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The continuous occurrence of lithium-ion battery system fires in recent years has made
battery system fault diagnosis a current research hotspot. For a series connected battery
pack, the current of each cell is the same. Although there are differences in parameters
such as internal ohmic resistance, the relative change of parameters between cells is small.
Therefore, the correlation coefficient of voltage signals between different cells can detect
the faulty cell. Inspired by this, this paper proposes an improved Euclidean distance
method and a cosine similarity method for online diagnosis of multi-fault in series
connected battery packs, and compares them with the correlation coefficient method.
The voltage sensor positions are arranged according to the interleaved voltage
measurement design. The multi-fault involved in this study, including connection faults,
sensor faults, internal short-circuit faults and external short-circuit faults, will lead to
abnormal sensor readings at different positions, which in turn will cause changes in
correlation coefficient, Euclidean distance and cosine similarity to achieve fault detection.
Fault experiments were conducted to verify the feasibility of the three methods in a series
connected battery pack.
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design, similarity, correlation coefficient

1 INTRODUCTION

As the global energy problem continues to deepen, the development of new energy vehicles has
become both an international consensus and a Chinese strategy (Zhu et al., 2020). To promote the
popularity of new energy vehicles, in recent years the Chinese government has formulated many
relevant policies to support the rapid development of the new energy industry. Electric vehicles, as
one of the main types of new energy vehicles, have been widely consumed because of their high
energy utilization efficiency and minimal environmental pollution (Xiong et al., 2020; Franzò and
Nasca, 2021). The battery system, a key part of electric vehicles, largely determines the drivability and
the driving range on a single charge. Despite continuous advancements in battery manufacturing and
packaging technology, battery cells and related accessories can still incur faults due to the aging
process or abusive practices during operation (Wang et al., 2019). A high-quality battery
management system (BMS) is critical to the life and safety of the battery system.

The functions of the BMS include precise estimation (Tian et al., 2019; Li et al., 2021; Zhou et al.,
2021), charge and discharge control (Hossain Lipu et al., 2021), thermal management (Yang et al.,
2022), battery safety protection, and fault diagnosis (Chen et al., 2021; Wang et al., 2021; Yu et al.,

Edited by:
Xiangming He,

Tsinghua University, China

Reviewed by:
Yaxing Ren,

University of Warwick,
United Kingdom

Yi Xie,
Chongqing University, China

Yujie Wang,
University of Science and Technology

of China, China

*Correspondence:
Zeyu Chen

chenzy@mail.neu.edu.cn

Specialty section:
This article was submitted to

Electrochemical Energy Conversion
and Storage,

a section of the journal
Frontiers in Energy Research

Received: 08 March 2022
Accepted: 19 April 2022
Published: 10 May 2022

Citation:
Yu Q, Li J, Chen Z and Pecht M (2022)

Multi-Fault Diagnosis of Lithium-Ion
Battery Systems Based on Correlation
Coefficient and Similarity Approaches.

Front. Energy Res. 10:891637.
doi: 10.3389/fenrg.2022.891637

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8916371

ORIGINAL RESEARCH
published: 10 May 2022

doi: 10.3389/fenrg.2022.891637

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.891637&domain=pdf&date_stamp=2022-05-10
https://www.frontiersin.org/articles/10.3389/fenrg.2022.891637/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.891637/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.891637/full
http://creativecommons.org/licenses/by/4.0/
mailto:chenzy@mail.neu.edu.cn
https://doi.org/10.3389/fenrg.2022.891637
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.891637


2021). To date, a significant amount of research has been done on
battery system fault diagnosis and most methods can only
diagnose simple and single faults. In fact, battery system faults
include sensor faults, connection faults, faults of a single cell, and
so on. (Kang et al., 2021).

Sensor faults are divided into three main categories: current
sensor faults, voltage sensor faults, and temperature sensor faults
(Tran and Fowler, 2019; Lee and Akatsu, 2021; Yu et al., 2022).
Current sensor faults affect the accuracy of state of charge (SOC)
estimation (Hu et al., 2020), and voltage sensor faults not only
lead to a decrease in the accuracy of SOC estimation, but also lead
to overcharge and over-discharge of the battery, resulting in
serious safety hazards (Liu and He, 2017). Temperature sensor
faults affect the time of early warning of battery thermal runaway
(Tian et al., 2020). In view of the fact that the number of current
sensors and temperature sensors in the actual battery system is
very small, and a large number of voltage sensors are used to
monitor the abnormal status of the battery system, the fault
diagnosis of the voltage sensor is the top priority (Xiong et al.,
2019). A connection fault is usually referred to as “large cell
resistance” or “poor contact between adjacent cells” (Kang et al.,
2020). A small increase in resistance between adjacent cells can
lead to localized heating, which in turn can cause a series of safety
problems in the battery system. To diagnose these faults, Ma et al.
(2018) introduced a connection fault detection method for series-
connected lithium-ion power cells. A cross-voltage test was used
to distinguish between increased contact resistance and increased
internal resistance faults. The faults of a single cell include
overcharge (Hendricks et al., 2020; Diao et al., 2021), over-
discharge, micro-short-circuit (Gao et al., 2019; Zhang et al.,
2019), internal short-circuit (ISC) fault (Wang et al., 2016; Abaza
et al., 2018), external short-circuit (ESC) fault (Kriston et al.,
2017; Yang et al., 2018). Overcharge will lead to internal
electrochemical reactions, loss of active material, and
temperature increase, which might cause an explosion in the
battery pack. Although over-discharge does not directly lead to
thermal runaway, it can cause capacity loss and thermal stability
changes and move the battery tolerance toward abuse conditions
(Hong et al., 2017; Feng et al., 2018; Ren et al., 2019). In fact, when
there is no voltage sensor fault, overcharge and over-discharge
faults can be completely detected by the battery voltage sensor.
Micro-short-circuit faults usually refer to ISC and ESC faults
when the degree of fault is relatively minor (Pan et al., 2020).
Therefore, the research on the faults of the battery cell mainly
focuses on the ISC and ESC faults with a lesser degree of failure
(Chen et al., 2018).

