave-climate, as well as the relation between those two, for the German
Bight. We simulate these representative days with the atmosphere-wave coupled and the
uncoupled modelling system. We perform simulations both without wind farms as well
as parameterizing the existing wind farms as of July 2020. On a climatic average, wind
resources derived from the coupled modelling system are reduced by 1% in 100 m over
the sea compared to the uncoupled modelling system. In the area surrounding the wind
farm the resources are further reduced.While the climatic reduction is relatively small, wind
speed differences between the coupled and uncoupled modelling systems differ by more
than ±20% on a 10-min time-scale. The turbulent kinetic energy derived from the coupled
system is higher, which contributes to a more efficient wake dissipation on average
and thus slightly smaller wake-affected areas in the coupled system. Neighbouring wind
farms reduce wind resources of surrounding farms by up to 10%. The wind farm wakes
reduce significant wave height by up to 3.5%. The study shows the potential of statistical-
dynamical downscaling and coupled atmosphere-wave-wake modelling for offshore wind
resource assessment and physical environmental impact studies.

Keywords: coupled mesoscale modelling, wind farm wake, ocean surface waves, COAWST, WRF, SWAN, WBLM,
EWP

1 INTRODUCTION

The installed capacity of offshore wind energy has continuously increased in the past years (Díaz
and Guedes Soares, 2020) and is expected to increase in the future (IRENA, 2019). Accurate
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wind resource assessments are crucial to make these investments
cost-effective. Even though modelling the wind field offshore
seems simpler than over complex terrain onshore, challenges
remain (Veers et al., 2019). In contrast to most sites onshore,
the roughness length of the surface offshore is not static,
but changes dynamically with sea state (e.g. Drennan, 2003;
Du et al., 2017; Porchetta et al., 2019). The local sea state is a
complex superposition of different waves: locally generated from
the local wind field, or remotely generated swell.

Previous studies, using Large Eddy Simulations (LES),
unsteady Reynolds-averaged Navier-Stokes (URANS) as well
as mesoscale model simulations, have found an impact of the
wave field on the wind field that can reach into heights of the
turbine rotor height (Jenkins et al., 2012; Kalvig et al., 2014;
Paskyabi et al., 2014; Yang et al., 2014; AlSam et al., 2015; Zou
et al., 2018; Wu et al., 2020; Porchetta et al., 2021). The wave
impacts can increase and decrease the wind resources. Largest
increases were found during aligned wind-wave conditions
(Porchetta et al., 2021) and during swell under moderate
winds (Kalvig et al., 2014; Yang et al., 2014; AlSam et al.,
2015; Lyu et al., 2018). Largest reductions in wind resources
due to waves were found during short fetches (Jenkins et al.,
2012), which are often associated with wind-wave misalignment
(Kalvig et al., 2014; Porchetta et al., 2021), with rapidly
changing winds corresponding to young wave age (Jenkins et
al., 2012). These studies illustrate that Charnock-based model
parameterizations (Edson et al., 2013), which are typically
used in standalone uncoupled atmosphere models to derive
wind resources, cannot fully capture the complex interaction
between waves and winds. However, even more complex
parameterizations of wave conditions (Drennan, 2003; Porchetta
et al., 2019) still cannot capture all effects, because they only
consider a limited set of wave parameters to derive the wave
impact on roughness length. The Wave Boundary Layer Model
(WBLM) by Du et al. (2017, 2019) aims to fill this gap by
calculating the momentum transfer between atmosphere and
waves in mesoscale models in a matter that is energy- and
flux-consistent.

Offshore wind farms (OWFs) are not passively exposed to
the wave-affected wind field. Instead they extract kinetic energy
from the atmospheric flow and increase turbulence and thereby
actively change the wind resources downstream. Different studies
have investigated how the wake recovery differs for different wave
states and found that wake-wave interaction also modifies wind
resources downstream. Ferčák et al. (2022) used a wind turbine
model in a combined wave tank and wind tunnel to study the
wake recovery of a single turbine under three wave conditions:
wind-driven waves only and wind-driven waves plus waves with
generated by a wave paddle with a period of 0.5 and 0.8 s,
respectively. They found a dependence of the wake recovery on
the wave characteristics and that the wake recovery oscillates, i.e.
speeds up and slows down, with the waves. AlSam et al. (2015)
used LES simulations to study the recovery of the flow after
a single turbine and found longer and narrower wakes during
swell, especially swell of higher wave age. While those studies
gave insight into the detailed interactions of wind turbines
with waves very close to a turbine, they focused on idealized

conditions and did not take into account multiple turbines. To
fill this gap, Porchetta et al. (2021) conducted realistic mesoscale
atmosphere-wave coupled simulations for two periods in the
German Bight: one duringmisaligned wind-wave conditions and
one during aligned wind-wave conditions with high significant
wave heights. Their results suggest that during periods of
aligned wind and waves, power output was higher in the
coupled simulation, compared to the uncoupled atmosphere-
only simulation. The opposite occurred for misaligned wind and
waves. The differences reached as much as 20%. However, they
only investigated two short periods. Thus, the question on the
importance of coupled simulations for accurate long-term wind
resource assessment in the presence of wind farms in the German
Bight remains unanswered.

The interaction of wakes and waves also influence the
wave field. Bärfuss et al. (2021) analysed airborne laser scanner
measurements up- and downwind of a wind farm under
fetch-limited conditions in the German Bight and found a
redistribution of wave energy from larger to smaller wave
length in the wake up to at least 55 km downstream. From
a theoretical point of view wind turbines influence waves in
two ways: 1) through the interaction with the wind turbine
pole due to reflection, diffraction and drag dissipation and 2)
though a reduced wind stress as a consequence of the kinetic
energy extraction by the turbines (Christensen et al., 2013).
Through idealised studies with a uncoupled wave model and
an analytical model for wind farm effects on friction velocity,
Christensen et al. (2013) found that the effect of drag dissipation
is negligible and the influence of the reduced wind stress
dominates 2 km downwind of a wind farm for moderate
wind speeds of 10 m s−1. The relative small influence of the
wind turbine pole on the wave height in the far field of
the turbine agrees with the results obtained by Alari and
Raudsepp (2012), where they parameterized wind turbines as
land in a uncoupled wave model. Ponce de León et al. (2011)
used a similar technique and found that the influence of the
poles depends on directional distribution of the incoming wave
spectrum, but only investigated the wind farm near wake area.
Christensen et al. (2013) concluded that considering the trend
towards larger and less dense OWFs the influence of reflection
and diffraction at the turbines will be reduced, while the influence
of the reduced wind stress will remain in the same order of
magnitude. Thus, while there is evidence from measurements
and idealized simulations that OWFs influence waves, it is likely
mostly due to the reduced wind stress, and it remains unclear
how strong this effect is in realistic simulations under real-time
conditions.

