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This article is concerned with the set-membership state estimation problem for power
distribution networks (PDNs) over a resource-constrained communication network under
the influence of unknown but bounded (UBB) noises. Firstly, in order to alleviate
the pressure of information communication network (ICN) while meeting the state
estimation requirements, the event-triggered mechanism is adopted to send data
containing more valid information to estimation center, reasonably reducing the signal
transmission frequency. Secondly, an event-triggered dual set-membership filter (ET-
DSMF) is designed to improve the performance of state estimation. The proposed
filter performs a discrete approximation for a semi-infinite programming problem by the
random sampling technique, and a compact linearization error bounding ellipsoid is
obtained by solving the dual problem of the nonlinear programming. Subsequently, a
sufficient condition for the existence of the estimated ellipsoid is derived depending on
the mathematical induction method. The key time-varying filter gain matrix and optimal
estimated ellipsoid are determined recursively by solving a convex optimization problem,
according to the minimum trace criterion. Finally, the effectiveness of the proposed
filtering algorithm is demonstrated by performing simulation experiments on the IEEE 13
distribution test system.

Keywords: power distribution network, state estimation, set-membership filter, event-triggered mechanism,
convex optimization

1 INTRODUCTION

In recent years, the operation and control of power distribution networks (PDNs) are facing severe
challenges with the large access of flexible loads and renewable energy (Dehghanpour et al., 2018;
Fang et al., 2020; Zhang and Wang, 2020). In order to improve the power quality, the distribution
management system (DMS) is required to achieve a higher level of control and management for the
PDNs. As the basis of the smart grid situation perception, the state estimation module is the core
part of the DMS. By using real-time measurement data, the operation state of the system can be
estimated, and its accuracy directly determines the dispatching and control ability of the DMS to
PDNs.

The traditional static state estimation completely depends on the measurement set at a certain
time to obtain the operation state of the system at that time, ignoring the change process of the
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system state in continuous time (Jin et al., 2020). By contrast,
dynamic state estimation is to track the changes of system states
by recursive update estimation, and another advantage is that
it can predict the state of the next time. Therefore, it is more
conducive to improve the management level of DMS and has
attracted the extensive attention of researchers (Wang et al., 2020;
Ji et al., 2021). So far, the estimation methods based on the
Kalman filtering framework have been widely applied in the
dynamic state estimation of PDNs, such as extended Kalman
filter (EKF), unscented Kalman filter (UKF), and robust recursive
Kalman filter (RKF). Specifically, aiming at the state estimation
problem of nonlinear systems, the EKF linearizes the nonlinear
equation by the Taylor series and truncates it to the first order.
Nevertheless, large errors will be produced for some strongly
nonlinear systems due to the ignoring of higher-order remainder
terms (Zhao et al., 2016; Ćetenovi ́c et al., 2021). Differently, the
UKF directly obtains the approximate probability distribution
of nonlinear function with the help of unscented transform
technique (Zhao and Mili, 2017; Bai et al., 2021b), which avoids
the linearization process and fully considers the influence of
the higher-order terms. The RKF can deduce the filter gain
by solving the upper bound of the error covariance matrix,
and the higher-order remainder is expressed by a combination
of uncertain linear matrices. It has been proved that the
estimation accuracy is significantly improved by considering
the influence of linearization error (Bai et al., 2018; Tan et al.,
2021).

It is worth noting that the abovementioned filtering
algorithms are all designed based on the assumption that the
system noises obey Gaussian distribution. Actually, in the
engineering practice, the statistical characteristics of the PDNs
noises are unknown, which will inevitably bring errors to the
estimation results (Wang et al., 2017). Fortunately, although
the statistical characteristics of the PDNs noises are unknown,
their boundaries are usually easy to obtain. For example,
the dynamic modeling error of the state space model can
be restricted by a known interval, and the measurement
errors of phasor measurement units (PMUs) are described
as less than one percent of the total vector errors according
to the IEEE standards (Martin et al., 2008; Qing et al., 2013).
To deal with such unknown but bounded (UBB) noises, the
set-membership filtering algorithm has been proposed by
Schweppe (1968), and its main idea is to provide a set of state
estimation that always contains the real states of the system
(Cerone et al., 2014). In order to facilitate the description, the
state estimation set is usually outsourced using regular geometry,
such as ellipsoid (Calafiore, 2005; Ding et al., 2019), zonotope
(Kühn, 1998; Alamo et al., 2005), and box (Ping et al., 2020).
And the ellipsoid set becomes the geometric representation
tool selected in this article due to its simple representation
and smooth derivable boundary. After years of development,
the results of the set-membership filtering algorithm in linear
systems have been widely published (Becis-Aubry et al., 2008;
Gubarev and Melnichuk, 2015; Liu et al., 2016). To realize
the application of the set-membership theory in nonlinear
systems, the nonlinear set-membership filtering algorithm has
been developed (Scholte and Campbell, 2003; Calafiore, 2005)

and widely applied in various fields, such as target tracking
(Yu et al., 2016; Bai et al., 2021a), generator state estimation
(Cheng et al., 2018), and power system state estimation
(Qing et al., 2013; Zhang et al., 2020). In addition, what should
be concerning is how to obtain the compact bound of the
linearization error for strongly nonlinear systems. In this
regard, the extended set-membership filter (ESMF) has been
developed in Scholte and Campbell (2003), in which the
interval analysis method is used to determine the uncertain
boundary of linearization error. However, this method will
increase the conservatism of boundary estimation. Here, we
try to solve the tighter linearized error boundary by the semi-
infinite programming approach (Vandenberghe and Boyd, 1996).
Specifically, firstly, the dual form of semi-infinite programming
is derived by the known lemma. Then, the continuous measure
is discretized and approximated by random sampling technology
(Wang et al., 2018) (e.g., the Monte Carlo sampling method),
such that the discrete expressions of the compact linearized error
boundary ellipsoid center and shape matrix can be obtained
recursively.