According to different principles, fault diagnosis methods are
mainly divided into three categories: analytical model-based
methods (Chen et al., 2016), data-driven methods (Yang et al.,
2020), and signal statistics-based methods (Xia et al., 2017). The
first two methods either rely on accurate models or on huge
offline data and have poor generalization ability. The signal
statistics-based methods mainly deal with the information
between different cells, which are simple in calculation and
sensitive to faults, and widely used in fault diagnosis of battery
systems. For a series battery pack, the parameter difference
between batteries is small. Therefore, the correlation coefficient

between different battery voltage signals is also a relatively
constant value in the absence of faults. When a fault occurs,
the correlation coefficient between voltages changes significantly,
which can be detect faults accordingly (Xia and Mi, 2016).
However, most of studies use the correlation coefficient to
detect voltage anomalies under ISC and ESC faults, and the
applicability of this method under different fault degrees of
various faults is not clear. Whether other methods in statistical
theory are better than the correlation coefficient method in
solving the multi-fault diagnosis of battery systems has not
been explored.

In response to the issues raised above, this paper proposes an
improved Euclidean distance method and a cosine similarity
method for online diagnosis of multi-fault in series connected
battery packs, and compares them with the correlation coefficient
method. Experiments were conducted to simulate different
degrees of the same type of fault to study its diagnostic
performance. The main contributions of this paper can be
summarized in the following three points. 1) When the
Euclidean distance is used to determine the inconsistency of
battery cells, calculations are required between any 2 cells.
Therefore, the method is computationally complex and cannot
be used to distinguish between types of faults. To solve this
problem, this paper proposes a method of Euclidean distance
similarity, calculating the similarity between the voltage values
measured by adjacent numbered sensors, and introducing
recursive moving windows and discrete square waves signals
for improvement. The improved Euclidean distance similarity
method can effectively detect and isolate four different types of
faults. 2) From the perspective of relevance and similarity, three
methods with the same diagnostic strategy are compared. This
paper suggests a more effective practical application process for
the BMS in order to select the appropriate diagnostic scheme. 3)
Different types of faults are simulated through fault experiments,
and then different degrees of the same faults are simulated by
changing the magnitude of the resistance. Finally, this paper
analyzes the diagnostic sensitivity of different faults and the effect
of different resistance values on the same fault diagnosis, which
provides a reference for battery system fault diagnosis.

The remainder of this paper is organized as follows. Section 2
presents the interleaved voltage measurement design and
provides the identification and localization schemes for
different faults. Section 3 introduces three different methods
for detecting faults, namely the improved Euclidean distance
similarity method, the correlation coefficient method, and the
cosine similarity method. Section 4 introduces the experimental
equipment and presents the experimental schematics. Section 5
provides the diagnostic results and compares the diagnostic
performance of the three different methods. Section 6
summarizes this study’s findings.

2 INTERLEAVED VOLTAGE
MEASUREMENT DESIGN

In battery systems, there are many types of connection ways, and
this study employs the interleaved voltage measurement design
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shown in Figure 1 to examine the series circuit (Kang et al., 2019).
Vn represents the measurement value of voltage sensor n, and Rn-
1,n represents the resistance between cell n-1 and cell n. Each
measurement wire of the sensor is directly connected to the
electrode of the cell so there is little contact resistance between the
measurement wires and the corresponding electrode. The voltage
of each cell is associated with two sensors; similarly, each
resistance is associated with two sensors. A sensor fault affects
only its own measurement value and not that of the other
adjacent sensors.

The design enables fault identification and localization by the
serial number of the voltage sensor that appears abnormal. When
cell n-1 is in a short circuit fault, the measured voltage V2n-3 and
V2n-2 show abnormal changes at the same time. By observing the
fault characteristics indicated by the two voltage sensors, the
smaller serial number of sensors showing the abnormal changes is
the odd number. Similarly, when the contact resistance Rn-1,n is in
a fault condition (i.e., a connection fault between cell n-1 and cell
n), the measured voltage V2n-2 and V2n-1 show abnormal changes
at the same time. The fault characteristics are indicated by the two
voltage sensors, with the smaller serial number of sensors
showing the abnormal change being the even number. When
the voltage sensor n is in a fault condition, the measured voltage
Vn varies abnormally, while the rest of the measured voltage is
normal. Conversely, the type and location of the fault can be
inferred from the serial number of the abnormal voltage sensor to
realize the identification and positioning function.

3 FAULT DIAGNOSTIC METHODS

From the previous analysis, it is clear that fault diagnosis requires
the identification of the difference between abnormal and normal
voltages. This difference can be expressed by correlation or
similarity. The correlation coefficient can reflect the degree of
linear correlation between two or more groups of variables. In
addition to the correlation coefficient, there are statistical
indicators such as distance, angle, etc. that can also reflect the
similarity between different vectors. Therefore, in addition to a
brief introduction to the correlation coefficient method, this
section will also introduce the principles of fault diagnosis by
the improved Euclidean distance similarity method and the
cosine similarity method.

3.1 Correlation Coefficient Method
For different research objects, the correlation coefficient has
different definitions, which was first proposed by statistician

Karl Pearson and named the Pearson correlation coefficient.
Kang et al. (2019) adopt it to detect the battery system fault.
The expression of correlation coefficient is shown in Eq. (1).

Rcc �
a ∑a+j

i�j
(xi + ci) · (yi + ci) − ∑a+j

i�j
xi · ∑a+j

i�j
yi���������������������

a ∑a+j
i�j

(xi + ci)2 − ( ∑a+j
i�j

xi)2

√√
·

���������������������
a ∑a+j

i�j
(yi + ci)2 − ( ∑a+j

i�j
yi)2

√√ (1)

where xi denotes the value of vector x at moment i, yi denotes the
value of vector y at moment i, a denotes the recursive moving
windows, and ci denotes the discrete square waves signals.

