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In the subcooled boiling flow under low-pressure conditions, bubble characteristic
diameter is of great influence on the surface heat transfer coefficient. However, large
errors are still found in calculations using traditional mechanistic models or empirical
correlations, especially for wide experimental condition. In this paper, we propose a
widely applicable data-driven model using artificial neural networks (ANN) to predict the
bubble maximum diameter and investigate the effect of experimental conditions. After a
series of analyses on structural parameters and input parameters, the ANN model is
established and validated based on six available experimental databases. The result
shows that the relative error is around 14%. Uncertainty analysis is carried out for the four
experimental conditions and two structural conditions. The results show the measuring
accuracy of pressure is one of the most sensitive parameters on the prediction of bubble
maximum diameter in the subcooled boiling flow under 1.0 MPa, especially for the
bubble sizes larger than 0.5 mm. According to the results of uncertainty analysis, a new
correlation is proposed for coefficients C and φ, which are used to express the effect of
pressure and fluid dynamic. The new correlation works well for all the experimental
databases, and the error for bubble datasets of large size is also modified. Furthermore,
another independent validation with a low relative error to 14% is provided to prove the
accuracy of the new correlation.

Keywords: bubble maximum diameter, data-driven model, subcooled boiling flow, artificial neural networks,
sensitivity analysis

1 INTRODUCTION

In a typical pressurized water reactor, saturation of boiling phenomenon is not allowed for its
impairment to the fuel element. However, subcooled boiling flow may potentially occur in
some special positions, such as the outlet of the fuel assembly or corners beside the spacer grid.
The phase change could bring about a large increase in heat transfer efficiency of the heated
surface. In complicated experiments involving a reactor core, the heat flux of the cladding
surface is difficult to control precisely. Boiling crises determined by critical heat flux (CHF)
may occur under some accident conditions. The CHF is a complicated two-phase flow
phenomenon, characterized by a heat transfer mechanism change that rapidly decreases
the efficiency of the heat transfer performance and increases the temperature of the heater
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surface. The high temperature could melt the fuel cladding
and significantly damage the reactor core.

In general, the gas phase is always present in the form of
bubbles during the subcooled boiling process. It features a series
of action according to the effects of heat and fluid dynamics, such
as generation, growth, sliding, and lift-off. In the subcooled
boiling flow, the coefficient of the convective heat transfer is
influenced by the characteristic parameters and dynamic
behaviors of bubbles, their size and shape in particular. To
describe the heat exchange and the heat flux partition on the
heated surface in a theoretical view, the Rensselaer Polytechnic
Institute (RPI) model (Kurul and Podowski, 1991) is widely used
in the simulation of subcooled boiling flow. In this mechanistic
model, the characteristic bubble diameter is considered one of the
most important parameters, and it should be calculated
accurately.

In the subcooled boiling flow, the characteristic bubble size has
three main features, the maximum, departure, and lift-off
diameter, which is shown in Figure 1. The maximum bubble
diameter describes the limited size of growth for bubbles adjacent
to the heated surface, while the other two parameters refer to the
patterns of movement of the bubbles during the growth process.

There are few differences among these three parameters.
However, the maximum bubble diameter and lift-off diameter
are usually considered to be the same for the low and medium
pressure conditions. Furthermore, the three bubble sizes show
less of a difference for the non-slip bubble in low pressure and
velocity (Hoang et al., 2016; Yoo et al., 2018). In calculations using
computational fluid dynamics (CFD) method, all of these three
characteristic sizes can be used in the calculation of the void
fraction, heat and mass transfer, wall temperature, and quenching
process of the different conditions (Tu and Yeoh, 2002; Krepper
et al., 2013; Cheung et al., 2014; Gu et al., 2017).