From another perspective, the measurement and
communication technologies have been developed rapidly in
recent years. In comparison with the conventional distribution
remote terminal units (DRTUs), the PMUs can accurately
measure the phasor of voltage and current, and high-frequency
sampling provides a lot of real-time system information for
dynamic state estimation, which is more conducive to the
implementation of dynamic state estimation (Zhang et al., 2020;
Mohammadrezaee et al., 2021; Qu et al., 2021). However, due
to the limited bandwidth of the information communication
network (ICN), the transmission of large amounts of data
inevitably leads to certain network-induced phenomena such as
channel congestion and communication delay (Wei et al., 2015;
Hu et al., 2020). In order to alleviate the transmission pressure
of the ICN, the researchers have proposed many effective
solutions (Ge et al., 2017; Peng and Li, 2018; Liu et al., 2019;
Zou et al., 2021). Among them, the event-triggered mechanism
has recently attracted increasing research interest in the field
of power systems (Liu et al., 2017; Bai et al., 2021b; Cheng and
Bai, 2021).

Different from the traditional time-based periodic
transmission mechanism, event-triggered transmission
mechanism refers to using the constructed trigger function to
judge whether the measurement at the current time meets the
trigger requirements, and only the data that meet the specific
conditions are transmitted to the estimator for processing. It can
effectively reduce the communication frequency and improve
the communication efficiency while ensuring the PDNs state
estimation performance. Nonetheless, so far, the problem of
dynamic state estimation for the PDNs based on the event-
triggered mechanism has not been fully studied considering
nonlinear and unknown but bounded noises, which is the main
motivation of our research.

In view of the above discussion, we aim to design a
dual set-membership filtering algorithm for the PDNs state
estimation under the event-triggered mechanism to achieve a
balance of network resource utilization and system filtering
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performance.Themain technical contributions for this article can
be summarized as follows:

1) An event-triggered mechanism suitable for PDNs data
transmission is proposed, which can reasonably reduce the
data transmission frequency on the premise of ensuring the
accuracy of state estimation, so as to provide a feasible method
to alleviate the communication pressure and save network
resources;

2) With the help of random sampling technique, the compact
linearized error ellipsoid is obtained by solving the
dual problem of nonlinear programming to reduce the
conservatism of the set-membership filtering algorithm;

3) Based on recurrent linear matrix inequality (RLMI) and
convex optimization theories, sufficient conditions for the
existence of the estimated ellipsoid are derived, and the time-
varying gain matrix is solved. Then, an event-triggered dual
set-membership filter (ET-DSMF) is developed to realize the
online state monitoring of the system and further improve the
perception ability of the PDNs.

The contents of the article are organized as follows: Section 2
establishes the dynamic state model of the PDNs. Section 3
proposes the event-triggered mechanism. Section 4 mainly
introduces the calculation method of the compact boundary of
the linearization errors, and a dual set-membership filter based
on the event-triggered mechanism is designed. In Section 5, The
IEEE 13 PDN test system serves as an example to verify the
effectiveness of the filtering algorithm proposed in this article.
Finally, we summarize this article in Section 6.

2 SYSTEM MODEL OF POWER
DISTRIBUTION NETWORKS

In the dynamic state estimation of the PDNs, the systemmodel is
utilized to estimate the operation states at the current and predict
the state changes at the next. In abstract, the system model of the
PDNs includes the state model and measurement model, and its
general model can be expressed by Eq. 1:

{
xk+1 = f (xk) +ωk

yk = g(xk) + vk
(1)

where xk ∈ ℝ
n and yk ∈ ℝ

m are the system state vector and
the measurement vector, respectively. xk = [U1,…,Ui,…,UN]T
and the element is specifically expressed as Ui =
[U re,a

i ,U
im,a
i ,U

re,b
i ,U

im,b
i ,U

re,c
i ,U

im,c
i ]. N denotes the number of

system buses.U re,p
i andU im,p

i (p ∈ {a,b,c}) represent, respectively,
the p-phase real and imaginary voltage at the ith bus. f(⋅) and h(⋅)
are the state transfer equation and the measurement equation,
respectively. In addition, the system noises and initial state values
satisfy the following assumptions:

Assumption 1:Thenoise sequenceωk and vk satisfy the following
ellipsoid constraints:

{
Wk ≜ {ωk ∈ ℝn ∶ ωT

kQ
−1
k ωk ⩽ 1}

Vk ≜ {vk ∈ ℝm ∶ vTk R
−1
k vk ⩽ 1}

(2)

where Qk ∈ ℝn×n and Rk ∈ ℝm×m are known symmetric positive
definite matrices.