This study will thus address two unconsidered questions,
namely 1) How do wind-wave-wake interactions affect long-
term offshore wind resources in the German Bight? 2) How
do wind-wave-wake interactions affect the long-term waves
climatology in the German Bight? To address these questions
realistic coupled simulations need to consider all possible wind-
wave-wake interactions and be representative of the wind and
wave climate in a certain region. To do so, we develop a statistical-
dynamical downscaling method and apply it to the offshore area
of the German Bight (Section 2.1), which has many newly build
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wind farms. For the statistically representative days, we perform
coupled and uncoupled model simulations using the WBLM to
ensure state of the art momentum exchange between atmosphere
and waves (Section 2.2). The obtained simulation results are
used to address the two research questions in Section 3 and are
discussed in Section 4.

2 METHODS

2.1 Selection of Representative Days
Different statistical-dynamical downscaling approaches have
been proposed to represent long-term wind resources in
the literature (Chávez-Arroyo et al., 2018). To reach the goal
of the present study, we need to represent both the long-
term wind resources and wave climate, and ensure that the
relationships between wind and waves are represented accurately.
Do to so, we develop a measurement-driven statistical-
dynamical downscaling method based on the methods by
Boettcher et al. (2015) and Rife et al. (2013).

The basic principle of the selection process is outlined in
Figure 1. We select a limited number of dates that combined
match the climatic frequency distribution for different variables
around the German Bight. To define the climatic frequency
distributions, we use measurements around the German Bight
from different sources. The measurements are quality-controlled
and temporally aligned. Probability density functions for the
entire measurement period and randomly sampled days are
computed and compared. The final sample days are selected
based on the best overall agreement for the distributions of long-
term observations and sampled days of several wind and wave
variables. The representativeness of the best date combination
is checked for joint probability distributions of different
variables and the spatial representativeness by comparing it
against reanalysis data. By selecting multiple locations, we
ensure that the selected days are representative for a larger
area.

2.1.1 Observations and Base Sample
The inventory of observations (Table 1) covers the German
Bight and nearby land area (Figure 2). The sites are categorised
into atmospheric (“atmos”) sites (measurements of wind speed,
U or wind direction, D), “waves” sites (measurements of
significant wave height, Hs, peak direction, θp or mean wave
direction, θm) and ‘ocean’ sites (measurements of sea surface
temperature, SST, or water temperature, tw). The data sets
differ in the periods covered, their temporal resolutions and
averaging times. To align the different measurements time-wise,
first the buoy measurements of EMODnet (European Marine
Observation and Data network, Emodnet, 2020a) and FINO1
and FINO3 (Forschungsplattformen In Nord- and Ostsee 1 and
3, BSH, 2020) are re-indexed to the nearest full 10 min, secondly
the measurements are filtered for suspicious values and thirdly
all measurements are hourly averaged to align the temporal
frequency of the different data sets.The filtering is done following
recommended filter criteria (Supplementary Table S1) for
the different data sets (Table 1) and afterwards outliers are

FIGURE 1 | Process for selecting statistically representative days of the
30-years wind and wave climate in the German Bight.
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TABLE 1 | Details on the observations used in this study.

Source Variables Resolution Filter criterion References

DWD U10, D10 Hourly averages on the
hour

Flagged data removed; only
stations with both U and D
included

Deutscher Wetterdienst (2020)

DMI U10, D10 10 min averages on 0,
10,…

— DMI (2020)

DTU U100, D100 different heights as DMI — DTU (2020)
Hamburg Weather Mast U110, D110 as DMI — Lange (2020)
Post-processed tall masts:
FINO1; FINO3; Høvsøre;
Cabauw

U34, D41.5, U91.5, D91.5; U50,
D60, U90, D100; U100, U100;
U80, D80

as DMI Described in Hahmann et al.
(2020)

Hahmann et al. (2020)

EMODnet Hs, tp, θp, θm different resolution and
times

Data with quality control flag
>2, i.e. probably good data,
removed

Emodnet (2020a)

FINO1,3 buoy Hs, θp, θm Every ≈30 min at different
times

Data with quality control flag
<1 and >4 are removed in
accordance with Leiding et al.
(2016)

BSH (2020)

FIGURE 2 | Measurements around the German Bight colour-coded based on the observation type. Crosses indicate tall masts. The red area represents the focus
area around the existing wind turbines in 2020 (gray dots). Circles with black edges indicate base sample stations.

detected using the IOOS (Integrated Ocean Observing System)
QARTOD (Quality Assurance/Quality Control of Real-Time
Oceanographic Data) method (IOOS, 2021). After the automatic
checks, a manual visual quality control is performed.

We created a base sample using the quality controlled data
sets, which is used to ensure that sufficient observations are
available for the entire period to validate the simulations. Thus,
the base sample should have an availability above 98% during the

30 year period. This criterion was only fulfilled by the 10-m wind
measurements at the 12 stations around theGermanBight (circles
with black edge color in Figure 2), which are therefore used as
the basis for base sample. The available dates were filtered so that
only dates with at least 22 h on each of two consecutive days at
all stations are available. A simulation period of two consecutive
days is used to balance computational overhead and sufficient
meteorological variability between the days. In total 77% of the
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TABLE 2 | Bin size, sample interval, measurement height, minimum (min.) availability and number of stations (#stations) for 10-m and hub height (hub) wind speed (U)
and wind direction (D) and for the significant wave height (Hs) in one and 3 hour resolution and for wave direction in terms of both peak (θp) and mean direction (θm).
Subscript ‘b’ refers to the base sample (Section 2.1.1).

U10,b U10 Uhub D10,b D10 Dhub θm θp Hs Hs,3

Bin size 0.5 m s−1 20° 15° 0.5 m
Sample interval [h] 1 3
Meas. height [m] 10 10 91.5–110 10 10 91.5–110 0
Min. availability 98 70 20 98 70 20 15 25
#stations 12 24 5 12 24 5 15 5 4 5

30-year period was included in the base sample. The monthly
frequency indicates that the availability after the filtering varies
slightly throughout the year with lower availability in summer
and higher in winter (Supplementary Figure S1). Nevertheless,
theminimumsummer availability is still about 70%of the 30-year
period and the filtering does not introduce a systematic seasonal
bias.

2.1.2 Sampling Strategy and Representativity
The base sample (Section 2.1.1) is used to select representative
days. For that 10, 20, … , 190 random pairs of two consecutive
days N(t) = 20,40,…380 are randomly selected from the base
sample while ensuring that no date t is selected twice. This
random sampling procedure is repeated R = 1000 times to
capture the scatter of individual samples.