Many approaches have been developed to calculate the bubble
diameter, and these can be divided into three classifications,
namely, empirical correlation, heat balance model, and force
analysis model. Empirical correlations are proposed using the
fitting of experimental databases. These usually contain several
non-dimensional numbers, gradients, and ratios. Continuous
multiplication and polynomial structure are a common

functional form in the correlations, such as the model
proposed by Prodanovic et al. (2002) and Brooks and Hibiki
(2015). Certainly, these models show good performance for their
own database. As the data expand and reach a larger scope, not all
of the models could give the accurate results. Murallidharan et al.
(2018) developed a bubble growth model that includes infinite
bubble growth, wall effect multiplier, and bulk effect multiplier.
Most of the coefficients in this model are fitted into polynomial
structures. Although the model shows a good applicability over a
wide range of conditions, it lacks any convenience of application
and suitability for new experimental databases.

Apart from the empirical correlation, force balance and heat
balance theories are used to calculate the characteristics bubble
sizes from a theoretical view. According to the basic principle, the
force balance model (Klausner et al., 1993; Situ et al., 2005; Yeoh
et al., 2008) is suitable for calculating the departure and lift-off
diameters of the bubbles, and the heat balance model (Ünal, 1976)
is used to calculate the maximum diameter of the bubble. As can
be seen from the application (Dong and Zhang, 2021) of these two
models, the relative errors of the wide experimental databases
reach around 40%. In reality, not all of the experiments provide
local wall superheating as a result of immature measurement. The
Chen correlation is always used for the calculation of wall
superheat, especially in the heat balance model (Hoang et al.,
2016; Dong and Zhang, 2021). This is the most accurate model for
wall superheating, and its relative error is around 20%, which is a
large proportion of the total error in the maximum bubble
diameter.

Three submodules beyond wall superheating reflect the
influence of pressure, velocity, and local subcooling. The
former two are empirical correlations, while a partially
mechanistic model is provided for the effects of local
subcooling (Ünal, 1976). Because they were proposed in
Ünal’s original heat balance model, almost no modification
has been made for over 40 years. Dong and Zhang (2021)
used Reynolds numbers instead of velocity values, which
decreases the relative error by about 5–10%. After the
investigation of several experimental databases, a more
accurate model should be proposed to describe the effects of
pressure on the characteristic bubble sizes in the future.

FIGURE 1 | The sketch map of bubble characteristic size. (A) Bubble maximum diameter, (B) bubble departure diameter, (C) bubble lift-off diameter.
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Thanks to the successful application of data mining techniques,
data-driven theory has been used in many areas of industrial
knowledge, such as fluid dynamics and intelligent
manufacturing. In the fluid dynamics and thermodynamics,
many data-driven models have been used to identify of flow
regimes (Salgado et al., 2010; Affonso et al., 2020; Aarabi
Jeshvaghani et al., 2021) and predict boiling crises (Greenwood
et al., 2017; Yan et al., 2021) using artificial neural networks (ANN).
All the results show good performance in a wide experimental
condition. The relative error of CHF is around 20% which is better
than that of empirical correlation ormechanistic models. Jung et al.
(2020) investigated the bubble size distribution in turbulent air-
water bubbly flows by using multi-layer ANNs. Compared to the
20% error of traditional theoretical models, the results of the use of
ANNs show average relative error of 4.98% for the given
experimental datasets.

This study discusses the application of ANNs for the
calculation of maximum bubble diameter. We also try to
investigate the influence of several experimental conditions
based on the trained ANN model. The conclusions of
uncertainty analysis are helpful to correct the correlation of
coefficients to reflect the effects of pressure and mass flux in a
more accurate way.

2 MECHANISTIC AND ARTIFICIAL NEURAL
NETWORKS MODELS OF BUBBLE
MAXIMUM DIAMETER
2.1 Mechanistic Models
Although there are differences among the proposed heat balance
models, the key theoretical points are shared; these describe an
equivalence between absorbed and released heat bubbles. As
Figure 2 shows, the bubble is regarded as an approximate
sphere, while the growth process is determined by the heat
from thin liquid film qtf, from superheated liquid layer qsl,

and heat qc, dissipated through the subcooled liquid at the
upper-half surface. Although a dry patch at which the vapor is
contacted with heated wall directly exists, its heat flux is neglected
when the bubble reaches its maximum value.

According to heat balance theory, the mechanistic model can
be developed as Equation 1.

