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Over the years, the ventilation systems used in coal mines have become more and more
complex. Due to a lack of scientific and effective management, the energy consumed by
ventilation systems has rapidly increased, resulting in considerable wasted energy. To
solve this problem, the authors established a nonlinear optimization model aimed at
minimizing the total energy consumption of a mine ventilation network. Furthermore, the
authors propose an improved equilibrium optimizer algorithm to solve the model. First, the
population is initialized by a chaotic map. Second, the adjustment strategy of a
trigonometric function is introduced to improve the index F , which improves the global
development ability of the algorithm, avoids falling into local optimum, and can improve the
local search ability in the later stages. Then, Gaussian disturbance is introduced to
enhance the diversity of particles and avoid falling into the local optimum. Finally, a
learning factor was introduced to improve the generation rate G and improve the
algorithm’s integrity; it was then compared with other algorithms. The simulation
results show that the performance of the improved algorithm is significantly better than
other algorithms. It was tested with the ventilation system of Wangjialing mine of Zhongmei
Huajin Energy Co., Ltd. The results showed that the energy consumption of the ventilation
systemwas reduced by 17.83%. This method can save themine about 2million yuan RMB
every year. The economic effect is remarkable, we achieved the purpose of energy
conservation and emission reduction, and the effectiveness of the proposed method
was verified.

Keywords: ventilation energy consumption, equilibrium optimizer algorithm, ventilation network optimization,
Gaussian disturbance, energy saving and emission reduction

1 INTRODUCTION

Amine’s ventilation system is one of the most essential coal mine safety production systems. Energy
consumed by the ventilation system accounts for about one third of the total energy consumption of
a coal mine. Over the years, ventilation systems have become more and more complex. Due to the
poor planning of mine ventilation systems and a lack of scientific and effective management, there is
considerable waste of energy as well as potential safety hazards. To ensure safe production in a mine,
improve mine ventilation conditions, and reduce energy waste, ventilation systems must be
optimized (Shao et al., 2020; Su and Ouyang, 2021). Ventilation system optimization is a hot
topic of research in this field (Wang et al., 2019).

Mine ventilation systems are highly coupled and complex systems. Traditional methods are not
only slow to solve the problem but also poor at solving the problem, so we must use new methods to
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solve this problem. With the ongoing development of intelligent
algorithms, many scholars have introduced intelligent algorithms
to optimize mine ventilation systems. Liangshan Shao et al.
optimized the problem based on simulated annealing and
improved the particle swarm optimization algorithm, thus
reducing the energy consumed for ventilation by 25.3% (Shao
et al., 2021). Xingguo Zhang et al. studied a ventilation network
solution based on an ACPSO algorithm, and the air quantity
optimization scheme obtained had the minimum total ventilation
energy consumption (Zhang and Zhou, 2018). Zhong et al.
proposed an efficient mine ventilation solution method based
on minimum independent closed loops to effectively optimize the
mine ventilation system (Zhong et al., 2020). Yixin Su used the
improved genetic algorithm to search the optimal weight and
threshold of the network globally, and used BP algorithm to
conduct local optimization, and finally obtained the wind speed
prediction value (Su et al., 2017). Xinzhong Wu in fireworks
algorithm to join the elite reverse learning strategy, strengthen the
search algorithm in the field of space, Thus improve the global
searchability (Wu et al., 2019).

The above methods have some limitations for solving the
nonlinear optimization model of mine ventilation systems. For
example, the algorithm has many parameters and this can easily
result in local optimization, so the algorithm must be improved.
The equilibrium optimizer (EO) is a physics-based meta-heuristic
algorithm, proposed by Faramarzi et al., in 2019 (Faramarzi et al.,
2020a). Compared with the genetic algorithm (Li et al., 2007),
which can easily result in local optimization and has low
execution efficiency, the particle swarm optimization (PSO)
algorithm (Marini and Walczak, 2015) with premature
phenomenon and the ant colony algorithm (Dorigo et al.,
2006) which is easy to appear algorithm stagnation, it has the
advantages of fewer parameters, high execution efficiency, and
outstanding global optimization ability. Therefore, it has been
successfully applied to multi-objective optimization (Abdel-
Basset et al., 2020), photovoltaic cell parameter optimization
(Dinh, 2021), multimodal medical image fusion (Wang et al.,
2021), feature selection (Wang et al., 2021), and other fields.