3.2 Improved Euclidean Distance Similarity
3.2.1 Euclidean Distance Similarity
The Euclidean distance between voltage curves can be used to
quantitatively analyze the degree of inconsistency of different
cells. In a series connected battery pack, all cells share the same
current. If there is no fault, the voltages measured by different
sensors have the same variation trend. When there is a fault, there
must be an abnormal change in one or more voltages, resulting in
inconsistent distances between voltage curves. However, one
distance corresponds to two voltages, and it is impossible to
determine directly which voltage is abnormal. For example, when
V1 is normal and V2 is abnormal, the Euclidean distance between
V1 andV2 changes. However, it is not possible to determine which
one is abnormal based on only one calculation. Multiple
Euclidean distances need to be calculated to determine the
abnormal voltage. Therefore, the method using Euclidean
distance is complex and has some limitations. Combined with
the interleaved voltage measurement design, this paper proposes
the Euclidean distance similarity (EDS) to reflect the similarity of
all adjacent voltages. The expression of EDS is shown in Eq. (2).

EDS(x, y) � 1

1 +
����������������
(i − i)2 + (xi − yi)2√ � 1

1 + ∣∣∣∣xi − yi

∣∣∣∣ (2)

where xi denotes the voltage value measured by sensor x at the
moment i, and yi denotes the voltage value measured by sensor y at
the same time.When the changes of x and y are always the same, the
EDS (x, y) should be a constant value less than 1. When the changes
of x and y are not the same, theEDS (x, y) changes. So the fault can be
judged by observing whether the EDS (x, y) has changed.

For example, in the interleaved voltage measurement design,
when cell n-1 is in a short circuit fault. Before the fault occurs, all
voltages keep a similar trend and all EDS is closed to a constant
value or slow change.When a fault occurs,V2n-3 andV2n-2 change
differently from other voltages at that moment. Therefore, the
values of EDS(V2n-4, V2n-3) and EDS(V2n-2, V2n-1) change more
obviously at the moment of the fault. While EDS(V2n-3, V2n-2) and
the rest of the EDS are still closed to the previous constant value or
slow change. Based on the obvious changes of EDS(V2n-4, V2n-3)
and EDS(V2n-2, V2n-1) at a certain moment, it can be determined
that a short-circuit fault in cell n-1 has occurred. Similarly, when
EDS(V2n-3, V2n-2) and EDS(V2n-1, V2n) have more obvious
changes at a certain moment, it can be determined that a
connection fault between cell n-1 and cell n has occurred.

FIGURE 1 | Interleaved voltage measurement design.
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When EDS(Vn-1, Vn) and EDS(Vn, Vn+1) have obvious changes at
a certain moment, it can be determined that voltage sensor n is in
a fault condition.

3.2.2 Improved Euclidean Distance Similarity
Euclidean distance similarity can identify whether a battery has
occurred faults; however, it still has some shortcomings.
According to the expression of EDS, it can be seen that EDS
(x, y) varies with |xi - yi|. When there is no fault, any two voltages
x and y maintain a similar trend, and EDS (x, y) has almost no
significant change. When a fault occurs, some of the voltage
values will be abnormal and some will remain normal. For
example, the voltage measurement xi appears abnormal, while
the voltage measurement yi remains normal. So |xi - yi| occurs an
obvious change, resulting in a random change in EDS (x, y). Since
the changing pattern of EDS (x, y) is uncertain, it is impossible to
set the threshold for fault detection, and the diagnostic strategy is
not easy to make. So it needs improvement for the EDS. The
improved Euclidean distance similarity (IEDS) is shown in
Eq. (3).

IEDS(x, y) � 1

1 + ∣∣∣∣Δx − Δy
∣∣∣∣ � 1

1 + ∣∣∣∣(xi−1 − xi) − (yi−1 − yi)∣∣∣∣
(3)

where Δx represents the change in voltage x from moment i-1 to
moment i, and Δy represents the change in voltage y from
moment i-1 to moment i. The IEDS compares whether the
two voltages have the same variation amount from moment i-
1 to moment i. That is, when there is no fault, x and y have the
same variation from moment i-1 to moment i, then IEDS (x, y) is
extremely close to 1. If x is abnormal and y is normal, x and y have
different variation amounts from moment i-1 to moment i, and
IEDS (x, y) will drop obviously. A fault is detected when IEDS (x,
y) drop below a certain threshold. Compared to EDS method,
using IEDS can detect fault by setting the threshold value in
advance. For ISC/ESC with similar abnormal characteristics, an
additional threshold can also be set for isolating them depending
on the different degree of decline.

3.2.3 Recursive Moving Windows
The amount of voltage data is often quite large because the battery
pack may consist of hundreds or thousands of cells. In the
calculation process, either the amount of data in the sample is
too large or too small, both have a negative impact on fault
detection. When the amount of data in the sample is too large, the
sensitivity of fault detection decreases. Conversely, when the
amount of data in the sample is too small, the measurement
error will significantly affect the results. A desirable solution is to
introduce a recursive moving window a for data processing. That
is, set a suitable time interval and create a new calculation sample
based on the data within each time interval and calculate only the
IEDS of the data within the time interval. Assuming the recursive
moving window is a, Eq. (3) can be improved to Eq. (4).

IEDS(x, y) � 1

1 +
∣∣∣∣∣∣ �������������

a2 + (xi − xi−a)2
√

−
��������������
a2 + (yi − yi−a)2√ ∣∣∣∣∣∣ (4)

To decide the optimal moving window length, a large number
of a were selected for the tests. If the moving window length is
small, the diagnosis result is seriously affected by the
measurement error. That is, a very small number of data
errors can have a serious impact on the experimental results.
If the window length is large, the sensitivity of the diagnosis
method is low and the diagnosis is easily missed. According to the
test results, when the window length is 30, it is less affected by the
measurement error and the sensitivity is better. Finally, for the
purposes of this study, the moving window length is 30.

