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Considering the economy, reliability, and output characteristics of multiple power sources
(MPS) and energy storage (ES) comprehensively, a multi-source system integrated with
offshore wind farms (OWFs) and its construction cost, and operating and maintenance
cost model are established. The system is mainly composed of OWFs, thermal power
plants, gas turbine power plants, and pumped hydro storage plants. Given the economy of
the power system and offshore wind power accommodation, a bi-level optimal capacity
configuration and operation scheduling method is proposed for the multi-source system
integrated with OWF clusters with the objective function of optimal total cost. Then, a
robust bi-level planning method for the multi-source system integrated with OWFs
considering the dual uncertainty of load and offshore wind power prediction is
proposed, in which the upper and lower models are solved by an improved particle
swarm optimization (PSO) algorithm and CPLEX solver, respectively. Based on the
method, the cost-optimal capacity configuration and operation scheduling scheme of
an MPS and ES can be obtained. Finally, an OWF group in Shandong Province is taken as
an example to check the validity and feasibility of the proposed method.

Keywords: offshore wind power integration, generation expansion planning, bi-level optimization, uncertainty,
economic optimization, improved PSO

1 INTRODUCTION

Onshore wind turbines have shown the trend of production saturation in recent years due to
excessive competition. As a new direction of new energy development, offshore wind power has
significant advantages (such as no occupation of onshore land, high wind speed, stable wind
direction, and proximity to the load center), creating a new situation in the development of wind
power all over the world (Nian et al., 2019; Wu et al., 2019). However, the anti-peak
characteristics of offshore wind power are particularly noticeable. The degree and
probability of strong anti-peak regulation of offshore wind power are greater than those of
onshore wind power. Large-scale offshore wind power integration will increase the difficulty of
peak regulation of an electric power system. The problem of poor controllability of a high
proportion of new energy power generation can be solved effectively with a multi-source
complementary strategy. Therefore, power system dispatching establishes the coordination
mechanism of multi-source complementary advantages and realizes the optimal planning of
multiple power sources (MPS) and energy storage (ES) on the premise of safety and stability,
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which is of great significance to reduce the power supply cost
and to improve the operation economy of the power system
and the level of renewable energy consumption.

In recent years, offshore wind power has developed rapidly
and has broad market prospects. So far, extensive research has
been conducted on offshore wind power (Kang et al., 2019;
Costoya et al., 2020; Zhang et al., 2020; Riboldi et al., 2021). Li
et al. (2020)compared and evaluated the characteristics and wind
energy potential of onshore and offshore wind power based on
the original wind records of onshore and offshore wind measured
at wind towers in the southeast coastal area of China. Jiang (2021)
proposed the review of the offshore wind turbine installation
technology, and the future development of four technical fields
was prospected to guide the development of offshore wind
turbine installation. The opportunity for combining offshore
wind turbines and wave energy converters was analyzed
through a spatial planning method, and the possibility of
combining different renewable technologies was considered
based on existing pressures and vulnerabilities through
quantitative indicators (Azzellino et al., 2019). Yang et al.
(2020), considering potential maintenance opportunities
brought by the dynamic speed of the winds, constructed a
novel weather-centered operation and maintenance framework
to combine the impact of wind on energy production and
maintenance plans. Ji et al. (2020), considering the effects of
an offshore station, DC cable, and onshore station, proposed an
offshore AC side impedance model of an MMC-HVDC system
for wind power integration. Most of the aforementioned studies
focus on the technical problems of offshore wind turbines and the
grid connection technology of offshore wind farms (OWFs),
while research on the power system suitable for the
integration of offshore wind power clusters with obvious anti-
peak characteristics is rarely mentioned.