ρghlg
d

dt
(πD3

6
) � qslAsl + qtfAtf − qcAc (1)

The heat flux components used in Equation 1 are described in
detail (Levenspiel, 1959; Zuber, 1961; Sernas and Hooper, 1969)
and are given as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

qsl � klΔTc����
παlt

√

qtf � klΔTwγ����
παlt

√

qc � hcΔTsub

(2)

Themodel of qtf was developed by Sernas and Hoopers (1969)
and was used in Ünal’s heat balance theory. Parameter γ is used to
reflect the influence of the thermal properties of the heated wall.
This is shown in Equation 3.

γ �
������
ksρsCs

klρlCpl

√
(3)

hc is the heat transfer coefficient for condensation. Based on the
model developed by Levenspiel (1959), Ünal (1976) derived a
model for condensation heat transfer coefficient, as follows:

hc � CφhlgD

2(1/ρg − 1/ρl) (4)

where C and φ are determined by the pressure and velocity of
liquid phase, respectively.

C � { 65 − 5.69 × 10−5(P − 105)
0.25 × 1010P−1.418

0.1MPa≤P≤ 1MPa
1MPa<P≤ 17.7MPa

(5)

φ � max[1, (v/0.61)0.47] (6)
Dong and Zhang (2021) provided a new model (Equation 7)

for parameter φ using the Reynolds number instead of velocity.
Rel is widely used to determine the flow status, which has a
decisive role on the characteristic temperature distribution of
superheated liquid layer. In addition, it can reflect the shape effect
of flow channel.

φ � max(0.141, (Rel/39300)1.43) (7)
The surface area ratio of each heat flux is also of great

importance for the heat balance model. The surface area Atotal

of the generated bubble can be divided into four parts, including
the area of thin liquid film Atf, area of superheated liquid layer
Asl, area of heat dissipation Ac, and area of dry patch Adryout.
These five parameters can be described by the following
equations.

FIGURE 2 | Heat flux partition for a growing bubble in the subcooled
boiling flow.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Atotal � πD2

Adryout �
πD2

dryout

4

Atf � LπD2 − πD2
dryout

4

Asl � mπD2

Ac � nπD2

(8)

In Equation 8, L, m, and n refer to the fractions of surface area
for thin liquid film, superheated liquid layer, and condensation.
Under the assumption that the dry patch shrinks and disappears
when the diameter of the bubble reaches the maximum value, the
sum of L, m and n should be equal to 1.

By substituting Eqs. 2–5, 7, and 8 into Equation 1, we obtain
the basic equation for bubble diameter, as follows:

dD(t)
dt

� 2fklΔTw

ρghlg
����
παlt

√ m + 2klΔTwγ

ρghlg
����
παlt

√ L − CφD

1 − ρg/ρl ΔTsubn (9)

Using Ünal’s method and the Taylor series (Ünal, 1976), the
approximate solution of bubble maximum diameter can be
written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dmax � 1.20724A��
B

√

tmax � 1
1.46B

A � [fm + γL] 2klΔTw

ρghlg
���
παl

√

B � CφnΔTsub

1 − ρg/ρl
(10)

where f is a coefficient of the characteristic temperature used to
reflect an inhomogeneous of superheated liquid layer.

2.2 Artificial Neural Networks
In addition to the mechanistic model, an ANNmodel is proposed to
predict the maximum diameter of a bubble using the BP (Back-
Propagation) algorithm. The ANNmodel is a two-layer feed-forward
network with sigmoid hidden neurons and linear output neurons. All
of the calculations are carried out on the MATLAB platform.

As we can see from Figure 3, the ANN model consists of one
input layer, one or more hidden layers and one output layer.
Several parameters are chosen as input elements after analysis of
the experimental conditions. These elements should reflect the
effects of experimental conditions, such as pressure, mass flow,
hydraulic diameter, heat flux, local subcooling, and the physical
thermal properties of a heated surface.

For each neuron, an activation function is necessary to
transforms the input value to the next hidden layer or the
output layer. Commonly used activation functions include
sigmoid/logistic, tansig, ReLU, and ELU. The main purpose of
the activation function is to increase the non-linear ability of the
ANN model.