To derive the representativity of the group of selected days
(N(t)), we apply the skill score by Perkins (PSS, Perkins et al.,
2007) following the approach in Boettcher et al. (2015). The PSS
evaluates how well two discrete PDFs, Zc(1) and Zs

N(t)(i), overlap
for each bin i:

PSS (l, t) =
n

∑
i=1

min(Zc (i, l) ,Zs
N(t) (i, t, l)) . (1)

Here, Zc(i, l) is the discrete daily climatic PDF at a certain
location l for all hourly measurement times T, i.e. Zc(i, l)
≡ Zs

T(i, l) ≡ Z
s(i,T , l). Zs

N(t)(i, t, l) is the daily sample PDF for a
certain number of sample days N made up of t days within T.
The value of PSS is close to zero for almost no overlap of the
two PDFs and approaches one for a perfect match. Since the PSS
operates on discrete PDFs, the variables are binned according to
Table 2. An example for a climatic PDF Zc and sample PDFs Zs

N(t)
for a collection of dates t is shown in Supplementary Figure S2.
Figure 3 shows the combined PSS for all base stations (black
circles in Figure 2) and all R = 1000 resamples of different
collections of dates t for the different sample sizes N in form
of boxplots for (A) U and (B) D. Following Perkins et al. (2007)
and Boettcher et al. (2015) we classify an agreement between
two PDFs as good for PSS > 0.8 (blue line) and as near-perfect
for PSS > 0.9 (green line). The red lines indicate the mean and
maximum data availability over all stations. Since Figure 3 only

FIGURE 3 | Boxplot for the skill score by Perkins PSS for 10-m (A) wind speed U and (B) wind direction D for all resamples for all base sample stations (black circles
in Figure 2) along with mean and maximum data availability over all stations. The star indicates the PSS from the selected sample (Section 2.1.3), the diamond the
PSS from the simulated sample (Section 2.2) and the triangles the PSS from the simulations (Section 3.1). Note that PSS from all simulations is almost the same
and thus all triangles are plotted on top of each other.
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shows the results for the base sample, whichwas selected based on
its high data availability (Section 2.1.1, Table 2), the availability
is close to 1.

The representativity of the group of sampled days for the
12 base sample stations combined (Figure 3) increases with
increasing number of sample days. However, depending on
the randomly selected sample days, the representativity varies
considerably, especially for smaller sample sizes. The spread
decreases with increasing sample size and for sample sizes
with more than 140 days, all samples provide at least a good
representativity at all 12 stations.

The selected sample days should represent the wave climate
and hub-height wind climate in accordance with the aim of
this study. Thus, a PSS is also derived for all other variables
and stations using the bins as in Table 2. Only those stations
from Figure 2 are taken into account that cover a minimum
period within the 30 years (Table 2). The availability thresholds
were chosen to maximize spatial and temporal coverage of the
stations and variables, while disregarding stations that are not
representative for a long-term climate. The PSS is calculated for
those stations using a similar equation as Eq. (1) but now only
those randomly selected days that lie within the measurement
climate period (m) at that station can be used for comparison.
Thus, instead of evaluating the agreement between Zs

N(t) and
Zc, the agreement is evaluated between Zs

N(t) and Zmc = Zs
Tm, i.e.

including all hourly measurement times T that fall in m. Thus
PSSmc is

PSSmc (t, l) =
n

∑
i=1

min(Zmc (i, l) ,Zs
N(t) (i, t ∩m, l)) (2)

As a consequence of using mc, the number of days included
in the calculation of PSSmc varies 1) for each station, as the
measurement climate period varies, and 2) for each resample
R, as a different number of sample days N(t) can lie within
the measurement climate period. Hence, when interpreting the
results of PSSmc one has to keep in mind that even if 180 days are
sampled, the number of days included to derive PSSmc might be
smaller. In addition, Zmc might not fully represent Zc, since the
measurement period covers less than 30 years.

The PSSmc is shown in Figure 4 for the different variables
described in Table 2. The mean and maximum data availability
shows the spread of data availability per station and variable. The
Hs at 3 hour resolution is used as a separate variable, since those
measurements are available for a longer period, as indicated by
the higher mean and max availability in Figure 4F compared to
Figure 4E.

Similar to the results for the base sample (Figure 3), PSSmc

increases with increasing number of sample days. However, the
number of days required to represent the long-term conditions
in a good-to-near-perfect way, differs for each variable. The
long term wind climate is better represented close to the
surface compared to hub height, especially for Dhub. This is
due, among other factors, to the relatively low availability of
measurements (50%, red line with dots), which means that in
practice only about half of the sample days are used to calculate
PSSmc. However, even for Dhub, the median is close to near
perfect for 180 or more samples. This indicates that the surface

and hub height wind climate can be well represented using
180 days.

Thewave climate is not as well represented as thewind climate,
as indicated by the lower median PSSmc. However, especially the
3-h Hs shows near perfect agreements with increasing number
of samples. The low mean availability of the data indicates that
on average less than half of the number of days could actually be
evaluated. However, even under this constrain the wave climate
should be reasonably represented, if actually at least 180 days are
used.

In conclusion, using a sample of 180 days can well represent
the 30 years 10-mwind climate around theGerman Bight and the
long-term climate of other variables around the German Bight.

2.1.3 Selection of Final Sample Days
While most combinations of 180 sample days provide good or
near perfect representativity depending on the different variables,
the R = 1000 resamples indicate that there is still a lot of spread.
Thus, to find the best possible resample for both wind and
wave climate, the maximum sum of the PSSmc for all variables
in Figure 4 for 180 sample days, is used as a criterion. This
best overall sample is shown in Figures 3, 4 as a purple star.
Supplementary Figure S1 shows that the sample days spread
relatively equally over the different months and thus no seasonal
bias is evident.

To confirm the representativity of the selected samples, two
plausibility checks are performed: Firstly, we use European
Centre for Medium-Range Weather Forecasts Reanalysis fifth
Generation ERA5 reanalysis data (Hersbach et al., 2018), which
can provide a 30 years time series even at stations where the
measurement climate is short and provides an opportunity to
confirm the spatial pattern of the sampled period. Secondly,
we investigate the two-dimensional representativity, i.e. the
representativity with respect to variable combinations.

Figure 5A,C show, respectively, the 30-years average wind
speed at 100 m and significant wave height based on ERA5
reanalysis. Coloured diamonds show the average U100 and Hs
at the different measurement stations based on the best 180
sample days. The figures show that the average climate of
both hub-height wind speed and significant wave height can
be well represented with the sample days and that the spatial
pattern around the German Bight is met. Figure 5B,D shows
as boxplot for each station the measurement climate (blue),
the measurement distribution from the sample days (orange)
as well as the station climate based on ERA 5 (green) and
based on ERA5 distribution from the sample days (red). The
plot confirms that not only the mean climate is well met
by the selected days, but also the distributions as a whole,
especially within the inner quantiles. Extreme values cannot be
captured with this statistical downscaling method, and those are
outside the goal of this study. To capture extremes a different
downscaling method was developed by Larsén et al. (2019). The
spatial distributions are also well matched for other variables as
shown in Supplementary Figures S3–S6.

So far, the selection of representative days was based on
individual variables. However, these variables depend on each
other. For instance higher waves in the German Bight are usually
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FIGURE 4 | Same as Figure 3, but for PSSmc for (A,B) near surface wind speed and direction (C,D) hub-height wind speed and direction (E,F) significant wave
height for one and 3 hour resolution and (G,H) peak and mean wave direction. Mean availability for θm is below 0.3 and thus not visible in (h).
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FIGURE 5 | ERA5 30-years average (A) wind speed at 100 m height (U100) and (C) significant wave height (Hs) with coloured diamonds showing the
representativity of the 180 selected days. (B) U100 and (D) Hs boxplots of measurement climate (blue) and ERA5 climate (green) per station as well the respective
boxplot from the 180 sample days (orange and red, respectively).

associated with a wave direction from the open sea and not from
the land area. Therefore, the two-dimensional representativity of
the selected 180 days should be verified.