Power planning is a significant and essential preliminary work
in the development of the power industry. As an important part
of power system expansion planning, it has many positive effects,
and there have already been a large number of relevant studies
(Gan et al., 2020; Lv et al., 2020; Chen et al., 2021; Xie et al., 2021).
Deng and Lv. (2020), to study the changes in optimization models
caused by the large penetration of variable renewable energy,
screened some studies on power system planning considering the
addition of variable renewable energy, and these models were
further deconstructed and compared. Li et al. (2021), given
various uncertainties and multi-energy demand-side
management, proposed a risk-averse method for
heterogeneous energy storage deployment in a residential
multi-energy microgrid. Hu et al. (2021)proposed a
complementary power generation model of wind-hydropower-
pumped storage systems, which used hydropower and pumped
storage to adjust the fluctuation of wind power. Considering
different vehicle-to-building schedules, a robust energy planning
approach for hybrid photovoltaic and wind energy systems in a
typical high-rise residential building was proposed (Liu et al.,
2021). In the study by da Costa et al. (2021),a method of
incorporating reliability constraints into the optimal expansion
planning of power systems was proposed based on the loss of load
probability and expected power of power systems, and the risk

measurement value-at-risk and conditional value-at-risk.
However, for the multi-source system with offshore wind
power having prediction errors that cannot be ignored, the
methods of optimizing the power capacity configuration and
operation scheduling are rarely mentioned.

Therefore, a robust bi-level planning method for a multi-
source system integrated with OWFs is proposed to realize the
optimal capacity configuration and operation optimization in the
receiving-end grid. Aiming at the disadvantages of strong
intermittency, large fluctuations, and the apparent anti-peak
characteristics of offshore wind power, in this study, a multi-
source system model suitable for the integration of offshore wind
power clusters is established. Based on the coordination and
optimization strategies of MPS and ES, a robust bi-level planning
model of the system is proposed, completely considering the
economy of the power system, the consumption level of offshore
wind power, and the prediction error of offshore wind power and
load. The improved particle swarm optimization (PSO) algorithm
with adaptive inertia weight is used to solve its upper model, and
through the case study, it is verified that under the same
population size and iteration times, the convergence accuracy
of the results is improved.

The remaining sections of this study are organized as follows:
The multi-source system integrated with OWFs is constructed in
Section 2. The robust bi-level planning model for the system
considering prediction errors is proposed in Section 3. Then, the
solution approach of the robust bi-level planning model is
proposed in Section 4. Case studies, results’ comparisons, and
analyses are conducted in Section 5. Finally, the conclusions of
this study are provided in Section 6.

2 MULTI-SOURCE SYSTEMS INTEGRATED
WITH OFFSHORE WIND FARMS

Based on the research on the output characteristics of MPS and
ES, selecting the appropriate equipment types is the basis for the
rational planning and coordinated operation of the power system
with offshore wind power. The model of the multi-source system
integrated with OWFs is shown in Figure 1. It can be seen from
Figure 1 that the multi-source system is mainly composed of

FIGURE 1 | Model of multi-source system integrated with OWFs.
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offshore wind power, thermal power (TP) generation, gas turbine
power (GTP) generation, and pumped hydro storage (PHS). TP
units are hardly affected by the geographical environment and
climate. Furthermore, TP plants have the characteristics of
flexible site selection, stable and reliable operation, and fast
and deep peak load regulation in the power system with
offshore wind power. The capacity configuration and
operation mode of a gas turbine (GT) are flexible, and the
unit can quickly adjust the power. On the premise of safety
and reliability, the GT unit can effectively improve the flexibility
of the power system to reduce the impact of offshore wind power
fluctuation on the system. PHS has high reliability and fast
response speed, which can reduce the peak-valley differences
of the system, and plays a certain role in reducing the effects of the
anti-peak characteristics of offshore wind power. When the
output of offshore wind power changes rapidly, the PHS
system can make corresponding adjustments to its fluctuations
in time.