The training algorithm is another important element of an
ANN model. It is used to train the network and form a fixed
model. However, it is very difficult to know which training
algorithm will be most suitable for a given problem. This
depends on many factors, including the complexity of the
problem, the number of data points in the training set, and
the number of weights and biases in the network. Different
training algorithms should be compared to gain a good
accuracy in the calculation.

The last key parameter is the coefficient of determination R,
which represents the fitting degree between the experimental
value and the calculated value. It varies from 0 to 1, with larger
values being better. The function is expressed as follows:

R �
∑n

i�1(yi − �y)((ŷi − ŷ))����������������������∑n
i�1(yi − �y)2∑n

i�1(ŷi − ŷ)2
√ (11)

where n is the quantity of dataset, ŷi represents the calculated
value by ANN model, and yi is the experimental value.

3 EXPERIMENTAL DATABASES

As Table 1 shows, six experimental databases are used for the
validation of ANN model. All of the experimental conditions are
kept at low pressure and low velocity. The number of data points
sum to 366, which is sufficient to execute an ANN.

The experimental data published by Situ et al. (2005), Brooks
et al. (2015) Brooks and Hibiki (2015), Ahmadi et al. (2012),
Okawa et al. (2007) and Xu et al. (2014) include bubble lift-off
diameters. These datasets of the experiment are measured using a
high-speed video camera. In the original heat balance theory,
Ünal assumed that the bubbles would not leave the heated surface
when they reached their maximum diameter. In this paper,
bubble lift-off diameter is regarded as same as maximum
bubble diameter.

FIGURE 3 | Schematic diagram of the ANN model.
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Analyzing the original heat balance theory and using
Equation 3, we can identify a power relation between the
maximum bubble maximum diameter and the other four
important parameters of the mechanistic model. The thermal
properties of heated surface are not used as an impact parameter
for the limited data of surface material. As can be seen in
Equation 5, the direct influence of pressure P is worked
through the parameter C. After integration, the order x of P
should be in the range (-0.5, 0]. Considering that the vapor
density is sensitive to the variation of pressure in the subcooled
boiling flow, we also check the power relationship of ρg and the
maximum bubble diameter. The pressure has a greater effect
through changing the vapor density.

Dmax ~ f(Px, q1.0,ΔT−0.5
sub , G

−0.235, ρ−1.0g , D−0.715
h ) (12)

In the original research, φ is only considered to be a function of
velocity itself. However, we find that an equation incorporating
the Reynolds number is more accurate for calculating the
maximum diameter of the bubble in the former investigation
(Dong and Zhang, 2021). The hydraulic diameter in the Reynolds
number can reflect the effect of the channel dimension on bubble
growth, which is more suitable for use in the calculation than
velocity is.

4 VALIDATION AND DISCUSSION

In general, the key parameters of the ANN model include the
number of neurons, number of hidden layers, activation function,
and training algorithm. After a sensitivity analysis, we choose to
use two hidden layers with eight neurons as the basic structure.
The related R value can be increased to 0.9916, which is
sufficiently accurate for the necessary calculations. In addition,
the activation function and the training algorithm are also
determined after comparing the accuracy of multiple
combinations. The results show that the combination of logsig
and tansig activation functions with the trainbr training
algorithm gave the best performance, with a relative error of
13.50%. The trainbr algorithm, using Bayesian regularization
back propagation, is a network training function that updates

the weight and bias values according to Levenberg-Marquardt
optimization. Trainbr can train any network, so long as its weight,
net input, and transfer functions have derivative functions. It can
minimize a linear combination of squared errors and weights and
modify the linear combination so that at the end of training. the
resulting network has good generalization qualities, even for
different, small, or noisy datasets. Drawing on the above
structure of the ANN model, more than 150 iterations of
training are carried out for this prediction of maximum
bubble diameter. The coefficient of determination R for nearly
all the training sets is higher than 0.9, and 82% are higher than
0.95. This shows that the ANNmodel has a high confidence level,
which increases the credibility of the calculated results.