Many experts and scholars have developed improvements to
the performance of the equalization optimizer algorithm. Sayed
et al. constructed a stable search mechanism by introducing
chaotic mapping to improve the feature selection efficiency of
the algorithm (Sayed et al., 2020). Fan et al. improved the
optimization accuracy of the algorithm through reverse
learning and a new concentration update formula (Fan et al.,
2021). Dinkar et al. (2021) updated the candidate solution
concentration using the random walk of Laplace distribution
and then accelerated the development by reverse learning tomake
the algorithm converge rapidly. However, these improved
methods have only improved parts of the equalization
optimizer algorithm. To apply the EO algorithm to mine
ventilation system optimization, the algorithm must be
comprehensively improved. We propose an improved
equalization optimizer (IEO) algorithm combined with chaotic
mapping, trigonometric function, Gaussian disturbance, and a
learning factor, and compare it with other algorithms to verify the
ability of the IEO algorithm to optimize mine ventilation systems.

The main contributions of this paper include:

⁃Establishing a nonlinear optimization model aimed at
minimizing the total energy consumption of a mine
ventilation network to address the problem of mine
ventilation optimization.
⁃Proposing an IEO algorithm based on chaotic mapping,
trigonometric function, Gaussian disturbance, and a
learning factor.
⁃The performance of the proposed IEO algorithm is validated
against seven unimodal benchmark functions, six multimodal
benchmark functions, and three fixed-dimension multimodal
benchmark functions.

⁃Performance comparisons between the proposed IEO and
other state-of-the-art algorithms using various performance
metrics for the optimization of the ventilation system of
Wangjialing mine, belonging to Zhongmei Huajin Energy
Co., Ltd.
The remainder of the paper is organized as follows: Section

2 establishes the mine ventilation network model. Section 3
introduces the EO algorithm. Section 4 describes the IEO
algorithm. Section 5 tests the IEO algorithm’s performance.
Section 6 describes the engineering application analysis.
Section 7 gives the conclusion and the future research
direction.

2 MINE VENTILATION SYSTEM MODELING

To realize the intellectualization and automation of the
regulation and optimization of mine ventilation systems, a
mathematical model of mine ventilation network optimization
based on minimum power consumption has been established
(Hao et al., 2012; Pei et al., 2017). The model constraints are as
follows:

(1) The mine ventilation network follows the node air quantity
balance law (Wei, 2011). That is, the air quantity flowing into
a node is equal to the air quantity flowing out. This can be
described as:

∑Ni

j�1
ωijQi � 0, (Ni � 1, 2,/J) (1)

ωij �
⎧⎪⎨⎪⎩ 1 branch i flows into node j

0 the j node is not the endpoint of the i branch
−1 branch i flows out node j

(2)

Where, Ni is the total number of branches with node j as the
endpoint of the mine, with node j as the endpoint. Qi

represents the quantity of air in this branch i , unit m3/s. J
is the total number of ventilation network nodes.

(2) A mine ventilation network follows the loop resistance
balance law (Oliveira et al., 2015). That is, the algebraic
sum of resistance, natural wind pressure, and mechanical
wind pressure of each branch in the M (M � (N − J + 1))
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loop is zero, andN is the total number of branches. This can
be described as:

∑M
i�1
cij(RiQ

2
i − (Pi + FiQi)) � 0, (3)

cij �
⎧⎪⎨⎪⎩ 1 i ∈ l, the i branch is in the same direction as the loop

0 i ∉ l
−1 i ∈ l, the i branch is opposite to its loop

(4)
Where Pi is the natural wind pressure of branch i , unit Pa, FiQi is
the mechanical wind pressure of branch i, unit Pa, and Ri is the
resistance of branch i, unit N · s2 ·m−8.

(3) To make the fan work stably and avoid surge (Dong and Li,
2008), it is generally stipulated that the upper limit of the
actual working wind pressure of the fan shall not exceed 90%
of its maximum wind pressure, and the lower efficiency limit
shall not be less than 60%. This can be described as:

H≤ 0.9Hmax (5)
η≥ 60% (6)

Where Hi represents the operating pressure of the fan and η
represents the efficiency of the fan.

