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With increasing levels of renewable energy in power systems, the coordination of different
types of dispatchable resources, such as coal-fired power plants, hydropower plants,
energy storage systems, and electric vehicles, has become more important than before.
To optimally dispatch these operating units, the quality of the forecasting results becomes
increasingly important for the operation of power systems. In this study, an ultra-short
forecasting method was proposed for photovoltaic (PV) systems. It provided a forecast of
the power output for the following 5 min using sky images obtained photographically in real
time. The brightness of the key area was an important factor in determining the output
power of the PV system. The output power was calculated using several different features
extracted from the sky images. The brightness and other key features were then
processed by a bidirectional long short-term memory network. The accuracy of the
proposed PV forecasting method improved the accuracy of the forecast for the total
power system. A testbed system was established to capture sky images in real time and
verify the effectiveness of the proposed method.
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INTRODUCTION

In recent years, the penetration level of renewable energy has increased rapidly to reduce carbon emissions
and make the power grid more sustainable (Jiang et al., 2011). The cost of photovoltaic (PV) systems is
reducing rapidly. PV systems are replacing conventional coal-fired power plants with a lower cost per
kWh. Owing to the replacement effects of fully controllable coal-fired power plants with partially
controllable PV resources, the need for dispatchable operational resources will significantly increase the
operating cost of power systems and bring significant challenges (Ipakchi and Albuyeh, 2009; Farhangi,
2010; Huang et al., 2011). Power fluctuations and the unavoidable randomness of renewable energy
require a large capacity for flexible operating resources and spinning reserves (Grainger et al., 2014). All
controllable operating resources must be coordinated effectively to overcome these challenges. As a result,
forecasting methods for PV systems are essential for such tasks. The forecasting methods of PV systems
include several time scales, including long-term, day-ahead, short-term, and ultra-short-term. The short
and ultra-short PV forecast results can be integrated into the optimal power flowmodels to determine the
optimal set points for the generators. Based on the updated forecast results with higher accuracy, the
operation costs of the system can be reduced and the negative effectiveness of output power fluctuations
can be reduced. Moreover, such forecast results can be used to determine the on/off status of quick
response resources, such as gas turbines, demand response devices, and energy storage systems. In this
way, PV systems with controllable resources can enhance the power supply for critical loads after extreme
natural disasters. Thus, the resilience of power systems can be enhanced by accurate PV forecast results
(Liang et al., 2017).
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Currently, there are several methods for implementing an
ultra-short PV forecast system including statistical, physical, and
hybrid methods (Liu et al., 2015). In this study, a hybrid-type
ultra-short PV forecast method is proposed to predict the average
output power of PV systems for the following 5 min. Historical
data, cloud information, and data from PV systems are used to
determine the output power of PV systems.

For ultra-short PV forecast methods, which use physical and
hybrid methods, cloud is one of the major factors determining the
output power (Wan et al., 2015). Fu et al. (2021) proposed an
improved convolutional autoencoder-based sky image prediction
model to improve the feature extraction ability. Zhen et al. (2019)
proposed a method based on particle swarm optimization to
calculate the speed of clouds. The effects of clouds on solar
irradiance could then be calculated knowing the accurate
speed of the clouds. With the development of artificial
intelligence (AI) technologies, the image processing capability
has improved greatly. Consequently, several different AI
networks are used to process sky images (Zhen et al., 2020;
Wen et al., 2021; Zhang et al., 2021). In these studies, sky
images were processed by deep learning and bidirectional long
short-term memory (Bi-LSTM) networks for PV forecast
systems. A Bi-LSTM network is a type of LSTM network with
bidirectional capability. LSTM networks were first proposed by
Hochreiter and Schmidhuber in 1997 (Hochreiter and
Schmidhuber, 1997). The LSTM network has been improved
with new features and better performance in recent years (Gers
et al., 2000; Cho et al., 2014; Greff et al., 2017). A Bi-LSTM
network was selected for the current study, to determine the
output power for PV systems with several different features. In
(Zhang et al., 2019), a PV forecasting method was proposed to
determine the output power of the whole PV station with time
based analog ensemble method. In (Yan et al., 2021), a deep
learning network was applied with frequency-domain data to
predictive the ultra-short-term output power of PV systems.