4.1 Input Parameters in the Artificial Neural
Networks Model
Appropriate input parameters are necessary structural elements in
the ANN model. The parameters cannot be chosen arbitrarily and
should reflect the effects of experimental conditions. For the
prediction of maximum bubble maximum diameter in the
subcooled boiling flow, experimental conditions, which include
pressure, mass flow, hydraulic diameter, heat flux, local subcooling,
and the physical and thermal properties of a heated surface should
be paidmore attention. Several dimensional parameters are chosen
to test the relevance with bubble maximum diameter. The results
are shown in Table 2. Multiple R and F refer to the significance
level of relevance. It is concluded that dimensional dynamic
viscosity μl/μv has little relevance to bubble maximum diameter,
while the other parameters have a stronger or weaker
relationship. However, some of the parameters have a direct
connection with the others. ρl/ρv, Pe, Eo and S are chosen as
the input parameters of ANN model. Considering the mechanism
model and experimental conditions, subcooling ΔTsub and heat
flux qw are added as a supplement.

4.2 Validation of Artificial Neural Networks
Model
After determining the structural elements of ANN model,
experimental databases are used to train the ANN model. For

TABLE 1 | Experimental databases for the validation.

Database Prodanovic et al.
(2002)

Situ et al.
(2005)

Brooks et al.
(2015), Brooks

and Hibiki
(2015)

Ahmadi et al.
(2012)

Okawa et al.
(2007)

Xu et al.
(2014)

N 54 90 92 54 28 48
Fluid Water Water Water Water Water Water
Heated material Stainless steel Stainless steel Stainless steel Stainless steel ITO film Copper block
Geometry Annulus Annulus Annulus Rectangle Rectangle Rectangle
P (KPa) 105, 200, 300 101 150, 300, 450 98–860 121–125 101
Dh (m) 0.0093 0.019 0.019 0.01333 0.003 0.0032
qw (KW/m2) 100–1,200 60.7–206 100–492 81–611 67–549 26.3–215.4
V (m/s) 0.08–0.83 0.487–0.939 0.246–1.03 0.175–1.25 0.09–1.49 0.15–0.75
ΔTsub (K) 10–60 1.38–19.88 5.4–39.8 4.0–29.7 9.2–20.8 6.6–27.4
Db (mm) 0.37–3.24 0.145–0.605 0.046–0.338 0.02–3.90 0.50–3.02 0.091–0.245
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all 366 sets of bubble maximum diameter, 70% of databases are
randomly selected as training data, and 15% are used as the test
and validation respectively. The results are shown in Table 3 and
Figure 4; the average error of all the experimental databases is
13.54% which is much lower than for other mechanistic models.
Furthermore, the ANN model increases the accuracy of
calculations of large bubbles from Prodanovic’s database.

However, due to the inner black box features of ANNs, the
trained ANN model can only be used for prediction, with the
experimental conditions covered by the trained database. Once

one of the experimental parameters exceeds the range used by
training, the calculated maximum bubble diameter could show a
partial large relative error.

4.3 Uncertainty Analysis of Experimental
Conditions
Considering installation error and measurement error, the
uncertainty analysis of the experimental conditions is carried
out in this section. The errors include the measurement accuracy
of measuring instruments and the uncertainty of measuring
position, while the other environmental influences are not
considered. The errors of experimental conditions and their
influence to input parameters are shown in Table 4. Because
the maximum coarseness of the common pressure gauge reaches
level 4, the relative error is 4%, so the measurement error for
pressure is set to ±5% in this paper. Pressure fluctuation would
change the density, Prandtl number, and surface tension.
Dimensional density, Pe, and Eo are affected. In general, the
average heat flux of the experiment is calculated based on the
heating power and the scale of heated surface. The local heat flux
of subcooled flow boiling can be measured with a non-contacting
heat flowmeter. Taking the measuring accuracy of the equipment
into account, the average relative error of heat flux is set to ±5%.
The flowmeter has a better accuracy the other instruments of
measurement, that is, no more than 2% for various types. In
addition, there is no position error in the measurement of mass
flux. On the contrary, the main contribution of measurement
error for local subcooling is the position error. In the heat balance
theory, the local subcooling is used for the calculation of bubble
condensation. It is therefore important to measure the subcooled

TABLE 2 | Relevance analysis of potential input parameters.