3 ROBUST BI-LEVEL PLANNINGMODELOF
MULTI-SOURCE SYSTEMS

On the basis of considering the prediction error of offshore wind
power and load, a robust bi-level planning model of the multi-
source system integrated with OWFs is constructed to optimize
the capacity configuration and operation scheduling of MPS and
ES. The model structure is shown in Figure 2. The improved PSO
algorithm is used to optimize the capacity of MPS and ES in the
upper model. Taking into account the prediction error, the
operation scheduling scheme with the optimal cost is
generated in the lower model based on the capacity
configuration results. Through the optimization iteration of
the upper and lower models, the planning scheme of the
multi-source system with the best cost is obtained.

Upper Model
In this study, the coordinated planning of MPS and ES of a multi-
source system integrated with OWFs is carried out from the
perspective of realizing the optimal economy of the system. The
upper model takes the minimum total cost of the system
including construction, operating, and maintenance costs as

the objective function, and its decision variables are the
capacity of MPS and ES. To minimize the total cost of a
typical day, the objective function of the upper model can be
expressed by

minCTOTAL � CIM + COP, (1)
where CTOTAL, CIM, and COP are the total cost, construction and
maintenance cost, and operating cost of the multi-source system
in a scheduling cycle, respectively.

The system construction and maintenance costs are allocated
to each scheduling cycle in the life cycle through the discount rate,
and its mathematical model is given by

CIM � ∑
φ

(1 + βφ)PφWφλ(1 + λ)Lφ/(365((1 + λ)Lφ − 1)), (2)

where βφ is the ratio of the maintenance cost and construction
cost of system φ, including TP, GTP, and PHS systems. Pφ is the
unit cost of system φ.Wφ is the capacity of system φ. Lφ is the life
cycle of the unit in system φ. λ is the discount rate.

The capacity constraints of MPS and ES are considered in the
upper model, and its mathematical model is shown as

Wφmin ≤Wφ ≤Wφmax, (3)
where Wφmax and Wφmin are the upper and lower limits of the
planned capacity of system φ, respectively.

Lower Model
3.1.1 Objective Function
Considering the operating cost of TP, GTP, and PHS systems, the
minimum operating cost of the multi-source system is taken as
the objective in the lower model. The mathematical model of the
objective function is formulated as

minCOP � ∑T
t�1
(CFO(t) + CTO(t) + CPO(t)), (4)

where CFO(t), CTO(t), and CPO(t) are the operating costs of TP,
GTP, and PHS systems at time t, respectively. T is the number of
times in a scheduling cycle.

The operating cost of the TP system is the coal consumption
cost of TP units, and its mathematical model can be described by

CFO(t) � ∑NF

j�1
(ajPF,j(t)2 + bjPF,j(t) + cj), (5)

where aj, bj, and cj are the operating cost correlation coefficients
of TP unit j. PF,j(t) is the output power of TP unit j at time t.NF

is the total number of TP units.
The mathematical model of the operating cost of the GTP

system can be expressed by

CTO(t) � pn ∑NT

g�1
PT,g(t) ÷ η, (6)

where pn is the unit fuel consumption cost of natural gas. PT,g(t)
is the output power of GT unit g at time t. η is the generation
efficiency of GT unit g. NT is the total number of GT units.

FIGURE 2 | Structure of the robust bi-level planning model.
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The mathematical model of the operating cost of the PHS
system is given as

CPO(t) � ∑NH

k�1
(Sgen,k(t) + Spum,k(t)), (7)

{ Sgen,k(t) � sgen,kugen,k(t)(ugen,k(t) − ugen,k(t − 1))
Spum,k(t) � spum,kupum,k(t)(upum,k(t) − upum,k(t − 1)) , (8)

where Sgen,k(t) and Spum,k(t) are the start-up costs of PHS unit k
operating in generating and pumping modes at time t,
respectively. NH is the total number of PHS units. sgen,k and
spum,k are the start-up costs of PHS unit k operating in generating
and pumpingmodes, respectively. ugen,k(t) and upum,k(t) are used
to verify whether PHS unit k is in generating and pumping modes
at time t, respectively.