Image processing algorithms, such as speeded up robust
features (SURF), fast library for approximate nearest neighbors
(FLANN), and Gabor filters, have been proposed and improved
to enhance image processing capabilities in recent years
(Grigorescu et al., 2003; Bay et al., 2008; Muja and Lowe,
2014). In this study, the features of sky images were extracted
and processed with SURF, FLANN, and Gabor filter methods.

The major contributions of this study can be summarized as
follows:

1) A processing method combined with SURF, FLANN, and
Gabor filters was proposed to calculate the brightness of the radiation
from the key area, which was an important factor for predicting the
output power of PV systems for the following few minutes.

2) A Bi-LSTM network was proposed to predict the output
power of PV systems using the different features extracted from
sky images, hardware systems, and historical data.

3) A testbed system was set up to capture the sky images and
verify the proposed ultra-short PV forecast method.

This paper is organized as follows: The framework and
methods for feature extraction of the proposed PV forecasting
methods are described in the next section followed by a
description of the intelligent network and data flows. The

calculations made are then broken down into their constituent
parts, and finally a case study is described.

ULTRA-SHORT FORECASTING METHOD
FRAMEWORK

As shown in Figure 1, the framework of the proposed ultra-short PV
forecasting method includes two parts. First, several key features
were extracted from sky images, historical data, and hardware
systems. The features extracted from the sky images include the
brightness of the key area, cloud coverage, and cloud texture type.
The historical data, temperatures, and incident and elevation angles
of the PV system were obtained from the PV system hardware.
These results were then fed into a Bi-LSTM network to calculate the
output power of the PV system for the following 5min.

In this study, for all the features obtained from the physical
hardware system and the images in real time, the LSTM network
was used to determine the PV output power. The structure of a
typical LSTM is shown in Figure 2A.

The LSTM includes collecting, selecting, and generating
information. It can be modeled as follows (Greff et al., 2017),

ft � σ(Wf · [ht−1, xt] + bf) (1)
it � σ(Wi · [ht−1, xt] + bi) (2)
ot � σ(Wo · [ht−1, xt] + bo) (3)

ct � ftct−1 + it tanh(Wc · [ht−1, xt] + bc) (4)

FIGURE 1 | Framework of the proposed ultra-short PV forecasting
method.
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ht � ot tanh(ct) (5)
yt � Wy · [ct, ht] + by (6)

Based on a typical LSTM, the Bi-LSTMnetwork was developed
to consider the information in the future. The structure of a
typical Bi-LSTM is shown in Figure 2B (Siami-Namini et al.,
2019).

A Bi-LSTM consists of both a forward and a backward
network. A network structure based on LSTM and Bi-LSTM
networks was proposed in this study to predict the output power
of PV systems in the near future, as shown in Figure 2C.

Based on the proposed Bi-LSTM structure, all features of the
PV forecasting-related data were imported to train the LSTM
network and obtain the forecasted results.

CALCULATION OF CLOUD COVERAGE

Clouds can affect the radiation of the sunshine on the PV
systems, thereby reducing the output power. The cloud

coverage affects the brightness of radiation striking the PV
system cells, and therefore needs to be quantified. Normally,
cloud coverage can be obtained from the local observatory
with a time interval of 1 h. The ultra-short-term PV
forecasting method cannot support a time resolution of 1 h.
Consequently, sky images in real time from satellites and
cameras were used to calculate the cloud coverage in real
time. When the sky images from both satellites and cameras
are available for the PV forecast method, the accuracy of the
forecast results can be improved. However, satellites may not
be available for all PV systems to provide the required sky
images in real time. A camera is therefore a good choice for
providing local sky images for PV systems. If the satellites Sky
images captured by cameras are in RGB format. The RGB
image can be converted into a gray image using the experience
equation:

GI(i, j) � αrR(i, j) + αgG(i, j) + αbB(i, j) (7)
where i and j are the pixel coordinates in the RGB image. The
GI(i, j) function represents the gray value of the pixel. The
R(i, j), G(i, j), and B(i, j) functions represent the values of the
red, green, and blue colors, respectively, of the pixel. The αr,
αg, and αb are the coefficients of the three colors used to
calculate the gray value of the pixel.