Input Parameter Description Multiple R Significance F

ρl/ρv The ratio of liquid density and vapor density 0.299 5.71E-09

Re � ρl uDh

μ
Reynolds number used to describe flow status 0.404 7.95E-16

Pr Prandtl number 0.316 5.97E-10
Pe = RePr Peclet number which is used to describe the velocity ratio of convection and diffusion phenomenon 0.404 7.75E-16

Eo � g(ρl−ρv )D2
h

σ
Eotvos number is used to describe the bubble shape in continuous liquid flow. It is the ratio of buoyancy force and
surface tension

0.404 7.75E-16

Mo � g(ρl−ρv )μ4L
ρ2l σ

3
Moton number works together with Eo to describe the bubble shape in continuous liquid flow 0.303 3.46E-09

μl/μv Ratio of liquid dynamic viscosity and vapor dynamic viscosity 0.033 5.26E-01
S � ksρsCs Product of thermal conductivity, density, and heat capacity of solid heated surface 0.215 3.50E-05

TABLE 3 | Arithmetic-mean errors of different models for the databases.

Model Prodanovic et al.
(%)

Situ et al.
(%)

Brooks et al.
(%)

Ahmadi et al.
(%)

Okawa et al.
(%)

Xu Jianjun
et al.

Ünal 30.75 164.71 248.54 240.67 34.16 —

Hoang 63.16 32.68 40.38 52.13 72.00 —

Levin 97.23 81.53 83.51 80.29 96.81 —

Previous mechanistic model (Dong and Zhang,2021) 42.40 31.32 35.66 36.90 32.52 —

ANN model 4.02 20.90 10.95 20.38 4.86 12.80%

Note: Because wall superheat data of Xu’s experiment cannot be predicted by Chen’s correlation, so this database is unable to calculate throughmechanistic method. The superheat data
is also a shortcoming of prediction and the main contribution of relative error in numerical calculation.

FIGURE 4 | Bubble maximum diameter predicted by the ANN model.
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TABLE 4 | The potential measuring error for different experimental conditions.

Experimental Condition Measurement Error Affected Input Parameter Relative Error

Pressure ±5% ρl/ρv ±5%
Pe −0.7–0.25%
Eo −0.7–0.6%

Heat flux ±5% qw ±5.0%
Mass flux ±2% Pe ±2.0%
Local subcooling ±3% ΔTsub ±3.0%
Hydraulic diameter ±3% Pe ±3.0%

Eo ±6.1%
Thermal properties of heated surface ±3% S ±3.0%

FIGURE 5 |Results of the ANNmodel under the fluctuations of experimental conditions. (A) Pressure, (B) heat flux, (C)mass flux, (D) local subcooling, (E) hydraulic
diameter, (F) thermal properties.
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temperature of the position that the bubble generates through
non-contacting measurement instruments. Considering the
potential position error of this parameter, the measuring error
of local subcooling is set to ±3%. Apart from these four
parameters, the hydraulic diameter and thermal properties of
heated surface are also given ±3% as a measurement error in this
sensitivity analysis. However, the trend of data deviation induced
by these two reasons should be the same for everything in the
same experimental facility.

From the given measurement error and position error, new
values of experimental conditions are chosen according to a
uniform distribution in the value range. Then the input
parameters are calculated and are used to form a series of new
matrix. The maximum bubble diameters shown in Figure 5 are
calculated by the trained ANNmodel based on the new databases
of input parameters. As can be seen from the first four figures in
Figure 6, only the fluctuations of pressure in four experimental
conditions show appreciable effect on the bubble maximum
diameter. The relative error of the total data set is enlarged
from 13.54% to 19.04% when the pressure varies in a ±5%
range. Therefore, pressure is considered to be the most
sensitive parameter in the experimental conditions. This
conclusion is consistent with the power relationship shown in
Equation 10. It is also concluded that the ANNmodel has a good
accuracy and robustness when facing the measurement error of
experimental conditions. From the last two figures in Figure 6,
the two experimental conditions related to experimental facility
produce a large effect on the results, especially the hydraulic
diameter. Furthermore, these two parameters remain the same
through each experiment. Thus, it is necessary to determine the
parameters related to the experimental section in a more accurate
way before the experiment starts.