3.1.2 Constraints
1) Power balance constraint

∑NH

k�1
Pgen,k(t) +∑NF

j�1
PF,j(t) +∑NT

g�1
PT,g(t) + ∑NW

w�1
PW,w(t) − ∑NW

w�1
PE,w(t)

� ∑D
d�1

Pd(t) +∑NH

k�1
Ppum,k(t),

(9)
where Pgen,k(t) and Ppum,k(t) are the generating and pumping
power of PHS unit k at time t, respectively. PW,w(t) is the
predicted value of the wind power of OWF w at time t.
PE,w(t) is the wind power curtailment of OWF w at time t.
Pd(t) is the predicted value of active power of the load of node d
at time t. NW is the total number of OWFs. D is the number of
load nodes.

2) Offshore wind power curtailment constraint

0≤∑T
t�1

∑NW

w�1
PE,w(t)≤ e ×∑T

t�1
∑NW

w�1
PW,w(t), (10)

where e is the upper limit of the curtailment rate of offshore wind
power.

3) Equipment operating constraint

The operating constraints of TP units and GT units can be
uniformly expressed as

{ un(t)Pmin,n ≤Pn(t)≤ un(t)Pmax,n

rd,nΔt≤Pn(t) − Pn(t − 1)≤ ru,nΔt , (11)

where un(t) and Pn(t) are the on/off state and output power of
unit n at time t, respectively. Pmin,n and Pmax,n are the minimum
and maximum output power allowed by unit n, respectively. rd,n
and ru,n are the speed limits of power reduction and power rise of
unit n in unit time, respectively. Δt is the scheduling interval.

Power constraints of PHS units and storage capacity
constraints of the PHS plant can be referred to the study by
Lai et al. (2020).

Robust Bi-Level Planning Model
Considering Prediction Errors
The robust optimization problem with uncertain parameters can
be summarized as

{min
x∈Rn

f(x, ε)
s.t. gi(x, ε)≤ 0 ∀ε ∈ U, i � 1, 2, ...m.

, (12)

wherex is the decision variable. ε is an uncertain parameter and belongs
to a bounded closed setU.f is the objective function.g is the constraint.

Because of uncertainty factors such as an abnormal offshore wind
regime, errors often occur in prediction results of offshore wind power.
According to experience, the actual value of offshore wind power and
load can be equivalent to uncertain parameters with an unknown
probability distribution in the given sets. Robust optimization is
applicable to optimization problems with such uncertain parameters,
and the uncertainty is completely considered in the modeling
(Ratanakuakangwan and Morita, 2021). Therefore, a robust bi-level
planningmodel is proposed for twouncertain parameterswhich are the
predicted values of offshore wind power and load. The modified
constraints (9) and (10) in the lower model can be expressed as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑NH

k�1
Pgen,k(t) +∑NF

j�1
PF,j(t) + ∑NT

g�1
PT,g(t) + ∑NW

w�1
PWu,w(t) −∑D

d�1
Pu,d(t) −∑NH

k�1
Ppum,k(t)≥ 0

∑T
t�1
⎛⎝∑NH

k�1
Pgen,k(t) +∑NF

j�1
PF,j(t) −∑D

d�1
Pu,d(t) −∑NH

k�1
Ppum,k(t)⎞⎠≤ (e − 1)∑T

t�1
∑NW

w�1
PWu,w(t)

,

(13)

where PWu,w(t) and Pu,d(t) are, respectively, the wind power
value of OWF w and load value of node d considering prediction
errors at time t, which are random variables.

4 SOLUTION APPROACH

The aforementioned model is a mixed-integer nonlinear bi-level
planning model. The upper model is solved by the improved PSO
algorithm to generate a capacity configuration scheme of MPS and
ES. The inertia weight is fixed in PSO (Tsai et al., 2020), which is
easy to make the algorithm fall into local optimization. The
improved PSO algorithm changing the fixed weight into the
dynamic weight adjusted based on the premature convergence
and fitness value is adopted in this study.