Assumption 2: The initial state x0 belongs to the initial state
ellipsoid ϕ0 and defined as

ϕ0 ≜ {x ∈ ℝn×n ∶ (x − ̂x0)
T P−10 (x − ̂x0) ⩽ 1} (3)

where ̂x0 is the center for the estimation set and P0 ∈ ℝn×n is
the symmetric positive definite matrix describing the shape and
orientations for the initial state ellipsoid.

2.1 State Model
In this article, the system is assumed in a quasi-steady state
operation, and a widely used dynamic model is adopted to
represent the equation of state:

xk+1 = Akxk +Bk +ωk (4)

where Ak is the state transfer matrix, which represents the speed
of the state transfer;Bk is the inputmatrix, reflecting the changing
trend in the state trajectory. The Holt-Winters two-parameter
exponential smoothing method is employed to compute Ak and
Bk online.

{Ak = α (1+ β) In
Bk = (1+ β) (1− α) ̂xk|k−1 − βck−1 + (1− β)bk−1

(5)

subject to

{ck = α ̂xk + (1− α) ̂xk|k−1bk = β(ck − ck−1) + (1− β)bk−1
(6)

in which, α and β indicate smoothing parameters, taking the
values between 0 and 1; ̂xk|k−1 is the state prediction value at k− 1;
and ̂xk is the state estimate value at k.

2.2 Measurement Model
At present, hybrid measurements with DRTUs and PMUs are
adopted in the PDNs to coordinate the economy of power
network construction and the accuracy of state estimation. The
use of various measurement devices increases the measurement
redundancy and then provides reasonable measurement data
for the PDNs state estimation. The DRTU measurements are
expressed as

Up
i = √(U

re,p
i )

2 + (U im,p
i )

2, (7)

{{{{{{{{
{{{{{{{{
{

Pp
i−j = ∑

q∈{a,b,c}
Gpq
i−j [U

re,p
i U⃗ re,q

i−j +U
im,p
i U⃗ im,q

i−j ] +B
pq
i−j [U

im,p
i U⃗ re,q

i−j −U
re,p
i U⃗ im,q

i−j ]

Qp
i−j =−

bpi−j
2
[(U re,p

i )
2 + (U im,p

i )
2
]

+ ∑
q∈{a,b,c}

Gpq
i−j [U

im,p
i U⃗ re,q

i−j −U
re,p
i U⃗ im,q

i−j ] −B
pq
i−j [U

im,p
i U⃗ im,q

i−j +U
re,p
i U⃗ re,q

i−j ]

,

(8)

{{{{{
{{{{{
{

Pp
i =

j=N

∑
j=1,j≠i

γj−iP
p
j−i

Qp
i =

j=N

∑
j=1,j≠i

γj−iQ
p
j−i

(9)
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FIGURE 1 | Three-phase unbalanced line model of the PDNs.

where U⃗ re,q
i−j = U

re,q
i −U

re,q
j , U⃗

im,q
i−j = U

im,q
i −U

im,q
j , P

p
i−j and Qp

i−j are
the p-phase active and reactive power flow measurements at
the i− j branch, respectively. Pp

i and Qp
i are the p-phase active

and reactive power injection measurements at the ith bus,
respectively. bpi−j represents p-phase ground guide at the i− j
branch. γj−i is a scalar describing the mutual coupling between
the network nodes. If 𝛩 represents the set of neighbor nodes of
node i, then

γj−i = {
1, j ∈ Θ
0, j ∉ Θ (10)

Besides, the PMUmeasurements are expressed as

{
U re,p

i = U
re,p
i

U im,p
i = U

im,p
i ,

(11)

{{{{{{
{{{{{{
{

Ire,pi−j = −
bpi−j
2
U im,p

i + ∑
q∈{a,b,c}

Gpq
i−jU⃗

re,q
i−j −B

pq
i−jU⃗

im,q
i−j

I im,pi−j =
bpi−j
2
U re,p

i + ∑
q∈{a,b,c}

Gpq
i−jU⃗

im,q
i−j +B

pq
i−jU⃗

re,q
i−j

(12)

where Ire,pi−j and I im,pi−j represent the p-phase real and imaginary
currents at the i− j branch, respectively.

Figure 1 shows the three phase unbalanced line model of the
PDNs, where themissing phase line model is similar to the three-
phase model and is not fully shown here.

3 EVENT-TRIGGERED MECHANISM

The basic working architecture of the PDN based on an event-
triggered mechanism is shown in Figure 2. To be specific,
the measurement at the current moment collected using the
PMU and DRTU measurement devices are compared with
the measurement of the latest transmission by the event-
triggered mechanism. When the triggering condition is satisfied,

the current measurement will be transmitted to the remote
estimation center via the ICN, otherwise the measurement will
not be transmitted. According to the zero-order hold strategy,
the last transmitted measurement will participate in the state
estimation process in the estimation center. Since the event-
triggered mechanism is adopted, the measurement devices only
provide useful information to the estimation center, and the data
transmitted by the ICN will greatly decrease, which reasonably
alleviates the burden on the channel. Thus, the probability of
network-induced phenomenon is effectively reduced.