3.2.4 Discrete Square Waves Signals
The cells on the same circuit share the same current input. When
there is no fault, the IEDS of the adjacent voltage is very close to 1.
However, in practice, there may have measurement errors in voltage
values. When the battery pack is in dynamic working condition
(i.e., there is a significant change in input or output), the voltage
change trend plays a dominant role in the similarity calculation
because there is a significant change in it, and themeasurement error
at this time is negligible. However, when the battery pack is in non-
dynamic condition (i.e., the working condition of charging or
discharging with constant current), the actual cell voltage tends
to be a stable value or changes insignificantly. At this point, the
measurement error plays a dominant role in the similarity
calculation, and a small measurement error can make a large
impact on the result. To solve this problem, the discrete square
waves signal ci can be added to the voltage, and the square wave ci
acts as a correction function for the voltage. When the battery
current is constant, the voltage becomes a quasi-square wave curve
rather than a stable number, resulting in amore pronounced trend in
voltage. The square wave ci is shown in Eq. (5).

ci �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c0(0< i≤ T0

2
)

−c0(T0

2
< i≤T0) i � 1, 2, 3 . . . n (5)

where c0 represents the amplitude of the discrete square wave
signal and T0 represents the period of the discrete square wave
signal. The purpose of adding ck is to better detect the difference
between different voltages. If c0 is too large, the difference
between different voltages will become insignificant, which
leads to an insensitive diagnosis. If c0 is too small, it has
almost no effect on the original voltage. When c0 is below
0.01, it has almost no effect on the original voltage, and c0
above 0.1 makes the difference in the original voltage
insignificant. Therefore, c0 should be chosen between 0.01 and
0.1. T0 must be an integer multiple of a. After several sets of data
tests, c0 is finally determined as 0.05, and T0 is determined as 60.

Thus, Eq. (4) can be improved to Eq. (6).

RIEDS � 1

1 +
∣∣∣∣∣∣ �������������������������

a2 + [(xi + ci) − (xi−a + ci−a)]2
√

−
�������������������������
a2 + [(yi + ci) − (yi−a + ci−a)]2√ ∣∣∣∣∣∣ (6)

3.3 Cosine Similarity Method
The cosine similarity method is used to evaluate the similarity of
two vectors by calculating the cosine of their angle. After
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introducing the same recursive moving window a and discrete
square waves signal ci as the previous method. The cosine
similarity between the two vectors X, Y is calculated as in Eq. (7).

COSθ(X,Y) � X · Y
‖X‖‖Y‖

� [a, (xi + ci) − (xi−a + ci−a)] · [a, (yi + ci) − (yi−a + ci−a)]�������������������������
a2 + [(xi + ci) − (xi−a + ci−a)]2

√
·

�������������������������
a2 + [(yi + ci) − (yi−a + ci−a)]2√

(7)

The variation range of COSθ(X,Y) is from -1 to 1, and the
differentiation is not obvious when it needs to isolate different
types of faults. The cosine similarity between the two vectors is
indirectly expressed by the cosine angle θ(X,Y) of the two vectors,
and the new cosine similarity values between different vectors are
obtained as shown in Eq. (8).

RCS � θ(X,Y)

� arccos
[a, (xi + ci) − (xi−a + ci−a)] · [a, (yi + ci) − (yi−a + ci−a)]�������������������������

a2 + [(xi + ci) − (xi−a + ci−a)]2
√

·
�������������������������
a2 + [(yi + ci) − (yi−a + ci−a)]2√ (8)

Compared to the previous two methods, the value of cosine
similarity RCS varies widely under different operating conditions
and is more differentiated in isolating faults. When there is no
fault, RCS is close to 0°. When a fault occurs, RCS rises significantly.

3.4 Fault Detection and Isolation
Different types of faults can be detected, located, and identified by
combining the interleaved voltage measurement design with any
one of the three methods in this section. The three methods are
similar for fault detection and isolation. The value of R can be
calculated for all adjacent voltages. The calculation formulas are
different depending on the method used. In the correlation
coefficient method, R is Rcc in Eq. (1). In the improved
Euclidean distance similarity method, R is RIEDS in Eq. (6). In
the cosine similarity method, R is RCS in Eq. (8).

The R values are divided into two groups. The sensor serial
number in Rgroup1 starts with an odd number and is shown in Eq.
(9). The sensor serial number in Rgroup2 starts with an even
number and is shown in Eq. (10).

Rgroup1 � [R(V1, V2), R(V3, V4), R(V5, V6), ..., R(V2n−1, V2n)]
(9)

Rgroup2 � [R(V2, V3), R(V4, V5), R(V6, V7), ..., R(V2n, V1)] (10)
Take the improved Euclidean distance similarity method as an

example to illustrate the fault detection strategy. When there is no
fault, all RIEDS in Rgroup1 and Rgroup2 are within the threshold,
which is extremely close to 1. When the RIEDS(V2n-3, V2n-2) and
RIEDS(V2n-1, V2n) in Rgroup1 drop below the threshold, and the rest
of the RIEDS are still close to 1. It can determine that there is a
connection fault between cell n-1 and cell n. When RIEDS(V2n-4,
V2n-3) and RIEDS(V2n-2, V2n-1) in Rgroup2 drop below the threshold,
and the rest of the RIEDS are still close to 1. It can infer that cell n-1
is in a short circuit fault. When the RIEDS(Vn-1, Vn) and RIEDS(Vn,
Vn+1) from Rgroup1 and Rgroup2, respectively, drop below the
threshold, while the rest of the RIEDS is still close to 1. It can
judge that sensor n is in a fault condition. The flow chart is shown
in Figure 2.