As shown in Figure 3, original RGB images are shown in
Figure 3A. The gray images obtained using Eq. 7 of the
original images are shown in Figure 3B. The 3D gray
distributions for these images are shown in Figure 3C.
Based on these results, pixels for different locations and
weather conditions can be recognized by the gray values.
For most days, the pixel gray values around the sun, of blue
sky, and of clouds are 220–255, 50–120, and 100–240,
respectively.

To calculate cloud coverage, the gray image was
converted into a binary image. This process is called
binarization:

BI(i, j) � { 0 GI(i, j)< δ
1 GI(i, j)≥ δ (8)

where BI(i,j) is the binary value of pixel (i,j) of the image, and δ
represents the binarization threshold. For the binary results, the
cloud coverage can be calculated as follows:

CV �
∑m,n

i,j
BI(i, j)
m × n

(9)

where CV is the cloud coverage, and m and n represent the
dimensions of the image. As shown in Figure 3B, the gray values
of the clouds far away from the sun are lower than those of the sky
near the sun. As a result, the binarization method described in
Eqs 8, 9 cannot recognize clouds from images and cannot
calculate the cloud coverage accurately.

Air has a stronger scattering effect on blue than on other
colors while clouds have equivalent scattering effects on all
colors. The difference in the scattering effects can be imported
to improve the accuracy of the binarization. First, the

FIGURE 2 | Structure of a typical LSTM, Bi-LSTM network and the
LSTM in PV forecasting method. (A) Structure of a typical LSTM network. (B)
Structure of a typical Bi-LSTM network. (C) Structure of LSTM in PV
forecasting method.
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coordinates of the sun, x0, and y0, can be calculated according
to the sky image and time of day. The factor γ(i, j) can then be
calculated as follows:

γ(i, j) � �����������������
(x0 − i)2 + (y0 − j)2√

max(dij) (10)

where max (dij) represents the maximal distance of all pixels
to the center of the sun on the image, as shown in Figure 4. To
recognize the clouds and the sky near the sun, the ratios of
blue and red colors are used to improve the accuracy of
calculating cloud coverage. The binarization can be
calculated as:

BI(i, j) � { 0 R(i, j)/B(i, j)<RBT(1 − γ(i, j))
1 R(i, j)/B(i, j)≥RBT(1 − γ(i, j)) (11)

where RBT represents the threshold for binarization. In most
cases, the R/B ratio of sun and clouds nearby are around 1.0
while the R/B ratio of the clear sky will decrease from 1.0 to 0.4
with increasing distance. Consequently, the distance and color
factors are considered in Eq. 11 to improve the accuracy of
binarization.

The binarization results with the original and improved
methods are shown in Figures 5A–H. As indicated in

FIGURE 3 | Results of sky images for different cloud coverage. (A) RGB images of sunny, partly cloudy, and cloudy. (B) Gray images of sunny, partly cloudy, and
cloudy. (C) The 3D distributions of gray images for different weathers.

FIGURE 4 | Calculating factor γ from the coordinates of sun.
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Figures 5D,H, the improved method described in Eqs 10, 11
could improve the accuracy of binarization and cloud
coverage.