Due to a phenomenon, Richard Bellman introduced as “the
curse of dimensionality” (Banks and Fienberg, 2003), the number
of samples required to replicate a n-dimensional histogram
increases exponentially. Also the limiting values of a ‘good’ and
‘near-perfect’ result do not apply in higher dimensions. For a
valid assessment of the two-dimensional distribution, the two-
dimensional PDF of two variables v1 and v2, Zv1,v2, is reduced to
one dimension by using the projection of the distribution of one
variable v1 onto the axis of v2:

PSSmc
∑v2
(t, l) =

n1

∑
i1=1

min(
n2

∑
i2=1

Zmc
v1,v2 (i1, i2, l) ,

n2

∑
i2=1

Zs
N(t),v1,v2
(i1, i2, t ∩m, l))

(3)

Both PSSmc
∑v1

and PSSmc
∑v2

can be evaluated using the limiting
values of a ‘good’ and ‘near-perfect’.

This study focuses on the wind and wave climate, thus, we
assess joint distributions for 10-mwind speed,U10, and direction,
D10, near-surface wind speed, UNS, and direction, DNS, (lower
mast heights in Table 1), significant wave height, Hs and peak
wave direction, θp. The same availability filters as in the previous

analysis are applied (Table 2) and only stations where both
variables are measured are taken into account. This corresponds
to 24 stations for U10 versus D10 and two stations, FINO1 and
FINO3, for the other two comparisons.

Figure 6 shows the PSSmc for different aforementioned
joint distributions (rows) for both axes (columns). The two-
dimensional distributions of U10 and D10 (Figure 6A,B), are well
met for both axis projections.The joint distribution ofUNS andHs
(Figure 6C,D) is well matched when projected onto the Hs-axis
but less so, when projected onto the UNS-axis. This is due to the
relatively coarse binning (Table 2) of the wave height compared
to the wind speed. The projection onto the wave axis, i.e. the sum
over UNS, is much narrower and therefore easier to match with
the sample days compared to the wider projection onto the wind
speed axis (sumoverHs).The joint distribution forwind andwave
direction (Figures 6E,F) are similarly met for both projections.
Overall relatively high skill scores are also reached for the two-
dimensional distributions based on the available days out of the
180 days and in particular for the chosen sample days (purple
star).

The evaluation of different matrices shows that about 180 days
should be considered to match the probability density functions
of the long-term wind and wave climate in the German Bight.
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FIGURE 6 | Same as Figure 3, but for (A,B) the projected two-dimensional distributions 10-m wind speed, U10, and direction, D10, (C,D) near-surface wind speed
(UNS) and significant wave height (Hs), and (E,F) near-surface wind direction (DNS) and peak wave direction (τp).

To reduce the computational costs to simulate those days, they
were sampled as a 48-h consecutive period. Unfortunately, four
48-h periods out of the 90 periods could not be performed
with the set-up described in Section 2.2. Thus, those 8 days
could not be taken into account for the analysis in Section 3.
However, the blue diamonds in Figures 3, 4, 6 for 172 days
shows that the performance in terms of PSS is still comparable

to 180 days and thus the simulated sample is still climatically
representative.

2.2 Modeling System and Set-Up
We use the Coupled-Ocean-Atmosphere-Wave-Sediment
Transport modeling system (COAWST, Warner et al., 2008;
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Warner et al., 2010) version 3.2 to simulate the selected days
(Section 2.1). We enable the atmospheric Weather, Research and
Forecasting model (WRF, Skamarock et al., 2008) version 3.7.1
and for some simulations the third generation spectral Simulation
WAves Nearshore model (SWAN, Booij et al., 1999) v41.01AB.
The other components of COAWST are not activated in this
study.

The WRF and SWAN models are two-way coupled online
using the Wave Boundary Layer Model (WBLM) implemented
in SWAN (Du et al., 2017, 2019; Larsén et al., 2019). The WBLM
considers the vertical change of stresses and energy in the wave
boundary layer (WBL), which is the interface between the waves
and the atmospheric boundary layer above. In theWBL, the wave
induced stress, τw, is a significant component of the total stress
τtot = τw + τt + τν that consists also of the turbulent stress τt and
the viscous stress τν. However, τν is negligible a few centimeters
above the water surface. The WBLM solves this equation for
τtot variation with height. In addition, it employs a conservation
equation for the kinetic energy with height, ensuring that the
momentum transfer between wind and waves is both flux and
energy consistent. To ensure that the momentum lost from the
atmosphere is exactly the same as the momentum gained by
the waves, the wind-input source function and the dissipation
function in SWAN are modified (Du et al., 2017, 2019). The wave
growth function takes into account the local friction velocity,
the phase speed and the wind-wave (mis-)alignment for all
simulated frequencies and directions. Thus, it includes a more
complete picture of wind-wave (mis-)alignment than the bulk
parameterization approach by Porchetta et al. (2019), which only
takes into account themisalignment between peakwave direction
and wind direction. To solve the two conservation equations,
the 10 m wind components are transferred to the SWAN-WBLM
system. Using an iterative approach the corresponding surface

roughness length z0 is transferred back to the surface module of
theWRFmodel.The exchange frequency is set to 6 min following
Larsén et al. (2019).

To simulate the effects of wind farms on the atmospheric
flow, two wind farm parameterizations (WFP) are employed:
the scheme by Fitch et al. (2012) (termed FIT here) and the
Explicit Wake Parameterization (EWP, Volker et al., 2015). These
are the most commonly applied according to a review by
Fischereit et al. (2021a) and differ with respect to the treatment
of turbine-induced forces and turbine-induced TKE. The EWP
considers a sub-grid scale vertical wake expansion, which
is neglected in FIT. In the EWP, because shear is assumed
to be the dominant source of TKE, turbine-induced TKE is
not added. In contrast, the FIT scheme includes an explicit
source term for turbine induced TKE. Here, we apply the
FIT scheme with the bug-fix proposed by Archer et al. (2020)
and a correction factor of 0.25 to adjust the magnitude of
turbine-induced TKE. The initial length scale used in the EWP
scheme to account for the subgrid scale wake expansion was
set to 1.7. Volker et al. (2015) and Larsén and Fischereit (2021a)
found very low sensitivity to values between 1.5 and 1.9 (1.7),
respectively.

The effect of wind turbine poles on waves is not considered
in this study. Based on the reviewed literature (Section 1), the
impact of changed wind stress as captured through a WFP is
larger than the impact of the poles in the far wake. Since near
wakes cannot be captured in the mesoscale model, neglecting the
impact of turbine poles is a valid assumption.