The dynamic weight formula is shown as

ω �
⎧⎪⎪⎨⎪⎪⎩

ωmin +
[fj − fmin] × (ωmax − ωmin)

fav − fmin
fj ≤fav

ωmax fj >fav

, (14)

where fj is the fitness value of the j
th particle. fav and fmin are

the average fitness and minimum fitness, respectively. ωmax

and ωmin are the upper and lower limits of dynamic inertia
weights, respectively. Corresponding to the bi-level planning
model, fj is the objective function of the upper model, that is,
the total cost of the system including construction, operating,
and maintenance costs. The location of the swarm
corresponds to the capacity of MPS and ES planned by the
upper model.
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The lower layer of the robust bi-level planning model is a mixed-
integer quadratic programming (MIQP) problem, and the parameter
uncertainty is taken into account. The CPLEX solver is used to solve the
lowermodel and generate an operation scheduling scheme ofMPS and
ESwithminimumcost. Theflowof the robust bi-level planningmethod
for themulti-source system integratedwithOWFs is shown inFigure 3.

5 CASE STUDY

The typical daily power prediction of an OWF group in Shandong
Province, China, is used to verify the effectiveness of the proposed
robust bi-level planning method. The prediction curves of

offshore wind power and load in a scheduling cycle are shown
in Figure 4.

The unit construction cost and life cycle of the TP, GTP, and
PHS plants are shown in Table 1. The discount rate is 6.7%. The
power generation efficiency of the GT unit is 33%. The fuel
consumption cost of natural gas is ¥ 25 million/MW (¥ is the unit
of CNY).

Considering the uncertain factors in the prediction process,
three scenarios are designed for comparative analysis.

Scenario 1: Bi-level planning for the multi-source system
integrated with OWFs without considering prediction errors.

Scenario 2: Robust bi-level planning that takes the prediction
errors of offshore wind power into account, and the prediction
error of offshore wind power is within 10%.

Scenario 3: Robust bi-level planning that considers the dual
uncertainty of load and offshore wind power prediction. The
prediction error of offshore wind power is within 10%, and the
load prediction error is within 2.5%.

In the solution algorithm of the lower model, the population
size of the particle swarm is set to 100, the number of iterations is
set to 50, and the maximum and minimum inertia weights are 0.8
and 0.4, respectively. The capacity configuration scheme with the
optimal total cost under each scenario is shown in Table 2. The
construction cost corresponding to a scheduling cycle is shown in
Table 3, and the operating and maintenance costs of each
scenario in a scheduling cycle are shown in Table 4. As can
be seen, the total cost of the corresponding planning scheme in
scenario 1 is the lowest. With the increase of prediction
uncertainty, the planning scheme of scenarios 2 and 3
increases part of the power capacity and operating and
maintenance costs compared with scenario 1. Combined with
Table 3 and Table 4, it can be seen that the operating and
maintenance costs account for the largest proportion of the total
cost of the TP and GTP systems. The minimum total cost of the
system is taken as the objective function in the robust bi-level
planning model proposed in this study. Therefore, the planning
results will give priority to the cost. It can be inferred that the total
cost and output of the TP and GTP systems are largely
determined by the operating cost.

The optimal scheduling results according to the capacity
configuration scheme in each scenario are shown in Figure 5,
Figure 6, and Figure 7, respectively. In scenario 1, according to
the optimization results, the wind power curtailment is controlled
within 0.2%. It can be seen that under the planning scheme,
renewable energy is completely utilized on the basis of ensuring
the safe and stable operation of the power system. The PHS
system uses the excess electric energy at time 2 to pump water to
the upper reservoir and converts it into high-value electric energy

FIGURE 3 | Flowchart of the robust bi-level planning method for the
multi-source system.

FIGURE 4 | Prediction curves of offshore wind power and load.

TABLE 1 | Unit construction cost and life cycle.