When the correlation coefficient method is used, the flow
chart is almost identical to the improved Euclidean distance
similarity method. The difference between the two methods is
that the formula for calculating R is different, and the threshold
values are different. When using the cosine similarity method, the
smaller angle between the two vectors, the better consistency of
the voltage curves. So the diagnostic strategy of the cosine
similarity method is opposite to the improved Euclidean
distance similarity method. When there is no fault, the RCS of
adjacent voltage is close to 0°. When the contact resistance Rn-1,n
is in a fault condition, the two adjacent RCS in Rgroup1 raise above
the threshold, and the rest of the RCS are still close to 0°. When cell
n-1 is in a short circuit fault, the two adjacent RCS in Rgroup2 raise
above the threshold, and the rest of the RCS is still close to 0°.
When sensor n is in a fault, the RCS(Vn-1, Vn) and RCS(Vn, Vn+1)
from Rgroup1 and Rgroup2, respectively, raise obviously. While the
rest of the RCS is still close to 0°.

For three different methods, when cell n-1 is in a short circuit
fault, either an ISC or ESC, the R(V2n-4, V2n-3) and R(V2n-2, V2n-1)
in Rgroup2 change significantly. Since the magnitude of change is
different, different thresholds are set for isolating ISC and ESC.
Similarly, when a fault occurs in sensor n, either voltage freeze or
random fluctuation, the R(Vn-1, Vn) and R(Vn, Vn+1) change
obviously. Since the magnitude of the change is different,
different thresholds are set for sensor fault isolation.

4 EXPERIMENTAL EQUIPMENT AND
CIRCUIT

The fault voltage discussed in this paper are all within the normal
operating range of the battery, which is usually ignored in
practice. The experimental field device is shown in Figure 3.
The experimental device was divided into three parts: 1) Main
control part. 2) Arbin battery charge and discharge tester. 3) Load
connection system. The main control part consists of power
source, D2P controller, electronic load, mainframe monitor,
and data acquisition system. Its function is to provide power
source for the whole experiment, control the experiment, collect
and record data. The Arbin battery charge and discharge tester is
to control charge or discharge. Load connection system consists
of three LR1865SZ cells with a rated capacity of 2.5 Ah connected
in series, and the constant current state of the circuit is
maintained by an electronic load. All cells were charged at
0.5C constant current to 50% SOC and rested for 1 hour
before the fault experiment. The voltage measurement
accuracy is 0.1%, the maximum range of each voltage sensor is
5 V, and the sampling frequency is set to 10 Hz.

The fault experimental schematics is shown in Figure 4.
Different degrees of connection failure were simulated by

connecting resistors of 200 and 400 mΩ in series between cell
1 and cell 2, respectively. For sensor faults, during 100 s–500 s of
the discharge process of cell 2, the sensor reading of V3 remains
unchanged to simulate the voltage sensor freezing fault, the
sensor reading returns to normal at 500 s–700 s, and then a
white noise with an amplitude of 0.1 V is injected from 700 s to
1,370 s to simulate random fluctuation fault. Different degrees of
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ESC faults are simulated by connecting a 0 mΩ and 50 mΩ
resistor in parallel to cell 2, respectively. The ISC fault is simulated
by connecting a larger resistance resistor in parallel to simulate
the early stage of the ISC of the cell, and the resistance is set to
10 Ω and 20Ω (Ouyang et al., 2015). The details of the fault are
shown in Table 1.

5 RESULTS AND DISCUSSIONS

5.1 Comparison of EDS and IEDS
Figure 5 shows the evaluation results of EDS and IEDS under the
normal condition. Figure 5A shows the voltage curves, which are
almost parallel to each other in the absence of fault. Figure 5B
shows the EDS between the adjacent voltages. The EDS between
adjacent voltages is a series of different constant values. Figure 5C
shows the IEDS between the adjacent voltages. The IEDS between
adjacent voltages is always close to 1 without significant
fluctuations.

Figure 6 shows the evaluation results of EDS and IEDS under ISC
fault condition. Figure 6A shows the voltage curve. During 500–600
s, a resistor of 10Ω is connected in parallel to cell 2 to simulate an
ISC fault. The fault causes a drop in voltageV3 (red solid line) andV4

(red dashed line) from 500 s to 600 s. Figure 6B shows the EDS
between adjacent voltages. The EDS(V2, V3) and EDS(V4, V5) show
less significant changes at 500 s and 600 s. The EDS(V3, V4) remains
almost constant since V3 and V4 have the same tendency to change,

and the remaining EDS keeps a constant value or slow change.
Figure 6C shows the IEDS between adjacent voltages. The IEDS(V2,
V3) and IEDS(V4, V5) drop significantly at 500 s and 600 s. The
IEDS(V3, V4) remains close to 1 since V3 and V4 have the same
tendency to change, and the remaining IEDS is always close to 1
without significant fluctuations.

From the diagnosis results of the normal situation and fault
situation, it is evident that the Euclidean distance similarity before
and after the improvement can both identify faults. For the EDS, all
EDS keep a constant value or slow change when there is no fault.
When a fault occurs, there exists EDSwith a variation. This variation
is mainly reflected in the different shapes of the curve changes, the
number size degree of variation of EDS is less significant. So it is not
easy to detect fault using EDS. For the IEDS, all IEDS are very close to
1when there is no fault.When a fault occurs, there exists IEDSwith a
significant decrease. It is easy to detect fault by setting a certain
threshold. In addition, for ISC/ESC with similar characteristics, it is
obvious that EDS cannot isolate them. According to the degree of
dropping, the IEDS can isolate ISC/ESC by two different thresholds.
Figure 6C shows that the IEDS is able to achieve fault diagnosis, but
it is prone to misdiagnosis due to too much data. This paper
ultimately adopts RIEDS that introduces recursive moving
windows and discrete square waves signals.