In the further analysis of pressure, the results are divided into
four zones, according to the size of bubble maximum diameter.
As can be seen in Figure 6, pressure has a larger influence on the
zone where the bubble maximum diameter larger than 0.5 mm.
The relative error increases about 12% while that of the other two
zones varies only little. From a physical view, the larger bubble a
larger amount of vapor inside. The fluctuation of pressure would
influence larger bubble more through changing the vapor density.

To increase the accuracy of the prediction, the correlation with
pressure should be observed in both the experiments and in the
mechanistic theoretical analysis.

4.4 New Correlation of Coefficients C and φ
The experimental condition pressure shows great sensitivity to
the maximum bubble diameter, and its measurement should be
prioritized. In the mechanistic model, we should also check the
direct description of pressure, which is parameter C, used on the
condensation part. In Ünal’s original paper, the correlation (5) of
C proposed by Ünal is fitted from no more than 30 experimental
datasets, as well as parameter φ. This may have the largest
contribution to the error of heat balance models. This error is
especially remarkable for the large maximum bubble value under
low-pressure conditions.

Parameter C is only related to pressure, and parameter φ is
only related to liquid velocity or Re in the original heat balance
model (Ünal, 1976) and its modification (Dong and Zhang,
2021). In this paper, the product of C and φ is regarded as
one element Cφ. Drawing on the conclusions of the sensitivity
analysis of ANN model, further modifications are proposed for a
mechanistic model that uses the input parameters ρl/ρv, Pe, and
Eo instead of pressure and Re to form the new correlation of C
and φ. After a statistical regression analysis, the new correlation of
Cφ is shown below. It can be used directly in the coefficient B for
Equation 3.

Cφ � 2.454 × 10−3⎛⎝ρl
ρg
⎞⎠−0.185

Pe0.890Eo0.323 (13)

The results shown in Figure 7 are compared between the new
correlation and original model (Dong and Zhang, 2021). The new
correlation shows better performance for the bubble larger than
1 mm, in which the relative error is decreased from 51.39% to
33.19%. Other ranges of bubble size can also reach the same level
or have greater accuracy.

Beyond the experimental data above, another calculation
based on Kaiho et al.’s experiment (Kaiho et al., 2017) is
carried out for an independent validation of the improved
mechanistic model. The pressure range is 107–143 kPa, nearly

FIGURE 6 | The distributions of bubble maximum diameter for different ranges of size. (A) Excluding the measurement error of P, (B) including the measurement
error of P.
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atmospheric condition. The heat flux of the heated surface is
around 175–617 kW/m2 while the mass flux is 159–700 kg/m2s.
The subcooling of water is 10–30 K. The experimental results
from Kaiho’s research include the arithmetic mean value and the
volume average value of maximum bubble diameter. In this
validation, average volume is chosen as the experimental data,
which is closer to the assumptions of heat balance theory. The
calculated results are shown in Figure 8. The total relative error is
14.43%, which shows good performance for the present model.

5 CONCLUSION

Using ANNs, a data-driven model is proposed for the evaluation
of bubble maximum diameter in subcooled boiling flow. After a
basic sensitivity analysis is done on neuron number, two hidden
layers with eight neurons each are used to develop the data-
driven model. In addition, the activation function and training
algorithm are screened out for the ANN model. Through the
training using several experimental databases, the data-driven
model shows good performance, with a relative error of around
14%. Sensitivity analysis is also proposed for the four
experimental conditions and two structural conditions. The
results identify the accuracy and robustness of the ANN
model. It is also concluded that the measuring accuracy of
pressure is of the most sensitivity on the bubble maximum
diameter in the subcooled boiling flow under low-pressure
conditions, especially for bubble sizes larger than 0.5 mm. A
regression analysis of parameters C and φ, a new correlation is
developed for the mechanistic model. This new model functions
well for all the experimental databases and the large bubble
datasets. Another independent validation also proves the
accuracy of the improved mechanistic model. To sum up, the
modified mechanistic model covers a wide range of subcooled
boiling flow under low-pressure conditions. In the next step,
additional attention will be paid to increasing the generalization
performance of ANN model for larger experimental conditions.
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