(4) Finally, according to the IThe Coal Mine Safety RulesJ and
the actual situation of the mine, the lower and upper limits of
the regulated air quantity and air pressure of the adjustable
branches can be calculated. This can be described as:

Himin ≤Hi ≤Himax (7)
Qimin ≤Qi ≤Qimax (8)

whereQimin andQimax, respectively, represent the lower limit and
upper limit of the adjustable branch air quantity, unit m3/s.Himin

andHimax represent the lower limit and upper limit, respectively,
of the regulated wind pressure of the branch, unit Pa.

On the premise of meeting the demand air distribution, the
minimum total power of the fan is regarded in the ventilation network
as the optimization goal of the model. This can be described as:

minf �∑n
i�1
HFiQi (9)

where HFi represents the pressure of fan on branch i.
It is known that the model is a non-convex nonlinear

constrained optimization problem. To better apply an intelligent
algorithm to solve the problem, the penalty function was used to
transform the inequality constraints: it was constructed the objective
function and constraints into an augmented objective function with
parameters (Jia et al., 2011) and transform the problem into an
unconstrained nonlinear programming problem for solution. The
augmented objective function consists of two parts: the objective
function of the original problem and the penalty term constructed by
the constraint function. The function of the penalty term is to restrict
illegal points or data. Therefore, the upper and lower limits of
adjustable air volume and wind pressure of some branches are

known, so the internal penalty function method is adopted to
ensure the feasibility of the iteration points. After the above
conversion, the objective function is:

W �∑M
i�1
|Hi||Qi| + ι∑L

i�1

∣∣∣∣∣∣∣∣∣∣∑Dj�1ωijQi

∣∣∣∣∣∣∣∣∣∣ + κ∑L
i�1

∣∣∣∣∣∣∣∣∣∣∑Nj�1cijRjQ
2
j −∑N

j�1
[Pj + FjQj]∣∣∣∣∣∣∣∣∣∣

+ ρ∑D
i�1
|ln(min{0, (Qimax − Qi)}) + ln(min{0, (Qi − Qimin)})|

+ ξ∑D
i�1
|ln(min{0, (Himax −Hi)}) + ln(min{0, (Hi −Himin)})|

+ τ∑D
i�1

∣∣∣∣ln(min{0, (0.9Himax −Hi)}) + ln(min{0, (ηi − 0.6)})∣∣∣∣
(10)

where ι, κ, ρ, ξ, τ are penalty coefficients.

3 PRINCIPLE OF THE EQUALIZATION
OPTIMIZER ALGORITHM

The equalization optimizer algorithm is a newphysics-based algorithm
for solving continuous optimization problems. The advantage of the
equalization optimizer algorithm is that the solution can be changed
randomly according to high exploration and exploitation. The particle
concentration of the equalization optimizer is similar to the particle
and position of the PSO algorithm, which represents the search agent.
The search agent randomly updates their concentration and names it
the equilibriumcandidate solutionwith the best self searched. Finally, it
reaches the equilibrium state, when it can be divided into three stages:
population initialization, equilibrium pool, and concentration update.

3.1 Inspiration
The EO algorithm was inspired by the physical mass balance
equation, which provides the physical basis by controlling the
controller’s volume weight input quality, output quality, and
production quality. A section of the breeze equation represents
the general mass balance equation, in which the change of mass
over time is equal to the mass entering the system minus the mass
leaving the system plus the original mass. This is described in Eq. 11.

C � Ceq + (C0 − Ceq)F + G

λV
(1 − F) (11)

In the equation, C represents the current particle
concentration, Ceq represents the concentration when the
particles in the control product are in equilibrium without
iteration, C0 is the original concentration of the particles, G
represents the mass generation rate in the control product, λ is a
random number between [0,1],V is a unit volume, and F index to
balance development and exploration.

3.2 Equilibrium Pool and Its Candidate
Solution
The equilibrium state is the final convergence state of the
algorithm and is globally optimal. The EO algorithm
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constructs a vector called the equilibrium pool, which provides
equalization candidate particles. Through experiments, it can be
determined in five candidate solutions in the equilibrium pool,
four of which are the best particles identified in the whole
optimization process. The other is the mathematical average of
the other four. The four best particles are helpful to explore the
search space, and the average is helpful for exploitation. The
equilibrium pool vector can be described as shown in Eq. 12:

�Ceq,pool � { �Ceq(1), �Ceq(2), �Ceq(3), �Ceq(4), �Ceq(ave)} (12)

where �Ceq,pool is the candidate solution selected with the same
probability in the equilibrium pool.