The triggering condition is as follows:

tir+1 = infk∈N
{k > tir|Sk > 0} . (13)

The specific expression of Sk is

Sk = σ
T
i,kψσi,k − εiy

T
i,tir
ψyi,tir (14)

where ψ is the weight matrix of the opposite and positive definite
and is assumed to be a unit matrix in this article. σi,k is the
difference between the current measurement yi,k and the last
transmitted value yi,tir (the latest accepted values for the estimate
center), which is defined as

σi,k = yi,tir − yi,k, (15)

and the following expression is given by:

δi = εiyTi,tirψyi,tir . (16)

When increasing the value of εi, the transmission frequency
would decrease correspondingly. In engineering practice,
the selection of εi should consider not only the network
communication resources but also the system filtering
performance. As such, the appropriate parameter selected
can achieve a trade-off between energy conservation and the
estimation performance of the distribution system. Then, the
event-triggering function can be defined as follows:

fi (σi,k,δi) = σT
i,kσi,k − δi. (17)
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FIGURE 2 | Event-triggered mechanism.

The parameters μi,k are constructed to indicate whether the
measurement is transmitted or not, and triggering logic variable
is expressed as

μi,k = {
1, fi (σi,k,δi) > 0
0, fi (σi,k,δi) ⩽ 0

(18)

If μi,k = 1, the event triggering is executed. Otherwise, by
the zero-order hold strategy, the latest triggered one would
be used to the filtering process instead of yi,k, so as to
realize the measurement synchronization and the integrity of
the measurement information. By Equations 17, 18, the non-
triggering error can be described as

σi,k = {
0, μi,k = 1
yi,tir − yi,k, μi,k = 0

(19)

The current measurement information received by the
estimation center is

̃yk = yk + σk (20)

where σk = [σ
T
1,k,σ

T
2,k,…,σ

T
m,k]

T .
Let δ = ∑mi=1δi, then the formula is established as

σT
k σk ⩽ δ. (21)

The above results will be fully reflected in the design process
of the filter.

Remark 1: Thedifferent measurement devices such as the PMUs
and DRTUs are equipped at the buses of the PDNs. The diversity
of measurements will bring great challenges to the setting of
event-triggering threshold. Based on this challenge, we develop
the event-triggered mechanism described above.This is a relative
event-triggered mechanism, which is different from the absolute
one in Bai et al. (2021b).

4 EVENT-TRIGGERED DUAL
SET-MEMBERSHIP FILTER

4.1 Linearization Error Boundary
Actually, the linearization error boundary determined by the
interval analysis method is too conservative, and its cumulative

effect will also affect the accuracy and even lead to filter
divergence. In addition, the Lagrange remainder of the linearized
nonlinear function can be used to represent the linearization
error, but the process of optimizing the Hessian matrix is more
complex. In this article, the linearization error is limited by
solving the dual form of semi-infinite programming, which not
only avoids the solution of Hessian matrix but also overcomes
the defects of the interval analysis method, and a more compact
linearization error boundary can be obtained.

A lemma will first be introduced for the formula derivation in
this section.

Lemma 1: Wang et al. (2021) The optimization problem of the
ellipsoid can be expressed as

{
min
P, ̂u

log det (P)
s.t. (u− û)T P−1 (u− û) ⩽ 1,∀u ∈ ℂ

(22)

with

{ℂ ≜ {u ∶ u = s (x) ,x ∈ ϕ}ϕ ≜ {x ∶ (x − ̂x)T ̃P−1 (x − ̂x) ⩽ 1} . (23)

Then, the optimal solution of Eq. 22 is

P∗ =∫ℂ
uuTdτ∗ − u∗u∗T (24)

where ̂u∗ = ∫ℂudτ
∗ is the optimal solution to the following

optimization problem:

{
{
{

max
τi⩾0

log det(∫ℂ×{1}
⌣u⌣u

T
dτ)

s.t.∫ℂ×{1}dτ = 1
(25)

with ⌣u = [uT ,1]T , and Eq. 25 is the dual problem of Eq. 22. For
the proof of this lemma, please refer to Wang et al. (2021).

Next, we introduce the specific application of this lemma
in this article. First, the Taylor expansion of the measurement
equation is performed around ̂xk+1|k.

g(xk+1) = g( ̂xk+1|k) +Gk+1(xk+1 − ̂xk+1|k) +Δg(xk+1) (26)
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FIGURE 3 | The linearization error ellipsoid.