CALCULATION OF KEY AREA
BRIGHTNESS

The brightness of radiation striking the PV panel is the key factor
in determining the output power of PV systems. The brightness of
an area is defined as follows:

Br � ∑m,n
i,j GI(i, j)
m × n

(12)

The brightness is directly related to the radiation striking the
PV panel and determines the output power of the PV system.
For the ultra-short PV forecasting method, both the position of
the sun and the direction of cloud movement need to be
considered to calculate the brightness of a specific area. The
position of the sun is associated with time, latitude, and
longitude. In the early morning and late afternoon, the sun
may not appear on the images captured by the camera in real

FIGURE 5 | Calculating cloud coverage by binarization. (A) Original grey image. (B) Binarization with thresholds. (C) Histogram of red/blue ratio. (D) Binarization
with R/B ratio. (E) Original gray image. (F) Binarization with thresholds. (G) Histogram of red/blue ratio. (H) Binarization with R/B ratio.
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time. Considering that the output power of the PV panel is
relatively low, the position of the sun can be ignored, and the
brightness can be calculated using Eq. 12. The speed and
direction of clouds are also considered in ultra-short PV
forecasting methods. The wind speed on the ground is
different from the wind speed near the clouds and cannot be
used to calculate the speed of clouds. Images of clouds in real
time can however be used to calculate such cloud information.

Feature Recognition
In this study, the classical SURFmethod was used to recognize the
features of clouds. The Hessian matrix of an image can be
calculated as:

H(f(x, y)) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z2f(x, y)

zx2

z2f(x, y)
zxzy

z2f(x, y)
zxzy

z2f(x, y)
zy2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (13)

where f (x,y) is the convolution of pixels (x,y) with a Gaussian
function. The results of filtering using σ can be represented as:

H(x, σ) � ( Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)) (14)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lxx(x, σ) � z2(g(σ)I)
zx2

Lxy(x, σ) � z2(g(σ)I)
zxzy

Lyy(x, σ) � z2(g(σ)I)
zy2

(15)

The SURF algorithm replaces the Lxx, Lxy, and Lyy operators
using box filters. The sign of det(H) is used to determine if
pixel (x,y) is a feature point in the image. When the Hessian
matrix is a positive or negative definition, the pixel (x,y) is

recognized as a feature point. The results of the SURF
algorithm are shown in Figure 6.

FLANN for Feature Matching
In this study, FLANN with a k-dimensional (KD) tree was used
to match the features for images, which reduced the search
time and improved the efficiency, compared with the
conventional FLANN searching method. The matching
method is shown in Figure 7.

First, a KD tree is constructed with all the feature points. The KD
tree consists of several branches that contain different feature points.
The red point in Figure 7 corresponds to the point to be matched.
The nearest point to the red point in the same branch is found, and
the distance is marked as r. The distances between the red point and
other branches, di, are then calculated. If di> r, the calculations for all
points located in branch i can be skipped.Moreover, a factor α can be
imported to accelerate the search process. The condition
di > r can be revised to di > r/α.

Identifying Mismatching of FLANN
The results of the feature matching include numerous errors. The
points of mismatching need to be identified and removed to
calculate the direction and speed of cloud movements. Both the
best and second-best matching points were recorded for the
FLANN method. Normally, the distance to the best point is
much smaller than that to the second-best point. The ratio
between these two distances can be used to determine if the
best matching point is the correct matching result. The
identification method is described as:����������∑n

i�1
(ai − bi)2

√
< η

����������∑n
i�1
(ai − b′i)2√

(16)

where ai is the feature point to be matched, and bi and b′i are the best
and second-best matching points, respectively. The best matching
point is the correct matching point when Eq. 16 is satisfied.

FIGURE 6 | Recognition results with SURF algorithm. (A) Sky image in
RGB at t-1 (B) Sky image in RGB at t. (C) Feature points at t-1 (D) Feature
points at t. FIGURE 7 | FLANN searching method with KD tree.
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In this way, the moving direction and speed of clouds can be
calculated using the difference between these matching feature
points in two images. Based on the calculated distance difference
of these feature points, the 3σ criteria can be used to delete the
invalid points as follows:

σ �

��������������
1
n
⎛⎝∑n

1

(xi − �x)2⎞⎠√√
, |xi − �x|> 3σ (17)

If the distance between these two images is larger than 3σ,
the point is removed from the calculation of the moving
direction and speed of clouds. The moving direction and

speed of the clouds can then be calculated based on the set
of feature points.