To include the effects of wind turbines in the simulation,
their location, hub height, rotor diameter and power and
thrust curves are required. We combined three different
sources to create the data set of turbine locations for July
2020 as shown in Figure 7A: most German and Danish

FIGURE 7 | (A) Orography as used in the respective three nested domains. Orange dots are offshore wind turbines in the innermost domain. (B) Height of the
vertical model levels at mass coordinates. Circles indicate the rotor area for the different offshore turbines.
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wind farms were taken from Bundesnetzagentur (2022) and
Energistyrelsen (2020), respectively. Other wind farms, which
were not included in these two data sets, use turbine locations
derived from SAR images in Langor (2019) and have been
manually corrected to fit the wind farm shapes and turbine
numbers from EMODnet (Emodnet, 2020b). This method was
also applied in Larsén and Fischereit (2021a). Some of the thrust
and power curves correspond to the actual turbine curves
(Supplementary Table S3) and were taken from Larsén and
Fischereit (2021b). For the Alpha Ventus and BARD Offshore
wind farms, the thrust and power coefficients are not publicly
available; we used the power and thrust curves ofM5000-116 that
are scaled from the NREL 5 MW turbine. The Senvion 6.2M126
turbine in the Nordsee One, OWP Nordergründe and OWP
Nordsee Ost wind farms were similarly scaled from the DTU
10 MW reference turbine. For the Haliade150-6 MW turbine
the power and thrust curves of SWT-6.0–154 is used for the
same reason. More details are given in Larsén and Fischereit 
(2021a).

The review in Fischereit et al. (2021a) found that the
simulation results with WFP are sensitive to the choice of
horizontal and especially to vertical resolution in the atmospheric
model. Here, we follow the recommendations derived in
Fischereit et al. (2021a) and use a horizontal grid spacing of
the innermost domain of 2 km × 2 km (Figure 7A) and a
vertical resolution of about 10 m up to 250 m, i.e. 50 m above
the highest rotor (Figure 7B), and total of 62 vertical levels.
The model SWAN uses the same horizontal model grid as the
WRF model; and following Larsén et al. (2019), we choose 61
frequencies and 36 directional bins with a minimum frequency
of 0.03 Hz. More details on the model set-ups, including
the parameterizations used, are given in the Supplementary 
Table S2.

The coupled modelling system is integrated for 60 h,
which includes 12 h of spin-up time and 48 h of actual
simulation time covering the 86 pairs of selected sample days
(Section 2.1). The ERA5 (Hersbach et al., 2018) and OSTIA sea
surface temperature (Donlon et al., 2012) are used as initial
and boundary conditions for the WRF simulations. Following
the approach in Larsén et al. (2019), the SWAN model is
initialised with the output spectrum of a previous 24-h long
uncoupled SWAN simulation prior to the spin-up of the
coupled simulations. The ERA5 10-m winds are used as
forcing for these uncoupled simulations. For more details see
Supplementary Table S2.

Simulations of different complexity are performed to
address the research questions. The base set is the uncoupled
stand-alone atmosphere model simulations with the WRF
model without wind farms (called WRF in the following).
We perform simulations with parameterized wind farms
with the FIT (WRF + FIT) and the EWP (WRF + EWP)
schemes. The coupled simulations conducted to better
take into account the wind-wave-wake interaction are:
(WRF + SWAN) and with parameterized wind farms (WRF
+ SWAN + FIT). The differences among these five sets of
simulations will be used to address the research questions
(Section 1).

2.3 Statistical Analysis
The simulations will be analysed based on climatic means of
the scenarios for different parameters x. The climatic mean is
derived as the average over 86 48-hour-long simulations. The
absolute difference of the climatic mean of two scenarios S1 and
S2 is normalized by the subtrahend to derive a relative difference
of the climatic means between two scenarios: (xS1 − xS2)/xS2.
This metric can be interpreted as a relative BIAS. The standard
deviation, σ, of the difference of the 86 means at each grid
point is used complimentary to characterize the spread of the
differences.

The statistical significance of the difference between the
scenarios is derived through a t-test: Each simulation is
averaged over 48 h to ensure that samples are uncorrelated.
For each grid point the hypothesis is tested, whether the mean
difference between the 86 means is significant different from
zero using a one sample two-sided t-test. A p-value of 0.01 is
chosen, which provides a “strong” evidence according to Wilks 
(2019).

To evaluate the model performance against measurements,
the average difference (BIAS) is used to evaluate the systematic
part of the error. The Root Mean Square Error (RMSE) is used
complementary as a error measure for the combined systematic
and non-systematic error.The correlation coefficient (r) evaluates
the correct timing of the simulations. Detailed equations for
the error measures are given for instance in Schlünzen and
Sokhi (2008).

3 RESULTS

In Section 3.1 the simulation results are evaluated against
measurements. The impacts of the wind-wave-wake interactions
derived from the statistical downscaling method are shown in
Section 3.2 and Section 3.3 for the hub-height wind and wave
climate, respectively.

3.1 Evaluation of the Modelling System
Performance
To evaluate the overall performance of the modelling system,
WRF + SWAN and WRF simulations (see Section 2.2 for
the abbreviations) are compared against different observations
around the German Bight (Figure 2). The same stations as in
Figures 3, 5, respectively, are used for 10-m wind speed (U10),
significant wave height (Hs) and wind speed interpolated to
100 m height (U100). The scatter plots of measurements versus
simulation interpolated to the different measurement locations
for the three parameters along with performance measures are
shown in Figure 8. The analysis of Hs for HelgolandWR is not
included because the interpolation to the measurement location
involved a land point.

Overall all three parameters are well simulated with high
correlation coefficients between 0.82 and 0.92 and relatively low
biases. On average Hs is slightly underestimated, while U10 and
U100 are overestimated for lower wind speeds and underestimated
for higher wind speeds.
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FIGURE 8 | Overall evaluation of (A) significant wave height Hs (B,D) 10-m wind speed U10 and (C,E) 100-m wind speed U100 for (A–C) WRF + SWAN and (D,E)
WRF against observations from different stations around the German Bight. The orange line shows mean and standard deviations for different classes. r is the
correlation coefficient.

The results for WRF + SWAN (Figure 8B,C) and stand-alone
WRF (Figure 8D,E) perform equally well. Thus, contradictory to
simulations with very high wind speeds during storms done by
Larsén et al. (2019), the uncoupled modelling system performs
comparable well for the wind speed range up to 20 m s−1 based
on these error measures.

The average wind speed per bin for WRF + SWAN
and WRF for wind speed between 5 m s−1 and 20 m s−1

(Figure 8B–E orange line), indicates consistently smaller wind
speeds in WRF + SWAN compared to WRF. This is due
to higher surface roughness lengths z0 in this wind speed
range calculated through the WBLM in SWAN compared to
WRF (Supplementary Figure S7). However, the results from
the measurement campaigns CBLAST (Edson et al., 2013)
and COARE (Fairall et al., 2003) lie still within one standard
deviation of the coupled model results. The COARE experiment
is the basis for the Charnock-based relationship used in
WRF. Larsén et al. (2019) showed similar findings for another
independent set of days and Wu et al. (2020) noticed the same
trend of smaller wind speeds in the coupled simulations for
moderate wind speed in summer in their coupled modelling
system, which uses a different atmosphere and wave model than
the COAWST system. Therefore, the coupled simulation results
are deemed reasonable, however, possible improvements within
this wind speed range for the WBLM could be considered in the
future.