According to the properties of the ellipsoid, Eq. 26 is
equivalent to:

g( ̂xk+1|k +Ek+1|kzk+1|k) = g( ̂xk+1|k) +Gk+1Ek+1|kzk+1|k +Δg(zk+1|k)
(27)

where ‖zk+1|k‖ ≤ 1, Pk+1|k = Ek+1|kE
T
k+1|k. Thus, the higher-order

linearization error can be expressed as

Δg(zk+1|k) = g(xk+1) − g( ̂xk+1|k) −Gk+1 (xk+1 − ̂xk+1|k)

= g( ̂xk+1|k +Ek+1|kzk+1|k) − g( ̂xk+1|k) −Gk+1Ek+1|kzk+1|k.
(28)

As shown in Figure 3, we try to find a compact ellipsoid
to cover the higher-order remainder term, assuming that the
outsourced ellipsoid of the higher-order remainder term is
expressed as ϕg,k+1. This article uses the nonlinear programming
method to optimize the boundary of linearization error, which
can get a tight boundary estimate. In general, it can be obtained
from Lemma 1 that the linear programming Eq. 25 is the dual
form of the nonlinear programming Eq. 22. Therefore, in order
to achieve a balance between the estimation accuracy and the
calculation amount, the continuous system is discretized by the
Monte Carlo sampling method. In this regard, the nonlinear
programming is converted into a linear programming problem.
The following expression is established:

Δg(zk+1|k) ≜ {u| (u− ûg,k+1)
T P−1g,k+1 (u− ûg,k+1) ≤ 1}

≜ {u|u = ûg,k+1 +Eg,k+1|kzg,k+1|k,Pg,k+1

= Eg,k+1|kE
T
g,k+1|k, ‖zg,k+1|k‖ ≤ 1}

∈ ϕg,k+1

(29)

where ̂ug,k+1 and Pg,k+1 denote the center and shape matrix of the
ellipsoid ϕg,k+1, respectively.

A nonlinear programming method can be used to optimize
the linearized error boundary, so the following nonlinear
programming problem can be constructed:

{
{
{

min
Pg,k+1,ûg,k+1

log det(Pg,k+1)

s.t. (u− ûg,k+1)
T P−1g,k+1 (u− ûg,k+1) ⩽ 1,∀u ∈ ℂ

(30)

where ℂ is defined as

{
{
{

ℂ ≜ {u ∶ u = h(xk+1) ,xk+1 ∈ ϕk+1|k}

ϕk+1|k ≜ {xk+1 ∶ (xk+1 − ̂xk+1|k)
T P−1k+1|k (xk+1 − ̂xk+1|k) ⩽ 1}

(31)

in which, h(⋅) is an arbitrary nonlinear continuous function,
expressed here as a higher-order remainder term function.

The minimal volume of the linear error outsourcing ellipsoid
can be obtained by solving the nonlinear programming problem.
In order to make it more convenient, the continuous system
is discretized by the Monte Carlo sampling method, and the
discrete expression of the center and shape matrix of the
ellipsoid are obtained byEqs. 32, 33, which corresponds toEq. 24
under continuous form. Moreover, the approximate expression
of Eq. 25 is obtained, as shown in Eq. 34. Thus, an outsourcing
compact ellipsoid with the linearization error is developed. The
results obtained in this section will be used in the design of the
dual set-membership filter. The specific process will be shown in
detail in Section 4.2.

Pg,k+1 =∑
m
i=1
τiuiu

T
i − ûg,k+1û

T
g,k+1 (32)

with

ûg,k+1 =∑
m
i=1
τiui (33)

where coefficients τi(i = 1,…,m) are obtained by solving the
linear programming shown in the solution Eq. 34

{
max
τi⩾0

log  det(∑mi τi
⌣ui
⌣u
T
i )

s.t.∑mi τi = 1.
(34)

By Lemma 1, we obtain the dual form of nonlinear
programming and the continuous expressions of the center
and shape matrix of the linearized error ellipsoid. Then,
the continuous system is discretized by the Monte Carlo
sampling method, and the semi-infinite programming problem
is transformed into a finite programming problem, so the discrete
expressions of the ellipsoid center and shapematrix are obtained.

Remark 2: Different from the UKF, the approximate probability
distribution of the nonlinear function cannot be obtained
directly, since we assume that the true state is restricted
to the ellipsoid, rather than obeying a particular Gaussian
distribution. Wang et al. (2021) avoids the process of Taylor
expansion by directly solving the approximate distribution of
the nonlinear measurement function values. But this will still
inevitably produce large errors for strong nonlinear systems.
Therefore, the method in this article strikes a balance between
the computational quantity and the estimation accuracy.

4.2 Predictive and Update Steps
In this section, a set-membership filtering algorithm based
on the event-triggered mechanism is proposed to solve the
state estimation problem of the PDNs. And the real state
is always confined to the set of state estimation. In order
to deal with quadratic constraints such as event-triggered
mechanism and external noises, RLMI technology is used to
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transform the externally bounded ellipsoid filtering problem into
a convex optimization problem with linear matrix inequality
constraints. The sufficient conditions for the existence of the
estimated state set are strictly derived, and the filter gain
parameters are easily obtained by solving the convex optimization
problem(Boyd et al., 1994).

We begin by introducing two lemmas, which will be used in
the proof of this section.

Lemma 2: (S-Procedure) (Bai et al., 2021a): Let ℏ0(⋅),
ℏ1(⋅),…,ℏp(⋅) be the quadratic function of the variable χ ∈
ℝn, ℏi(χ) = χTMiχ(i = 0,1,…,p), with Mi =MT

i , if there exist
λ1 ⩾ 0,…,λp ⩾ 0 such that M0 −∑

p
i=1λiMi ⩽ 0, then the following

is true: ℏ1(χ) ⩽ 0,…,ℏp(χ) ⩽ 0→ ℏ0(χ) ⩽ 0.