Types Construction cost (×103¥/MW) Life cycle of unit
(year)

TP plant 182.00 30
GTP plant 125.00 20
PHS plant 528.57 80
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when the load demand is large, which ensures the safe operation
of the power system and solves the contradiction of supply and
demand during the climax and ebb periods of the power grid
effectively. It is known that in addition to time 2, when the wind
power value of the OWF cluster is greater than the load,

theoretically, there is no need for the PHS system to work in
the pumping mode at other times. In the actual situation,
considering the climbing constraints of the unit, the output
power cannot drop to 0 quickly in a short time. Therefore, the
excess power output from the OWF cluster and other power

TABLE 2 | Optimal capacity configuration results for each scenario.

Scenarios TP system (MW) GTP system (MW) PHS system (MW) Total cost (×105¥)

S1 1,246.00 1,856.44 187.44 952.45
S2 1,231.57 1,496.26 328.67 1,166.49
S3 1,616.44 1,538.11 623.45 1,278.99

TABLE 3 | Construction cost for each scenario.

Scenarios TP system (×103¥) GTP system (×103¥) PHS system (×103¥) Total construction cost
(×103¥)

S1 485.68 586.20 182.88 1,254.76
S2 480.05 472.47 320.68 1,273.20
S3 630.07 485.68 608.30 1,724.05

TABLE 4 | Operating and maintenance costs for each scenario.

Scenarios TP system (×105¥) GTP system (×105¥) PHS system (×103¥) Total operating and
maintenance costs (×105¥)

S1 479.70 459.60 60.24 939.90
S2 685.97 465.37 241.68 1,153.76
S3 729.70 529.02 302.70 1,261.75

FIGURE 5 | Operation planning result for scenario 1.

FIGURE 6 | Operation planning result for scenario 2.
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sources is absorbed by the PHS system as ES at 12, 18, and
other times. The same is true for scenarios 2 and 3. Because the
climbing constraint of the unit cannot fit the load curve, part of
the output power is converted into ES through the PHS system
and absorbed. According to Figure 5, Figure 6, Figure 7, and
Table 4, the TP system can maintain the minimum demand in
the power system, and its total cost is lower than that of GTP
and PHS systems. The GT unit features outstanding dynamic
characteristics and strong peak-load regulation capability, and
can quickly adjust the power output. Therefore, it is used as the
supplementary power source of the TP unit to meet the load
demand. The PHS system is not the main output power source
of the power system but mainly the power source for regulation
because of the constraints of unit capacity and reservoir
capacity.

In the interest of verifying the performance of the
improved PSO algorithm with dynamic inertia weight in
solving the robust bi-level planning model, the traditional
PSO algorithm is applied to solve the upper model in
scenarios 2 and 3 under the same population size and
iteration times, and the solution results of the two
methods are shown in Table 5. It can be seen that the
optimal cost of the schemes solved by the improved PSO
algorithm in scenarios 2 and 3 are 278.87 (×103¥) and 71.85
(×103¥) lower than that of the traditional PSO algorithm,
respectively. This proves that the PSO algorithm with
dynamic inertia weight has a stronger global optimization
ability, and the power capacity configuration and operation
scheduling scheme with a lower total cost can be obtained
when using this algorithm to solve the robust bi-level
planning model.

6 CONCLUSION

To adapt to the consumption of offshorewind power clusters, amulti-
source system model was constructed, which included the offshore
wind power, TP, GTP, and PHS systems. Moreover, considering the
system economy and offshore wind power consumption level, and
taking into account the dual uncertainty of load and offshore wind
power prediction, a robust bi-level planning method for the multi-
source system was proposed, in which the improved PSO algorithm
with dynamic weight was used to solve the model. The economic
optimal capacity configuration and operation scheduling scheme of
MPS and ES were generated based on the method proposed in this
study. The planning scheme realized the balance of supply and
demand between power sources and load and the peak load
shifting in the power grid. In addition, the method proposed in
this study improved the inclusiveness of prediction errors and made
the system have the advantages of good stability and high reliability.
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FIGURE 7 | Operation planning result for scenario 3.

TABLE 5 | Comparison of solution results.

Scenarios Total cost (×105¥)

PSO Improved PSO

S2 1169.28 1,166.49
S3 1,279.71 1,278.99
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