3.3 F Index
Index F plays a significant role in the exploration and exploitation
phases of the balanced EO algorithm. The calculation is described
in Eq. 13:

F � e(−λ(t−t0)) (13)
where λ is a random vector between [0,1]. t is an iterative
function; as the number of iterations decreases, the equation is
shown in Eq. 14:

t � (1 − Iter

Max iter
)α2 Iter

Max iter

(14)

where Iter and Max iter represent the current and maximum
iteration times, respectively. The calculation of t0 is described in
Eq. 15:

�t0 � 1
�λ
ln( − α1sign( �r − 0.5)[1 − e−λt]) + t (15)

In the formula, α1 and α2 are constants used to control the
exploration and exploitation abilities. The higher the value of α1,
the stronger the exploration ability and the weaker the
exploitation ability. The higher the value of α2, the stronger
the exploitation ability and the weaker the exploration ability.
Therefore, we can write the index Fas (Eq. 16):

�F � α1sign( �r − 0.5)[e− �λt − 1] (16)

3.4 Generation Rate
The generation rate G enables the EO algorithm to provide
accurate solutions by improving the exploitation stage. The
generation rate is defined by the first-order exponential decay
rate, as shown in Eq. 17:

�G � �G0e
− �k(t−t0) (17)

where �G0 is the initial value and k is an attenuation constant equal
to λ , so the final expression of the generation rate is described in
Eq. 18:

�G � �G0e
− �k(t−t0) � �G0

�F (18)

where:

�G0 � GCP
����→( �Ceq − �λ �C) (19)

GCP
����→ � { 0.5r1, r2 ≥GP

0, r2 <GP
(20)

where r1 and r2 neutralization is a random number between [0,1].
GCP represents the probability that generation contributes to the
update process, called the generation rate control parameter. The
exceptional contribution of this probability is that many examples
use this generation term to update their state. GCP can be
obtained from Eq. 20. GP (GP = 0.5), the generic possibility,
can achieve a good balance between development and
exploration. The final update of the EO algorithm is shown in
Eq. 21:

�C � �Ceq + ( �C0 − �Ceq) �F + �G
�λV
(1 − �F) (21)

4 IMPROVED EQUALIZATION OPTIMIZER
ALGORITHM

4.1 Chaotic Map Initialization Population
The ergodicity and randomness of chaotic mapping sequences are
widely used to optimize search problems. To improve the
individual diversity and make the initial particles as evenly
distributed in the search space as possible, this paper uses cat
mapping, because the cat mapping structure is simple and it is not
easy to fall into short cycles and periodic fixed points (Peterson,
2020) to generate the initial population. The expression of cat
mapping is shown in Eq. 22:

[ xi+1
yi+1
] � [ b1 b2

b3 b4
][xi

yi
]mod1 (22)

where, b1, b2 , b3 and b4 is the mapping coefficient, (they are
positive integer), satisfying the relationship in Eq. 23, xi+1 and
yi+1 are the coordinates after mapping, and mod1 is the
coordinate before mapping, indicating the decimal part of the
mapping coefficient.

b1b4 − b2b3 � 1 (23)
The initial population generated by cat chaotic mapping can

be expressed as shown in Eq. 24:

C′ � [ci 1′, ci 2′,/cid
′ ] (24)

4.2 Improvement Index
In the equilibrium optimization algorithm, the index F plays a
very important role in the exploration and exploitation
phases of the algorithm. α1 and α2 control the exploration
and development ability. The higher the value of α1, the
stronger the exploration ability and the weaker the
exploitation ability. The higher the value of α2, the
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stronger the exploitation ability and the weaker the
exploration ability. In the standard EO algorithm, two
parameters are definite value. Therefore, the algorithm
cannot adaptively adjust the exploration and exploitation
ability according to the iteration, and there will be
unstable optimization. At the beginning of optimization a
larger value is set, and the value of α1 is gradually reduced.
Setting a smaller value and gradually increasing the value of
α2 improves the algorithm’s global development ability,
avoids falling into local optimization, and improves the
local search ability in the later stages. Therefore, using the
adjustment strategy of introducing a trigonometric function,
the parameters α1 and α2 are improved. The improved
parameters are shown in Eqs 25–26.