Key Area Brightness
The key area is defined as the area that is closer to the sun in the
next time interval of the forecast system. In this study, the PV
forecast system determined the output power of the PV system in
the following 5 min. If the sun is visible, the rectangular area that
is moving towards the center of the sun is defined as the key area,
as shown in Figure 8A. When the sun is not visible in the sky, a
circular area at the center of the image is selected as the key area,
as shown in Figure 8B.

FIGURE 8 | Definition of key area. (A) Sun visible (B) Sun invisible.

FIGURE 9 | Typical types of clouds. (A) cumulus clouds and (B) cirrus clouds. (C) stratocumulus (D) cumulonimbus.
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TEXTURE FEATURE OF CLOUDS

Cloud coverage only indicates the percentage of the visible sky
that contains clouds. The types of clouds also affect the
brightness of the radiation striking the PV panel and the
output power of the PV system. Some typical clouds include
cumulus clouds, cirrus clouds, stratocumulus, and
cumulonimbus, as shown in Figure 9.

The reduction effect of cirrus clouds on the brightness of the
sun is normally weak owing to the cloud height. The cumulus
clouds and stratocumulus could greatly reduce the brightness of
the sun owing to the shape and thickness of these clouds. In this

way, identifying the type of cloud is important for evaluating the
output power of PV systems. In this study, the Gabor filter is used
to identify the features of different types of clouds.

gλ,θ,φ,σ,γ(x, y) � exp( − x′2 + γ2y′2

2σ2
) exp(i(2π x′

λ
+ φ)) (18)

x′ � x cos θ + y sin θ (19)
y′ � −x sin θ + y cos θ (20)

where λ is the wavelength of the sinusoidal factor (θ) in the
Gabor filter, which is normally between 2 pixels and 1/5 of the

FIGURE 10 | Details of PV hardware system. (A) Experimental PV system. (B) Installation angles of PV hardware system.
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entire image; θ represents the angle of the Gabor function; σ
represents the standard deviation of the Gaussian function in
the Gabor filter; γ represents the aspect ratio of the ellipse in
the Gabor function; and φ represents the phase angle of the
cosine function. The energy, average, and standard deviation
of each image are chosen as the major features to describe the
images as follows:

Eθ,λ � ∑M,N

i,j

Gθ,λ(i, j)2 (21)

mθ,λ � 1
MN

∑M,N

i,j

Gθ,λ(i, j) (22)

Sθ,λ � 1
MN

∑M,N

i,j

(Gθ,λ(i, j) −m)2 (23)

For different combinations of λi and θj, the Gabor filter can
generate i × j results. The random forest regression method was
then imported to select these results. The detailed procedure
includes the following steps.

1) Normalization of eigenvectors.
2) Build regression tree with a single feature.
3) Model assessment.
4) Enumerate all features by repeating steps (2) and (3).

Calculate the results of the evaluation index for all the
features.

5) Select the features according to the results of the
evaluation index.

CASE STUDIES

In the case studies, the Bi-LSTM network includes a 4-layer
structure. The number of cells in the feedforward network was
set to 50. The PV forecasting system can determine the output power
of the PV system in the following 5min with a 10 s time interval. 24
PV panels each with a 230W rated power capacity were installed as
the PV system. The total power capacity of the PV system was

FIGURE 11 | Incident and elevation angles as a function of time.

FIGURE 12 | Temperature at different times at Xili University Town.

FIGURE 13 | Data flow of PV forecasting system.
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therefore 5520W. The resolution of the camera was 480 × 640 pixels.
The OpenCV toolbox was used to calculate the features of the
captured images.