5.2 Normal Condition
Figure 7 shows the evaluation results in the normal condition. The
voltage curves are shown in Figure 7A, and the trend of the voltage

FIGURE 2 | Flow chart of fault diagnosis.
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curves is always the same because there is no fault. Figure 7B shows
the evaluation results of the RIEDS, and the values of RIEDS are all
above 0.997, which is very close to 1. Figure 7C shows the
evaluation results of the correlation coefficient method, and the
values of the correlation coefficients are all above 0.999 extremely
close to 1. Figure 7D shows the evaluation results of the cosine
similarity method, and the cosine similarity is all within 0.4°,
extremely close to 0°. By setting the threshold when a fault
occurs subsequently, it is evident that the thresholds of the

three methods in diagnosing the fault are highly distinguishable
from the values in the normal state.

5.3 Fault Conditions
5.3.1 Connection Fault
Figure 8 provides the evaluation results of the connection fault
(i.e., the 02 case in Table 1). The voltage curves are shown in
Figure 8A, where V2 (green dashed line) and V3 (red solid line)
have a brief dropping tendency at both 100 s and 800 s because
resistors are connected in series between cell 1 and cell 2 to simulate a
connection fault. Figure 8B shows the evaluation results of the RIEDS,
where most of the curves in the figure overlap and the RIEDS is
extremely close to 1. However, the RIEDS(V1, V2) and RIEDS(V3, V4) of
Rgroup1 drop below 0.92 at both 100 s and 800 s. Therefore, a
connection fault can be identified by detecting that the two
adjacent RIEDS in Rgroup1 drop below the threshold. Figure 8C
shows the evaluation results of the Rcc, where most of the curves
in the figure overlap and the Rcc is highly close to 1. However, the Rcc
(V1, V2) and Rcc (V3, V4) of Rgroup1 drop below 0.95 at both 100 s and
800 s. Therefore, a connection fault can be identified by detecting that
the two adjacent Rcc in Rgroup1 drop below the threshold. Figure 8D
shows the evaluation results of the RCS, where most of the curves in
the figure overlap and theRCS is very close to 0°. However, theRCS(V1,
V2) and RCS(V3, V4) of Rgroup1 rise above 10° at both 100 s and 800 s.

FIGURE 3 | Experimental equipment diagram. (a) Main control part. (b) Arbin battery charge and discharge tester. (c) Load connection system.

FIGURE 4 | Schematics of multi-fault occurs in the series connected
battery pack.
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Therefore, a connection fault can be identified by detecting that the
two adjacent RCS in Rgroup1 rise above the threshold.

5.3.2 Sensor Fault
Figure 9 provides the evaluation results of the sensor fault (i.e., the 03
case in Table 1). Figure 9A shows the voltage curves. In the case of

constant discharge, it can be seen from Figure 9A that all voltages
change slowly. V3 is frozen from 100 to 500s, and V3 remains the
reading of 100s during this period. The other voltages differ little
from the reading ofV3, and all methods cannot detect this difference
at 100s. If the current is non-constant and the reading of V3 is kept
constant, the difference is easily detected because other voltages
fluctuate wildly. The voltage stops freezing at 500s, andV3 returns to

TABLE 1 | Details of the equivalent fault experiment.

Serial number Fault description Starting time/seconds Ending time/seconds

01 Normal condition 0 1,370
02 Connection fault 200 mΩ 100 800

400 mΩ 800 1,370
03 Sensor fault Voltage freezing 100 500

Random fluctuation 700 1,370
04 ESC fault 0 mΩ 500 501

50 mΩ 500 501
05 ISC fault 10 Ω 500 600

20 Ω 500 600

FIGURE 5 | Evaluation results of EDS and IEDS under the normal
condition.

FIGURE 6 | Evaluation results of EDS and IEDS under ISC fault.
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normal reading. At this moment, V3 changes from the reading of
100s to the reading of 500s, and the reading of V3 varies widely.
Therefore, for the current is constant, the diagnosis of voltage
freezing faults is achieved by detecting V3 from freezing to
normal. Figure 9B shows the evaluation results of the RIEDS,
most curves in the figure overlap and the RIEDS is close to 1.
However, RIEDS(V2, V3) in Rgroup2 and RIEDS(V3, V4) in Rgroup1
clearly drop below the thresholds of 0.98 and 0.96 at 500 s and
700 s, respectively, by which the two different thresholds voltage
freeze faults and random fluctuation faults are isolated. Therefore, a
sensor fault can be detected when Rgroup1 and Rgroup2 both have RIEDS

that drops below the threshold. The same sensor serial number in
RIEDS is the sensor serial number with the fault. Figure 9C shows the
evaluation results of the Rcc, where most of the curves in the figure
overlap and the Rcc is extremely close to 1. However, Rcc (V2, V3) in
Rgroup2 andRcc (V3, V4) inRgroup1 clearly drop below the thresholds of
0.85 and 0.8 at 500 s and 700 s, respectively. Voltage freeze and
random fluctuation are isolated by this two different thresholds.
Therefore, a sensor fault can be detected when Rgroup1 and Rgroup2
both have Rcc that drops below the threshold. The same sensor serial
number is which sensor has a fault. Figure 9D shows the evaluation
results of the RCS, where most of the curves in the figure overlap and

FIGURE 7 | Normal condition evaluation results. (a) Voltage curve.
Diagnosis by (b) RIEDS, (c) Rcc, (d) RCS.

FIGURE 8 | Connection fault evaluation results. (a) Voltage curve.
Diagnosis by (b) RIEDS, (c) Rcc, (d) RCS.
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the RCS is extremely close to 0°. However, the RCS(V2, V3) in Rgroup2
and the RCS(V3, V4) in Rgroup1 clearly rise above the thresholds of 4°

and 10° at 500 s and 700 s, respectively. So this two different
thresholds are selected for isolating voltage freeze and random
fluctuation. Thus, a sensor fault is proved when both Rgroup1 and
Rgroup2 have RCS that rises above the threshold. The same sensor
serial number is the sensor serial number with the fault.