The BIAS, RMSE and r provide some insight into the model
performance, but they do not evaluate how well the PDF for each
variable is simulated. This can be done using the PPS introduced
in Section 2.1. Following the same calculationsPSS and PSSmc are
derived from WRF and WRF + SWAN for the different variables
in Figures 3, 4. Those values are shown as filled triangles for
WRF + SWAN and as empty triangles for WRF in the respective
figures. Triangles pointing to the left or down refer to PSS, while
triangles pointing the right or up refer to PSSmc, i.e. only the time
span of the measurement climate at that station is considered.
As for the previous evaluation analysis, Hs is calculated from the
simulations based on only 13 stations.

The PSS or the PSSmc from WRF + SWAN and WRF show
mostly comparable scores to the predicted score based on
measurements (simulated sample, blue diamond), except forU10,
Hs and θp. However, also for those variables, the skill score is still
close to good or better. When considering all days for Hs and
θp, instead of just the period where measurements are available
at the different stations, more of the PDF variability is captured.
This indicates that some of the missing variability during the
measurement period can be captured through the variability on
other days.

Comparing PSS or the PSSmc for WRF + SWAN and WRF for
U10, U100, D10 and D100 shows again comparable skill to capture
the PDFs for both the uncoupled and the coupled simulations.
The scores for individual stations (not shown), indicate that for
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some stations the coupled system performs slightly better, while
for other stations the uncoupled system performs slightly better.
Overall the coupled system performs better at more stations for
U10, while the uncoupled system performs better at more stations
for the other variables.

3.2 Impacts on Hub-Height Wind
3.2.1 Impacts of Wind Farms
The2020 built-out of OWFs clearly has an impact on the available
wind resources. Figure 9 shows the simulated wind climate at
100 m height for A) the uncoupled simulation using WRF-only
and D) the coupled simulation using the WRF and SWAN
models. The relative differences in wind speed (Figures 9B,C,E)
due to the presence of wind farms as seen in the different
scenarios by subtracting the no-wind-farm scenario from the
respective wind farm scenario and normalizing the difference
using the no-wind-farm scenario.

Wind speed reductions are on average about 10% or about
2 m s−1 close to the wind farm and are reduced with increasing
distance. This is because the wind speed is reduced at the grid
cells where turbines are present, but the wind deficits recover
with increasing distance though turbulent mixing. Some groups

of wind farms act like a wind farm cluster, meaning that there is a
continuous wind speed deficit >1% linking the individual farms.
For FIT three such cluster areas are visible in the German Bight,
while for EWP five clusters are simulated.

The magnitude of the wind speed deficit depends on the
chosen WFP and the model complexity (coupled or uncoupled).
It amounts to a maximum of −21.7% for WRF + FIT,
−13.3% for WRF + EWP and −22.1% for WRF + SWAN
+ FIT. Thus, the maximum wind deficit for EWP is just 61% of
the maximum wind deficit for FIT at 100 m height. The lower
wind speed deficit for EWP is in line with previous studies
(Pryor et al., 2020; Shepherd et al., 2020; Fischereit et al., 2021b).
Themaximumdeficits forWRF+SWAN+FIT is 1% smaller than
forWRF+FIT, which is discussed inmore detail in Section 3.2.2.

The extent of the wake affected area is also important for
wind energy planning, since it indicates the impact of one wind
farm on the surrounding farms. Following Pryor et al. (2020),
we define the wake affected area A2% as the area where the
velocity deficit is greater than 2%. The respective areas for the
scenarios are A2%,(WRF+FIT)−WRF = 9,052 km2, A2%,(WRF+EWP)−WRF
= 6,488 km2 and A2%,(WRF+SWAN+FIT)−(WRF+SWAN) = 9,024 km2. Thus,
the A2%,(WRF+EWP)−WRF is only 72% of A2%,(WRF+FIT)−WRF. This ratio

FIGURE 9 | (A,D) Simulated long-term mean wind speed at 100 m height for (A) WRF and (D) WRF + SWAN and (B,C,E) relative reduction of wind speed based on
(B) (WRF + FIT)-WRF, (C) (WRF + EWP)-WRF and (E) (WRF + SWAN + FIT)-(WRF + SWAN) all normalized by the respective subtrahend.
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is slightly larger than the ratio between EWP and FIT that
Pryor et al. (2020) estimated for the US mid-west. However, the
same trend of larger wake-affected areas for FIT than for EWP
is seen. The higher value in our study could be both due to the
offshore location or because the simulations in Pryor et al. (2020)
do not take into account the bug-fix by Archer et al. (2020).

The influence of the model complexity is smaller on average
than the influence of the chosen WFP on the wake affected
area. The wake affected areas of both the coupled and uncoupled
simulations are comparable, although it is slightly smaller in the
coupled simulations. The reason for smaller wake affected area is
the higher mixing in the coupled simulations, which is reflected
in up to 6% higher values of TKE in 100 m height in the coupled
simulations (TKE100, Figure 10E,F). Those higher TKE100 are a
consequence of higher TKE at 10 m (Supplementary Figure S8),
which is related to the higher surface roughness lengths
calculated in the coupled simulations (Section 3.1).

Defining A5% and A10% accordingly to A2%, results in
A5%,(WRF+FIT)−WRF = 3,028 km2, A10%,(WRF+FIT)−WRF =
1092 km2 and A5%,(WRF+SWAN+FIT)−(WRF+SWAN) = 3,036 km2,
A10%,(WRF+SWAN+FIT)−(WRF+SWAN) = 1112 km2, respectively. Thus, the

wake affected area decreases with increasing wind speed deficit
threshold more in the coupled simulations than in the uncoupled
ones. This agrees with the previous finding that the maximum
wind speed deficit is larger in the coupled simulations and will
be discussed in more detail in Section 3.2.2.

The climatic mean impact of neighbouring wind farms on
wind speed at 100 m (Figure 9) indicates the expectedmagnitude
of losses from other farms. These losses vary with time as shown
by the standard deviation of the wind speed difference over the 86
48-means (Supplementary Figure S9). Like themean difference,
the standard deviation of the differences also decreases with
increasing distance to the farms.

A t-test is performed to derive where the difference is
statistically significant. Supplementary Figure S10B,E,H,K
shows exemplary for four sites (Supplementary Figure 
S10C,F,I,L) the difference distributions between WRF + FIT
and WRF along with the derived p-values for the t-test
described in Section 2.3. The selected sites illustrate the
narrowing of the difference distribution with increasing distance
from the farms and the corresponding increase in p-values.
Supplementary Figure S11 shows the area of significant

FIGURE 10 | (A,D) Simulated long-term TKE at 100 m height for (A) WRF and (D) WRF + SWAN and (B,C,E,F) relative reduction of wind speed based on (B) (WRF
+ FIT)-WRF, (C) (WRF + SWAN + FIT)-(WRF + SWAN), (E) (WRF + SWAN)-(WRF) and (F) (WRF + SWAN + FIT)-(WRF + FIT) all normalized by the respective
subtrahend.
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differences based on p < 0.01 as dotted hatched area. Regardless
of the chosen WFP, the area of significant differences connects all
offshore farms in the German Bight. This indicates that already
with the 2020 built-out, the wind farms in the German Bight
influence each other’s wind resources.