PV Forecasting System Hardware
The PV forecasting system hardware is shown in Figure 10A,
and the installation angles are shown in Figure 10B γ �
19.44° and β � 49° for the experimental system. The PV
system was located at the Xili University Town of
Shenzhen, with a latitude of 22.591°. The relationships
between the incident and elevation angles with time are
shown in Figure 11. The details of temperature are shown
in Figure 12. In this way, the incident and elevation angles
were calculated as 21.602° and 58.739°, respectively. A
camera was installed with the PV panels. The actual active
output power of the PV system was collected through the RS
485 port from the power inverter of the PV system. The
temperature was collected from a local meteorological
station.

PV Forecasting System Data Flow
The data flow of the proposed PV forecasting system is illustrated in
Figure 13. The features of the clouds and brightness were obtained
from the images captured by the camera in real time. The
temperature, and incident and elevation angles were collected
from the local meteorological station and goniometers. The input
vector Xt can be generated based on the information at time t. The
output vectorYt consists of the active output power of the PV system
collected from the power converter. The input vectors were first
normalized. Then, the vectors were imported to train the network.
Finally, the forecast results in the following time intervals were
generated by the network.

Normally, the stochastic gradient descent (SGD) and the
adaptive moment estimation (ADAM) methods can be used to
train the network. The SGD method can be described as follows:

gt � ∇θt−1f(θt−1) (24)
Δθt � −ηgt (25)

ADAM increases the first- and second-order moment
expressions compared with SGD as follows:

gt � ∇θtft(θt−1) (26)
mt � β1gmt−1 + (1 − β1)gt (27)
vt � β2gvt−1 + (1 − β2)g2

t (28)
Δθt � −αg mt( ���

vt
1−βt2

√
+ ε)(1 − βt1) (29)

Sometimes, the ADAM method can achieve better results for
training the network.

FLANN Feather Matching
As illustrated above, the FLANN method was applied to match
the features with two images captured with a 10 s time interval.
The matched features were used to calculate the speed and
movement direction of the clouds. The features were first
matched by the FLANN method and then identified by the
proposed method in Eq. 17. The results are shown in
Figure 14A and Figure 14B as follows:

The matching features are listed in Table 1. According to
Eq. 17, some unusual feature points can be identified and
deleted. The results are shown in Figure 14B. Based on these
features, the moving vector of the clouds can be calculated as
(4.5, 20.8).

Cloud Texture Feature
The image shown in Figure 15A was applied to extract the
features of textures with Gabor filters. The filtered results are
shown in Figure 15B with wavelengths λ = 7, 15, and 23 in each
column, respectively, and θ = 5°, 10°, 35°, and 45° in each row,
respectively. Detailed calculation results with different indices are
shown in Table 2.

The results for λ = 15, θ = 35°, and λ = 23, and θ = 5° were
selected as the features for the PV forecasting system in
this study.

FIGURE 14 | Features before and after identification. (A) Features before
identification. (B) Features after identification.

TABLE 1 | Matched features in two images.

Coordinates at t-1 Coordinates at t Difference

(441.7, 326.7) (442.8, 352.6) (1.0, 25.9)
(326.0, 284.4) (325.2, 312.3) (-0.8, 27.9)
(146.5, 221.1) (140.0, 243.9) (-6.5, 22.6)
(68.7, 218.0) (55.7, 238.2) (-13, 20.1)
(64.9, 219.4) (52.0, 241.5) (-12.9, 22.2)
. . .. . . . . .. . . . . .. . .
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Finally, the data including several different features, as shown
in Figure 16, were generated to train the Bi-LSTM network with
the alternating direction method of multipliers algorithm. The
forecast results were obtained using the trained Bi-LSTM
network. The actual output power and forecasting results with
different networks and data are presented in Figure 17A. The red
line indicates the actual output power of the PV system. The green

line indicates the forecasting results of the Bi-LSTM without
cloud information. The orange and blue lines indicate the
forecasting results with cloud information from the LSTM and
Bi-LSTM networks, respectively. This indicates that the Bi-LSTM
network with cloud information can achieve the best results. To
show the results more clearly, the forecasting errors of these three
networks are shown in Figure 17B.