Lemma 3: (Schur Complement Equivalence) (Bai et al., 2021a):
For matrices H1,H2,H3, where S1 = ST1 ⩾ 0, H2 =HT

2 ⩾ 0,

HT
3 H
−1
2 H3 +H1 ⩽ 0, if and only if [−H2 H3

HT
3 H1
] < 0 or

[H1 HT
3

H3 −H2
] < 0.

One-step state prediction value ̂xk+1|k is approximated by the
Holt-Winters two-parameter exponential smoothing method.
Based on the state estimate at k, one-step predicted ellipsoid ϕk+1|k
is obtained by solving the semi-definite programming problem
Eq. 36.

ϕk|k+1 = {xk+1 ∶ (xk+1 − ̂xk+1|k)
T P−1k+1|k (xk+1 − ̂xk+1|k) ⩽ 1} (35)

where Pk+1|k is the desired optimization variable.
It should be noted that calculating the volume of the ellipsoidal

set is more difficult than the trace of the matrix Pk+1. The trace
of Pk+1 is the sum of the semi-axes of the ellipsoid, by which the
size of the ellipsoidal set can be reflected effectively.Therefore, the
objective function Eq. 36 is the trace function.

{{
{{
{

min
Pk+1|k,λ1⩾0,λ2⩾0

f (Pk+1|k)

s.t.[
Ξk+1|k ΦT

k+1|k
Φk+1|k −Pk+1|k

] < 0
(36)

where

Φk+1|k = [0,AkEk, I] , (37)

Ξk+1|k = diag{λ1 + λ2 − 1,−λ1I,−λ2Q−1k } . (38)

Proof 1: In view of Equation 4, we can get one-step prediction
state error

ek+1|k = xk+1 − ̂xk+1|k = AkEkzk +wk

=Φk+1|kζ .
(39)

Let, ζ = [1,zTk ,w
T
k ]

T . Thus, xk+1 ∈ ϕk+1|k is equivalent to

ζT [ΦT
k+1|kP

−1
k+1|kΦk+1|k]ζ ≤ 1. (40)

The following unequal conditions exist naturally:

{‖zk‖ ≤ 1wT
kQ
−1
k wk ≤ 1.

(41)

Eq. 41 is equivalent to

{ζ
Tdiag {−1, I,0}ζ ≤ 0
ζTdiag{−1,0,−Q−1k }ζ ≤ 0.

(42)

By means of Lemma 1, ζT[ΦT
k+1|kP

−1
k+1|kΦk+1|k]ζ ≤ 1 holds, if

positive scalar λ1,λ2 exists such that

ΦT
k+1|kP

−1
k+1|kΦk+1|k − diag {1,0,0} − λ1diag {−1, I,0}
− λ2diag{−1,0,−Q

−1
k } ≤ 0. (43)

Equation 43 can be rewritten as

ΦT
k+1|kP

−1
k+1|kΦk+1|k +Ξk+1|k ≤ 0 (44)

where

Ξk+1|k = diag{λ1 + λ2 − 1,−λ1I,−λ2Q−1k } . (45)

By Lemma 2, Equation 45 can be converted to the following
formula:

[
Ξk+1|k ΦT

k+1|k
Φk+1|k −Pk+1|k

] < 0. (46)

The proof is completed.
On the other hand, based on the proposed event-triggered

mechanism, the estimates can be expressed by:

̂xk+1 = Ak ̂xk +Bk +Kk+1 ( ̃yk+1 − g( ̂xk+1|k)) (47)

where Kk+1 is the filter gain matrix to be solved. In addition, the
estimated ellipsoid ϕk+1 is obtained by solving the semi-definite
programming problem, based on the one-step state prediction
value at k.

ϕk+1 = {xk+1 ∶ (xk+1 − ̂xk+1)
T P−1k+1 (xk+1 − ̂xk+1) ≤ 1} (48)

The optimal variable Pk+1 and the gain matrixes Kk+1 can be
obtained by solving the following optimization problem:

{{
{{
{

min
Pk+1,Kk+1,λ3⩾0,…,λ7⩾0

f (Pk+1)

s.t.[Ξk+1 ΦT
k+1

Φk+1 −Pk+1
] < 0

(49)

where

Φk+1 = [−Kk+1eg,k+1, (I −Kk+1Gk+1)AkEk, I −Kk+1Gk+1,−Kk+1Eg,k+1,
−Kk+1,−Kk+1] (50)

Ξk+1 = diag{λ3 + λ4 + λ5 + λ6 + λ7δ − 1,−λ3I,−λ4Q−1k ,−λ5I,
− λ6R−1k+1,−λ7I} (51)

Proof 2: According to Eq. 47,

ek+1 = xk+1 − ̂xk+1
= xk+1 − ̂xk+1|k −Kk+1 (Gk+1 (xk+1 − ̂xk+1|k) + eg,k+1 +Eg,k+1zg,k+1
+vk+1 + σk+1)
= (I −Kk+1Gk+1)(AkEkzk +wk) −Kk+1eg,k+1
−Kk+1Eg,k+1zg,k+1 −Kk+1vk+1 −Kk+1σk+1
= −Kk+1eg,k+1 + (I −Kk+1Gk+1)AkEkzk + (I −Kk+1Gk+1)wk