3.2.2 Impacts of Waves
Hub-height wind speed is reduced by on average 1% (or
about 0.15 m s−1) above the sea (Figure 11B), with a more
realistic representation of wind-wave interaction in the coupled
simulations. This is due to the higher roughness length
z0 in the wind speed range 5 m s−1 to 20 m s−1 calculated
through the WBLM in the SWAN model compared to
the Charnock-based relationship used in the WRF model
(Section 3.1). Thus, compared to the impact of neighbouring
wind farms (Section 3.2.1), the mean impact of waves is
smaller. Also the standard deviation of the 48-h mean
wind speed difference between the uncoupled and coupled
simulation (Supplementary Figure S12) is smaller than the
difference between simulation with and without wind farms
(Supplementary Figure S9). However, the impact of a more
realistic representation of wind-wave interaction in the coupled

simulations is not concentrated in a particular area, but spread
out over the entire model area. Thus, average differences
are also significant over larger areas, in particular offshore
(Supplementary Figure S13).

Despite the average reduction in Figure 11 being small, there
is a huge spread in wind speed difference due to coupling
for each 10min-period. Figure 12 shows the histogram of grid
point differences between WRF + SWAN and WRF over the
analysed area in Figure 9 for every 10min-period of the 172
days. Simulated wind speeds between the coupled and uncoupled
simulations can differ by more than ±20% or ±2 m/s on a
10 min time scale, respectively. The mean difference between
WRF + SWAN and WRF over the entire analysed area is
almost zero, but slightly skewed towards negative values due
to the increased drag by the waves (Section 3.1). Differences
are positive more often onshore than offshore, which means
that for the coupled simulations wind resources at hub height
are more often increased onshore than offshore. However,
those more positive 10-min-fluctuations do not manifest in
statistically significant differences of the climatic means onshore
(Supplementary Figure S11) and thus should be treated with
caution. The relative differences are strongly influenced by

FIGURE 11 | (A,B) Simulated long-term wind speed at 100 m height for (A) WRF and (C) WRF + FIT and (B,D) relative reduction of wind speed based on (B) (WRF
+ SWAN)-WRF and (D) (WRF + SWAN + FIT)-(WRF + FIT) both normalized by the respective subtrahend.
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FIGURE 12 | Histogram of simulated relative U-difference at 100 m height for (A) the absolute difference (WRF + SWAN)-(WRF) and (B) the relative difference ((WRF
+ SWAN)-(WRF))/(WRF) over the entire analysed area shown in Figure 9 (orange) and for the respective offshore and onshore areas only (blue and green,
respectively). Solid lines show mean differences and dotted lines median difference.

FIGURE 13 | (A) Long-term significant wave height (Hs) from ERA5 and simulated by (B) WRF + SWAN and (C) WRF + SWAN + FIT. (D) Relative reduction on
significant wave height from (WRF + SWAN + FIT)-(WRF + SWAN) normalized by (WRF + SWAN).

outliers due to small wind speeds in WRF, which are used
for normalization. Thus, the positive means for the relative
differences for “onshore” and “all” are artifacts of those outliers.
Medians, being less affected by outliers, are negative for all areas
(dotted lines).

Wind-wave-wake interactions lead to an additional reduction
in hub-height wind speed on average in the coupled simulations

compared to the uncoupled ones in most wind farms
(Figure 11D). Although some areas outside of the wind
farms also show reductions larger than 1.75%, the additional
reduction is most systematic within the wind farms areas.
The additional relative reduction is visible throughout the
lower atmosphere, as shown by vertical profiles in and
outside wind farms for (WRF + SWAN + FIT)-(WRF +
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FIT) Supplementary Figure S14C. The absolute difference for
(WRF + SWAN + FIT)-(WRF + FIT) is larger outside the farms
than inside up to 50 m height, when the difference outside
the farms becomes larger (Supplementary Figure S14B). The
additional reduction in the wind farms stems mostly from the
non-linear dependence of the thrust coefficient (cT) on wind
speed: The slope of the average thrust coefficient over all farms
correlates well with the difference in wind speed at 100 m height
for (WRF + SWAN + FIT)-(WRF + FIT) between the mean
over the center point of all wind farms and the mean over three
sites outside wind farms (Supplementary Figure S15). Thus,
the slightly smaller wind speeds in the coupled simulations due
to the higher surface roughness (Section 3.1) cause higher cT-
values for the coupled simulations compared to the uncoupled
simulations.

3.3 Impacts on Waves
The interaction between wind and waves can have multiple
effects: the presence of waves impacts the wind resources
(Section 3.2.2), but the presence of wind farms also
impacts the waves. Through mixing of the wind speed
deficits downwards, wind deficits are also present at 10 m
(Supplementary Figure S16). Thus, wind turbines affect the
energy transfer from the wind to the waves. The most notable
effect is a reduction of the significant wave height Hs in the wind
farm area (Figure 13).

Figure 13A shows the averaged significant wave height Hs
from the ERA5 reanalysis. The spatial pattern compares well
with the pattern derived from WRF + SWAN (Figure 13B).
The existing wind farms modify the wave climate slightly,
by reducing Hs up to 3.5% in the wind farm area
(Figure 13D). This reduction is comparable to the maximum
reduction of 5% found by Christensen et al. (2013) close to
a wind farm in idealised studies using an uncoupled wave
model.

The significant wave height recovers with decreasing
wind speed deficits with increasing distance from the farms
(Figure 9). The area with a larger reduction than 2% amounts to
A2%,(WRF+SWAN+FIT)−(WRF+SWAN) = 2,248 km2 and larger reductions
than 1% to A1%,(WRF+SWAN+FIT)−(WRF+SWAN) = 15,888 km2, which
indicates that the significant wave height recovers quite
fast.

The wind farm impact on waves depends on the fetch. This
is shown by the standard deviation of the difference in the 86
48-hour-means (Supplementary Figure S17), which is shifted
west- and slightly northwards compared to the position of the
wind farms. The area of statistical significant impact of wind
farms based on a p-value of 0.01 extends even further west- and
northwards (Supplementary Figure S18).

4 DISCUSSIONS AND CONCLUSIONS

We investigated climatic impacts of wind-wave-wake
interactions in offshore wind farms in the German Bight.
For that, we extended the measurement-driven statistical-
dynamical downscaling method from Rife et al. (2013) and

Boettcher et al. (2015) to simultaneously represent the 30-years
average wind and wave climate. We concluded that about 180
days are necessary to represent the wind and wave climates
and their relations with sufficient accuracy based on the PSS
(Perkins et al., 2007).

To isolate the impacts of thewind, wave andwake interactions,
we simulated the representative days with model set-ups of
different complexity. We performed stand-alone uncoupled
atmospheric simulations with and without wind farms and
two different WFPs using the modelling system COAWST
(Warner et al., 2008; Warner et al., 2010). The coupled COAWST
simulations used the WBLM (Du et al., 2017; Du et al., 2019)
as an interface and we have performed simulations without
wind farms and with one of the WFP schemes (FIT). We
considered all offshore wind turbines that were present in
July 2020 and used as far as possible realistic thrust and
power curves for the different turbine models. Overall, both
the uncoupled and coupled model simulations without wind
farms performed satisfactory in terms of correlation coefficient,
BIAS and RMSE as well as in terms of capturing the PDF as
shown through the PSS. The difference between the various
model set-ups allowed to address the two research questions
(Sec. 1):

1. Wind farm wakes of neighbouring farms and waves affect
the long-term wind resources offshore. It was shown that with
the 2020 built-out in the German Bight, wind resources of
neighbouring farms are reduced and that the individual farms
start to act as a wind farm cluster consisting of several farms.
The magnitude and extend of wind farm wakes on neighbouring
wind resources depends on the WFP and on the model
complexity.