TABLE 2 | Filtered results with gabor filters.

7 15 23

Eθ,λ mθ,λ Sθ,λ Eθ,λ mθ,λ Sθ,λ Eθ,λ mθ,λ Sθ,λ

5° 0.453 0.872 0.454 0.813 0.872 0.813 0.812 0.872 0.812
10° 0.695 0.872 0.696 0.472 0.872 0.472 0.485 0.872 0.485
35° 0.138 0.87 0.138 0.868 0.854 0.868 0.867 0.854 0.868
45° 0.3 0.87 0.3 0.6 0.775 0.6 0.602 0.775 0.602

FIGURE 16 | Data for Bi-LSTM network training.

FIGURE 15 | Filtered results with Gabor filters. (A) Image for texture identification (B) Filtered results.
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As shown in Figure 17C, the forecast error is small, and all
three methods can achieve good results when the weather
conditions are sunny. When the weather is cloudy, the output
power of PV systems includes large power fluctuations, and the
forecast errors of Bi-LSTM with cloud information are much
smaller than those of the LSTM with cloud information and Bi-

FIGURE 17 | Forecasting results and errors with different methods. (A) Forecasting results with different networks. (B) Forecasting errors in Period A (C)
Forecasting errors in Period B.

TABLE 3 | Evaluation results with different evaluation indices.

Methods MAE RMSE R2 MAPE (%)

Bi-LSTM without clouds 324.11 527.09 0.449 5.872
LSTM with clouds 290.70 499.63 0.507 5.262
Bi-LSTM with clouds 246.58 396.71 0.693 4.471

TABLE 4 | Evaluation results with different prediction durations.

Duration (s) MAE RMSE R2 MAPE (%)

10 145.04 318.14 0.835 2.628
60 235.04 429.21 0.7 4.258
300 246.58 396.71 0.693 4.471
600 296.11 491.72 0.431 5.364

TABLE 5 | Results with different number of layers.

Layer number MAE RMSE R2 MAPE (%) Training time

2 330.75 566.51 0.371 5.994 205
3 283.57 511.73 0.486 5.143 308
4 246.58 396.71 0.693 4.471 411
6 258.81 485.52 0.541 4.682 614
10 249.69 432.84 0.633 4.520 1,017
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LSTM without cloud information. The detailed indices for the
forecasting results are listed in Table 3.

The duration of the forecasting time is another important
factor affecting the accuracy of the forecasting results. The
performance indices with different durations are listed in Table 4.

The number of layers in the LSTM network affects both the
training speed and forecast accuracy. The performance of the
LSTM network is insufficient when the number of layers is small.
However, increasing the number of layers may reduce the
generalization capability and increase the training time of the
network. The detailed results are shown in Table 5.

The results of the case studies indicate that the proposed data-
driven method can predict the output power of a PV system with
sufficient accuracy. The effects of clouds on the radiation striking
the PV panels can be calculated using the proposed feature of the
key area brightness. The Bi-LSTM network can improve accuracy
and training efficiency.

CONCLUSION

This study proposed a data-driven ultra-short PV forecasting
method. Several different features were extracted from the sky
images photographed in real time. The effects of cloud on the
irradiation of the PV panels was evaluated using these features. A Bi-
LSTM structure was proposed to consider the cloud features and
output power in past time intervals. The proposed Bi-LSTMnetwork
was used to determine the average output power during the
following 5min with sufficient accuracy, especially under cloudy
weather conditions. The proposed ultra-short PV forecast method
can be integrated with optimal operation models and used to

dispatch controllable operation resources to maintain the power
balance of power systems. Moreover, the sky images are captured
from cameras installed at the PV panels. These cameras can be
cleaned with the same cycle of the maintenance schedule of the PV
stations to avoid the reduced image quality caused by bad weathers.
The proposed method is potential to be applied with a PV stations
with multiple cameras to obtain the speed of clouds with higher
accuracy. Future work will focus on extending the forecasting
method to predict the time series of output power in the future.
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