−Kk+1eg,k+1 −Kk+1Eg,k+1zg,k+1 −Kk+1vk+1 −Kk+1σk+1
=Φk+1η

(52)
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with

η = [1,zTk ,w
T
k ,z

T
g,k+1,v

T
k+1,σ

T
k+1]

T . (53)

Thus, xk+1 ∈ ϕk+1 is equivalent to ηT[ΦT
k+1P
−1
k+1Φk+1]η ⩽ 1. The

following conditions are naturally satisfied:

{{{{{{{{{
{{{{{{{{{
{

‖zk‖ ⩽ 1
wT

kQ
−1
k wk ⩽ 1

‖zg,k+1‖ ⩽ 1
vTk+1R

−1
k+1vk+1 ⩽ 1

σT
k+1σk+1 ⩽ δ

(54)

which can be rewritten as follows:

{{{{{{{{{
{{{{{{{{{
{

ηTdiag {−1, I,0,0,0,0}η ⩽ 0
ηTdiag{−1,0,Q−1k ,0,0,0}η ⩽ 0
ηTdiag {−1,0,0, I,0,0}η ⩽ 0
ηTdiag{−1,0,0,0,R−1k+1,0}η ⩽ 0
ηTdiag {−δ,0,0,0,0, I}η ⩽ 0.

(55)

It can be seen from Lemma 1 that Eq. 48 is established
if positive scalar λ3,λ4,λ5,λ6,λ7 exists to make the following
inequality hold:

ΦT
k+1P
−1
k+1Φk+1 − diag {1,0,0,0,0,0}
− λ3diag {−1, I,0,0,0,0} − λ4diag{−1,0,Q

−1
k ,0,0,0}

− λ5diag {−1,0,0, I,0,0} − λ6diag{−1,0,0,0,R−1k+1,0}
− λ7diag {−δ,0,0,0,0, I} ⩽ 0.

(56)

Equation 45 is equivalent to

ΦT
k+1P
−1
k+1Φk+1 +Ξk+1 ⩽ 0 (57)

where

Ξk+1 = diag{λ3 + λ4 + λ5 + λ6 + λ7δ − 1,−λ3I,−λ4Q−1k ,−λ5I,
−λ6R
−1
k+1,−λ7I} . (58)

Using Lemma 2, the following inequality relationship holds:

[Ξk+1 ΦT
k+1

Φk+1 −Pk+1
] < 0. (59)

The proof is completed.

Algorithm 1 | ET-DSMF Algorithm.

1: Initialization: Set ̂x0, P0 and the maximum number of sampling kmax, set
Qk, Rk+1 and triggering thresholds εi(i = 1, 2,…, m).

2: Solve the optimization problem (19) to get ̂ug,k+1 and Pg,k+1.
3: on the basis of ̂xk and Pk, obtain predicted ellipsoid ϕk+1|k and λi(i = 1, 2)

by solving (24).
4: With the obtained ̂xk, Pk, and ϕk+1|k ,solving convex optimization problem

(49) to obtain Kk+1, Pk+1 and λi(i = 3, 4,…, 7).
5: With the obtained ̂xk and Kk+1, compute ̂xk+1 by (47).
6: Set k = k + 1, if k > kmax, exit. Otherwise, go to step 2.

In order to more clearly show the filtering algorithm in
this article, the ET-DSMF algorithm is summarized as in
Algorithm 1.

Remark 3: It is worth mentioning that the filtering algorithms
under the Kalman framework are studied based on the
assumption that the noises obey Gaussian distribution (Yang
and Li, 2009). However, because the distribution network
is located at the end of the power system and there is
serious electromagnetic interference, the above assumption is
not in line with the actual project. In fact, compared with
the statistical characteristics of noises, it is easier for us
to know its boundaries. Fortunately, set-membership filtering
can effectively deal with this unknown but bounded noises
and provide an estimation set that always surrounds the real
states.

Remark 4: In order to alleviate communication pressure and
improve the induction phenomenon of measurement data in
the transmission process, the event-triggered mechanism is
integrated into the design of the set-membership filter. To
tackle the effects of σk, we employ the prescribed triggering
condition which can be rewritten as a quadratic constraint.
Subsequently, by using S-procedure, this quadratic constraint
can be easily dealt with and reflected in the obtained RLMIs.
And the gain matrix and the filter of the optimal estimated
ellipsoid are obtained by solving the convex optimization
problem.

FIGURE 4 | IEEE 13 PDN test system.
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FIGURE 5 | The true and estimated values of a-phase at bus 4: (A) the real part of the voltage and (B) the imaginary part of the voltage.

FIGURE 6 | Log(MSE) between the true and estimated values of a-phase at bus 4 for the DSMF and ESMF algorithms: (A) the real part of the voltage and (B) the
imaginary part of the voltage.

FIGURE 7 | Boundaries between the true and estimated values of a-phase at bus 4: (A) the real part of the voltage and (B) the imaginary part of the voltage.
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FIGURE 8 | The true and estimated values of a-phase at bus 4: (A) the real part of the voltage and (B) the imaginary part of the voltage.