• The simulations using the EWP scheme show in general
smaller wind speed deficits, smaller wake-affected areas
and smaller increases in TKE compared to simulations
using the FIT scheme. This is in line with previous
investigations (Pryor et al., 2020; Shepherd et al., 2020; Larsén
and Fischereit, 2021a; Fischereit et al., 2021b). Thus, by
using two WFPs an ensemble of possible impacts can be
constructed.
• In the coupled simulations, average hub-height wind speeds

are smaller, maximumwind speed deficits in the wind farm are
slightly larger, wake-affected areas smaller and TKE values are
higher compared to the uncoupled simulations. The reason for
these impacts is higher surface roughness lengths derived from
the WBLM in the investigated wind speed range compared
to the Charnock-based parameterization in the uncoupled
simulations. The higher roughness reduces the average wind
speed and creates more vertical mixing, which reduces the
wake affected area. In conclusion, including a wave impact in
the modeling causes on average stronger wind speed deficits
in the farm that recover faster outside the farm. Although
the magnitude of the average impact is small, wind speed
difference between the coupled and uncoupled simulation can
be larger than ±20%.

2. Significant wave heights are reduced in the area of
the wind farms by up to 3.5% for the 2020 built-out of
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OWFs and thus agree well with the results from the idealized
study by Christensen et al. (2013). The wave power depends
quadratically on the significantwave height (Glendenning, 1977).
Thus, OWF could help to reduce coastal erosion just like wave
farms as suggested by Rodriguez-Delgado et al. (2019). While
the effect is currently small during specific situations or with
future built-outs of OWFs (BSH, 2021) this might become
relevant. In addition, OWFs can aid coastal protection through
reduced wind speeds and precipitation as shown in Pan et al. 
(2018).

The measurement-driven statistical downscaling approach
has the advantage of being independent of inherent biases
in relatively coarse reanalysis products. However, offshore
measurements are sparse (Veers et al., 2019) and often relatively
short. Here, we solved this problem by defining a base sample
for 10-m wind measurements first, since long records exist for
these standard WMO measurements. Based on the so-called
measurement climate at each station for each variable, the
representativity for the other variables were derived. Reanalysis
data was used to confirm the selection and showed no systematic
bias due to the selection based on the measurement climates.
To transfer this statistical downscaling approach to other areas
with fewer measurement stations, reanalysis data could indeed
be used such as done in the approach by Rife et al. (2013).
However, using a multi-location approach and considering the
representativity of relationships between variables as done in the
present method is highly recommended. The methodology can
be adapted to future climate scenarios using climate projections
data.

The evaluation of the simulations cannot conclude whether
the coupled or uncoupled modelling system provides more
accurate results, because the performance varied between stations
and variables. The performance of a particular set-up could
also depend on the atmospheric or sea state, which should be
investigated in the future. Furthermore, part of themeasurements
are affected bywind farmwakes themselves, which complicate the
comparisons. Nevertheless, the simulations showed significantly
different surface roughness lengths in the coupled and
uncoupled system, and that those differences affect the wind
resources.

The difference in surface roughness lengths in the coupled and
uncoupled simulations stems from the on average youngwave age
in the area of the German Bight. Supplementary Figure S19A
shows the average inverse wave age, U10/cp, where cp is the
wave phase velocity at the wave peak frequency. According
to Cifuentes-Lorenzen et al. (2013), U10/cp > 0.82 characterizes
young waves. Thus, on average waves are young in the analysed
area of the German Bight. In addition, wind and waves are on
average not fully aligned. Supplementary Figure S19B shows
the angle between D10 and θp, which is between 10° and 50°,
depending on the outer or inner area of the German Bight.
This misalignment is taken into account in the roughness length
estimation in theWBLM.The roughness length parameterization
(Fairall et al., 2003) in the WRF model, as being a function of
wind speed alone and calibrated for the open sea (deep water)
area, cannot capture the full drag induced by the waves on the
atmosphere.

On a climatic average, wind-wave interaction in the coupled
modelling reduces the wind resources due to the increased
drag. While the magnitude of the average wind speed difference
between the coupled and uncoupled simulations is small, the
impacts on wind power potential might be larger due to
the non-linear dependence of power on wind speed. This
should be investigated in future studies. In addition, while on
average wind speeds decrease, for particular regions and time
periods, coupling can also increase wind speeds (Figure 12).
Overall, the differences due to wind-wave interaction can
be ±20%. This magnitude of wind speed variation agrees
well with the study by Porchetta et al. (2021) for the German
Bight. They identified wind-wave misalignment as an important
driver for the difference. However, other parameters, such
as atmospheric stability, wind speed or wave age could also
play a role. In future studies, the performed simulations
could be analysed based on these parameters, to clarify the
most important coupling mechanisms in the German Bight
area.

The climatic impact on waves can be different for
other wind directions with larger fetches and older seas.
Christensen et al. (2013) concluded that for short fetches
(10–20 km) and moderate wind speeds (10 m s−1) the effect is
largest, since the wind and wave field is not yet in balance. Thus,
compared to the average climatic impact of 3.5% determined
here, the significant wave height deficit could be less from
westerly and north-westerly directions and stronger for other
directions. More in-depth analysis on how wind farms impact
other parameters beside significant wave height (e.g., wave period
and peak direction) should be performed in the future, follow up
on Christensen et al. (2013) conclusions that wind farms have
little effect on wave periods. Furthermore, wave spectra could be
analysed to investigate the impact of wind farms on other parts
of the spectrum following up on Bärfuss et al. (2021). A better
understanding on the wave impact is necessary, since energy
input though waves affects the ocean mixing and thus life in
the sea (Jenkins et al., 2012; Carpenter et al., 2016). In addition,
co-locating OWF and wave farms for maximising renewable
energy harvesting are explored (Pérez-Collazo et al., 2015) and
thus an accurate understanding of wind-wave-wake interaction
is important.

Swell waves are partly accounted for through the nesting
approach taken in this study. However, considering the
importance of swell-wind interaction found in LES studies
(Yang et al., 2014; AlSam et al., 2015), the consideration of swell
in the WBLM should be improved in the future. Furthermore,
Wu et al. (2020) showed that not only wind-wave interaction,
but especially ocean-atmosphere interaction have an impact
on wind resources. On the other side, wind farms have
been shown to impact ocean dynamics and stratification
(Christiansen et al., 2022), which potentially causes adverse
environmental effects (Farr et al., 2021). Thus, applying a
fully coupled modelling system consisting of atmosphere,
wave, ocean and wind farm parameterizations could help
us understand the full spectrum of coupling mechanisms
in the marine environment where wind farms are being
build.
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