5.3.3 External Short Circuit Fault
Figure 10 provides the evaluation results of the ESC fault (i.e., the
04 case in Table 1). The voltage curves are shown in Figure 10A,

where a very small resistance (0 mΩ) is connected in parallel to
cell 2 to simulate an ESC fault at 500 s. V3 (red solid line) and V4

(red dashed line) have a significantly decreasing trend at 500 s.
Figure 10B shows the evaluation results of RIEDS, where most of
the curves in the figure overlap and the RIEDS is extremely close to
1. However, RIEDS(V2, V3) and RIEDS(V4, V5) of Rgroup2 drop below
0.6 at 500 s. Therefore, an ESC fault can be identified by detecting
that values of the two adjacent RIEDS in Rgroup2 drop the threshold.
Figure 10C shows the evaluation results of the Rcc, where most of
the curves in the figure overlap and the Rcc is strongly close to 1.
However, the Rcc (V2, V3) and Rcc (V4, V5) in Rgroup2 drop below

FIGURE 9 | Voltage sensor fault evaluation results. (a) Voltage curve.
Diagnosis by (b) RIEDS, (c) Rcc, (d) RCS.

FIGURE 10 | ESC fault evaluation results. (a) Voltage curve. Diagnosis by
(b) RIEDS, (c) Rcc, (d) RCS.
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0.8 at 500 s. Therefore, an ESC fault can be identified when two
adjacent Rcc in Rgroup2 drop below the threshold. Figure 10D
shows the evaluation results of the RCS, where most of the curves
in the figure overlap and the RCS is close to 0°. However, RCS(V2,
V3) and RCS(V4, V5) in Rgroup2 rise above 15° at 500 s. Therefore,
by detecting that two adjacent RCS in Rgroup2 rise above the
threshold, ESC fault can be identified.

5.3.4 Internal Short Circuit Fault
Figure 11 provides the evaluation results of the ISC fault (i.e., the
05 case in Table 1). Figure 11A shows the voltage curves, where

an extremely large resistor (20Ω) is connected in parallel to cell 2
to simulate an ISC fault at 500 s. V3 (red solid line) and V4 (red
dashed line) have a significantly decreasing trend at 500 s.
Figure 11B shows the evaluation results of the RIEDS, where
most of the curves in the figure overlap and the RIEDS is extremely
close to 1. However, RIEDS(V2, V3) and RIEDS(V4, V5) in Rgroup2
drop below 0.994 but above 0.6 at 500 s. Therefore, the ISC fault
can be detected and isolated by judging that the two RIEDS in
Rgroup2 are below the ISC threshold of 0.994 but above the ESC
threshold of 0.6. Figure 11C shows the evaluation results of the
Rcc, where most of the curves in the figure overlap and the Rcc is
greatly close to 1. However, the Rcc (V2, V3) and Rcc (V4, V5) in
Rgroup2 drop below 0.99 but above 0.8 at 500 s. Thus, the ISC fault
can be detected and isolated by judging that the two adjacent Rcc
in Rgroup2 are below the ISC threshold of 0.99 but above the ESC
threshold of 0.8. Figure 11D shows the evaluation results of the
RCS, where most of the curves in the figure overlap and the RCS is
strongly close to 0°. However, RCS(V2, V3) and RCS(V4, V5) in
Rgroup2 are both above 1° but below 15° at 500 s. Therefore, the ISC
fault can be detected and isolated by judging that the two adjacent
RCS in Rgroup2 are above the ISC threshold of 1° but below the ESC
threshold of 15°.

5.4 Diagnostic Performance Analysis and
Discussion
Table 2 provides the diagnosis time used by different methods. For
the connection fault, sensor fault, and ESC fault, the shortest time is
used for diagnosis by the correlation coefficient method, which
indicates that the fault is more sensitive to correlation. For the ISC
fault, which is not easy to detect initially, the cosine similarity
method produces the shortest diagnosis time, which indicates
that the ISC fault is more sensitive to similarity. According to the
four faults diagnosis results, it is evident that all three methods can
detect and isolate the fault in a short period of time. Each of the three
methods has its own merits. The improved Euclidean distance
similarity method is simple to calculate and more sensitive to
changes in data. The correlation coefficient method has good
robustness because the correlation coefficient is always close to 1
without much fluctuation in the absence of faults; this method also
produces a fast response and short diagnosis time when faults occur.
The cosine similarity method differs from the previous two methods
in that the threshold differentiation is large. The cosine similarity is
converted by angle, and the variation range is from 0° to 90°, which
can better distinguish different faults.

For different types of faults, there is a significant difference in
the voltage signal. When a connection fault occurs between cell 1
and cell 2,V2 andV3 drop significantly.When sensor 3 is in a fault
condition, a significant abnormality occurs in V3. When a short
circuit occurs in cell 2, V3 and V4 drop significantly. However, the
voltage V3 and V4 drop to a greater extent when it is ESC.
Therefore, for different faults, the diagnosis results of the three
methods also differ significantly.

(1) The improved Euclidean distance similarity method: When
there is a connection fault, RIEDS(V1, V2) and RIEDS(V3, V4)
drop below 0.92. When there is a sensor fault, RIEDS(V2, V3)

FIGURE 11 | ISC fault evaluation results. (a) Voltage curve. Diagnosis by
(b) RIEDS, (c) Rcc, (d) RCS.
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and RIEDS(V3, V4) drop below the threshold.When there is an
ESC fault, RIEDS(V2, V3) and RIEDS(V4, V5) drop below 0.6.
When there is an ISC fault, RIEDS(V2, V3) and RIEDS(V4, V5)
drop below 0.994 but above 0.6.

(2) The correlation coefficient method: When there is a
connection fault, Rcc (V1, V2) and Rcc (V3, V4) drop below
0.95. When there is a sensor fault, Rcc (V2, V3) and Rcc (V3,
V4) drop below the threshold. When there is an ESC fault, Rcc
(V2, V3) and Rcc (V4, V5) drop below 0.8. When there is an
ISC fault, Rcc (V2, V3) and Rcc (V4, V5) drop below 0.99 but
above 0.8.