FIGURE 9 | Log(MSE) between the true and estimated values of a-phase at bus 4 for the ET-DSMF algorithm: (A) the real part of the voltage and (B) the imaginary
part of the voltage.

FIGURE 10 | The true and estimated values of c-phase at bus 4: (A) the real part of the voltage and (B) the imaginary part of the voltage.
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FIGURE 11 | Log(MSE) between the true and estimated values of c-phase at bus 4 for the ET-DSMF algorithm: (A) the real part of the voltage and (B) the imaginary
part of the voltage.

5 SIMULATION

In this section, The IEEE 13 PDN test system is employed
for simulation to verify the effectiveness of the ET-DSMF
algorithm. The algorithm is implemented in MATLAB R2018b.
The topology and the nominal data of the network are obtained
from Kersting (1991). The measurement configuration is shown
in Figure 4, where the PMUs are deployed at buses 1, 4, 6, 8, and
11. At the beginning, the power flow calculation result is taken
as the real value of the state, and the measurement is obtained
by superimposing the corresponding UBB noise on the power
flow calculation result of the online test system. Moreover, the
process equation is obtained by the Holt-Winters two-parameter
exponential smoothing method with α = 0.9,β = 0.1. Let the
shape matrix of the initial state be P0 = 4× 10

−3I. The process
noise is set as Qk = 6× 10

–3, and measurement noise parameters
are set as RPMU

k = 2× 10
−6 and RDRTU

k = 2× 10
−4, respectively.

Furthermore, the mean square error (MSE) is introduced in
this article to more intuitively reflect the accuracy of the state
estimation, i.e., MSEi(k) = (1/kmax)∑

kmax
k=1 (xi,k − ̂xi,k)

2, where kmax
represents the number of samples. The transmission rate is
defined as the number of transmission measurements divided by
all sampling times and described by variables κ.

5.1 Comparison of Dual Set-Membership
Filter and Extended Set-Membership Filter
Figures 5–7 show the performance of the DSMF and ESMF
algorithms, taking the simulation results of a-phase at bus
4 as an example. It can be seen that both algorithms can
achieve good estimation results. However, the MSE generated
by the method proposed in this article is smaller. As shown in
Figure 7, although the estimated boundaries obtained by the two
algorithms can contain the real state, the proposed algorithm is
less conservative owing to considering the compact linearization
error ellipsoid. It is obvious that the boundary obtained by the

DSMF algorithm is more compact than that obtained by the
ESMF.

5.2 Verification of Event-Triggered Dual
Set-Membership Filter Algorithm
Firstly, the event-triggering threshold is set as εi = 5× 10–6.
Figure 8 shows the state estimation ellipsoid center andboundary
of the ET-DSMF algorithm, where κ = 83%. Although the
estimation performance of the proposed algorithm degrades
at a lower transmission rate, it ensures that the real state
always resides in the estimation ellipsoid because the effective
information is transmitted to the estimation center. In order to
show the filtering results more clearly, Figure 9 shows the MSEs

FIGURE 12 | Triggering sequences under different triggering threshold
parameters.
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generated by the proposed algorithm. It can be seen that the
estimation error is always below the minimum upper bound
and close to the upper bound, which further shows the low
conservatism of the proposed algorithm.

5.3 Influence of Different Triggering
Threshold Parameters
In order to verify the influence of the different triggering
thresholds on the performance of the ET-DSMF algorithm,
different triggering threshold parameters are selected, i.e., ET-
DSMF1 with εi = 4× 10–6, ET-DSMF2 with εi = 6× 10–6, and ET-
DSMF3 with εi = 8× 10

–6. Figure 10 and Figure 11 show the
filtering curves and MSEs of c-phase at bus 4 under three
different threshold parameters. In addition, to more clearly
show the triggering time, the triggering sequences is shown
in Figure 12. With the increase of the triggering threshold,
the MSE of the ET-DSMF algorithm increases and the data
transmission data decreases accordingly. Therefore, selecting
the appropriate triggering threshold parameters can effectively
alleviate the pressure of network communication and reduce the
probability of network-induced phenomenon.

6 CONCLUSION

In this article, an event-triggered dual set-membership filtering
algorithm is proposed. Firstly, considering the uncertainty
caused by the linearization error, the approximate distribution
range of linearization error is determined by the random
sampling method, and the compact ellipsoid boundary of the
linearization error is obtained by solving the dual problem of the

semi-infinite programming, so as to reduce the conservatism
of error boundary. Then, an event-triggered mechanism is
introduced to reduce the communication burden. Finally,
sufficient conditions for the existence of filter parameters
are derived by lemmas, and the optimal state feasible set
with ellipsoid as boundary is obtained by the semi-definite
programming method. The simulation results show that the
proposed method can still ensure good filtering performance
even at a low transmission rate. In the future research, in
order to further improve information transmission efficiency, we
will integrate the dynamic event-triggered mechanism into the
algorithm design of the PDNs set-membership state estimation.
Moreover, in view of the extensive research on new energy grid
connection, including wind and photovoltaic power generation,
we will carry out distributed state estimation for the active PDNs
combined with the algorithm proposed in this article.
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