(3) The cosine similarity method: When there is a connection
fault, RCS(V1, V2) and RCS (V3, V4) rise above 10°. When there
is a sensor fault, RCS(V2, V3) and RCS(V3, V4) rise above the
threshold. When there is an ESC fault, RCS(V2, V3) and
RCS(V4, V5) rise above 15°. When there is an ISC fault,
RCS(V2, V3) and RCS(V4, V5) rise above 1° but below 15°.

This experiment only use 4 cells to validate the three methods.
For battery module or pack, which consists of hundreds or
thousands cells, these methods are equally applicable. For
example, when the battery pack consists of 100 cells in series,
200 sensors would be used based on the interleaved voltage
measurement design shown in Figure 1.

When a connection fault occurs between cell 20 and cell 21, V40

andV41 show the same trend of abnormal change, and the rest of the
voltages remain normal. According to the sensor serial number
corresponding to the abnormal voltage, the fault type can be
identified and the location of the fault can be located. For the
improved Euclidean distance similarity method, the RIEDS(V39, V40)
and RIEDS(V41, V42) of Rgroup1 drop below the threshold, RIEDS(V40,
V41) and the rest RIEDS remain close to 1. Therefore, a connection
fault can be identified by detecting that the two adjacent RIEDS in
Rgroup1 drop below the threshold. For the correlation coefficient
method, the Rcc (V39, V40) and Rcc (V41, V42) drop below the
threshold, Rcc (V40, V41) and the rest Rcc remain close to 1.
Therefore, a connection fault can be identified by detecting that
the two adjacent Rcc in Rgroup1 drop below the threshold. For the
cosine similarity method, the RCS(V39, V40) and RCS(V41, V42) rise
above the threshold, RCS(V40, V41) and the rest RCS remain close to
0°. Therefore, a connection fault can be identified by detecting that
the two adjacent RCS in Rgroup1 rise above the threshold.

When a short circuit fault occurs in cell 50,V99 andV100 show the
same trend of abnormal change, and the rest of the voltages remain
normal. According to the sensor serial number corresponding to the

abnormal voltage, it can identify the fault type and locate the fault.
For the improved Euclidean distance similarity method, the
RIEDS(V98, V99) and RIEDS(V100, V101) drop below the threshold,
RIEDS(V99, V100) and the rest RIEDS remain close to 1. Therefore, a
short circuit fault can be identified by detecting that the two adjacent
RIEDS in Rgroup2 drop below the threshold. For the correlation
coefficient method, the Rcc (V98, V99) and Rcc (V100, V101) drop
below the threshold, Rcc (V99,V100) and the restRcc remain close to 1.
Therefore, a short circuit fault can be identified by detecting that the
two adjacent Rcc in Rgroup2 drop below the threshold. For the cosine
similarity method, the RCS(V98, V99) and RCS(V100, V101) rise to the
threshold rise, RCS(V99, V100) and the rest RCS remain close to 0°.
Therefore, a short circuit fault can be identified by detecting that the
two adjacent RCS in Rgroup2 rise above the threshold. ISC and ESC are
detected in the same way, but with different thresholds. Therefore,
two kinds of short circuits are isolated by setting an additional
threshold.

When the sensor measuring the voltage between the positive
electrode of cell 35 and the positive electrode of cell 36 is in a fault.
There is a significant abnormal change in V70, the rest of the
voltages remain normal. For the improved Euclidean distance
similarity method, the RIEDS(V69, V70) and RIEDS(V70, V71) drop
below the threshold, and the rest RIEDS remain close to 1.
Therefore, a sensor fault can be detected when Rgroup1 and
Rgroup2 both have RIEDS that drops below the threshold. The
common sensor serial number in RIEDS is the sensor serial
number with the fault. For the correlation coefficient method,
the Rcc (V69, V70) and Rcc (V70,V71) drop below the threshold, and
the rest Rcc remain close to 1. Therefore, a sensor fault can be
detected when Rgroup1 and Rgroup2 both have Rcc that drops below
the threshold. The common sensor serial number in Rcc is the
sensor serial number with the fault. For the cosine similarity
method, the RCS(V69, V70) and RCS(V70, V71) rise above the
threshold, and the rest RCS remain close to 0°. Therefore, a
sensor fault can be detected when Rgroup1 and Rgroup2 both
have RCS that rises above the threshold. The common sensor
serial number in RCS is the sensor serial number with the fault.

To sum up, all three methods are applicable for other battery
packs, which may consist of hundreds or thousands of cells.

6 CONCLUSION

For series-connected battery packs, to detect connection failures
other than battery body failures, interleaved voltage sensor

TABLE 2 | Diagnostic performance results.

Fault description Time of RIEDS (ms) Time of Rcc (ms) Time of RCS (ms)

Connection fault 200 mΩ 132 119 179
400 mΩ 1,019 125 1,068

Sensor fault Voltage freezing 1,802 478 566
Random fluctuation 2,485 2,520 8,234

ESC fault 0 mΩ 158 120 194
50 mΩ 79 23 170

ISC fault 10 Ω 131 513 126
20 Ω 76 867 70
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arrangements have become a trend. In addition to the correlation
coefficient method of the voltage signals, this paper also proposes an
improved Euclidean distance similarity and cosine similaritymethod
for multi-fault diagnosis from the perspective of similarity. All three
methods can quickly detect connection faults, sensor faults, and
short-circuit faults of series-connected battery packs, but there are
differences in sensitivity, robustness, and detection time to faults.
The improved Euclidean distance similarity method is simple to
calculate and more sensitive to changes in data. The correlation
coefficient method has good robustness because the correlation
coefficient is always close to 1 without much fluctuation in the
absence of faults; this method also produces a fast response and short
diagnosis time when faults occur. The cosine similarity method
differs from the previous two methods in that the threshold
differentiation is large. The cosine similarity is converted by
angle, and the variation range is from 0° to 90°, which can better
distinguish different faults. Future work will extend this paper’s
methodology to the fault diagnosis of series-parallel battery packs
and explore the multi-dimensional evolution mechanism of battery
faults.
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