α1 � a + (b − a)pe
[−20+( t

Tmax
)10]

+ 0.1 (25)
α2 � c + dp cos(α1pπ) (26)

where a, b, c, and d are constants.
Figure 1 shows the change curves of α1 and α2. It can be seen

that when the number of iterations is less than 170, the values of α1
and α2 are relatively flat, which can improve the global search speed.
When the number of iterations is more than 170 and less than 240,
the value of α1 and α2 change significantly, which can make the
particle concentration close to the optimal equilibrium
concentration. When the number of iterations is more than
240 and less than 300, the α1 and α2 values become flat again,
which ensures the accuracy of the local search. At the same time, the
two can restrict each other to ensure the early search speed and
avoid falling into local optimization to balance the exploration and
exploitation abilities.

4.3 Gaussian Perturbation
Considering that the five candidate solutions in the
equilibrium pool constructed by the standard EO algorithm

represent the best equilibrium concentration, there is still an
ample change space. To avoid falling into local optimization
and increase particle diversity, the four best particles are
slightly Gaussian perturbed (Gleiser and Dotti, 2005) to
improve the algorithm’s ability to explore the optimal value.
The expression is:

�C
g

eq(i) � �Ceq(i)(1 + Gaussian(μ, σ2)) i � 1, 2, 3, 4 (27)

�C
g

eq,pool �
⎧⎪⎨⎪⎩ �C

g

eq,pool f( �C
g

eq,pool)<f( �Ceq,pool)
�Ceq,pool others

(28)
where �C

g

eq(i) is the concentration of four particles in the
equilibrium pool after disturbance; Guassian(•) is the
Gaussian function, μ is the mean, σ is the variance; �C

g

eq,pool
is the equilibrium pool after disturbance, and f(•) is the fitness
function. Through the small Gaussian perturbation of �Ceq(i),
the algorithm can jump out of the local optimal value, which
can effectively improve the utilization and accuracy of the
algorithm.

4.4 Improvement Generation Rate
The generation rate G enables the EO algorithm to provide
accurate solutions by improving the development stage. In
the standard EO algorithm, the first-order exponential
decay rate is used to define the generation rate, and a
learning factor α3 is introduced in the concentration
change stage. Its expression is shown in Eq. 29. Through
α3 we can increase the smoothness of the optimization.
Through cooperation with α1 and α2 we can increase the
algorithm’s integrity. The relationship between α1, α2, and
α3 is shown in Figure 2.

α3 � e + f p cos(arccos(α3 − c
d
)) (29)

FIGURE 1 | Relationship between α1 and α2. FIGURE 2 | Relationship between α1, α2, and α3.
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where e and f are constants and, as the number of iterations
increases, the learning factor gradually decreases, which increases
the optimization accuracy in the later stage of the
algorithm.Therefore, Eq. 21 is improved to Eq. 30:

�C′ � �C
g

eq + ( �C0 − �C
g

eq) �F + α3
�G

�λV
(1 − �F) (30)

5 SIMULATION EXPERIMENT AND
ANALYSIS

5.1 Experiment-Related Settings
The experimental environment was a Windows 10, 64-bit
operating system, the CPU was an Intel Core i9-11950h, the
main frequency was 5.0 GHz, and the memory was 16 GB.

TABLE 1 | Algorithm names and parameter settings.

Full
name of algorithm

Abbreviation Parameter setting

Marine predators algorithm MPA Faramarzi et al. (2020b) FADs = 0.2,p = 0.5
Sine cosine algorithm SCA Mirjalili, (2016) a = 2
Particle swarm optimization PSO Poli et al. (2007) w = 0.7298; c1 = c2 = 1.4962
Tunicate swarm algorithm TSA Kaur et al. (2020) —

Equilibrium optimization EO Faramarzi et al. (2020a) a1 = 2,a2 = 1,GP = 0.5
Improved equilibrium optimization IEO a = 0.08,b = 1,c = 0.6,d = 0.5,e = 0.8,f = 0.5

TABLE 2 | Benchmark function.

Function Dim Range Fmin

F1(x) � ∑n
i�1
x2i

30 [−100,100] 0

F2(x) � ∑n
k�1

|xi | + ∏n
k�1

|xi | 30 [−10,10] 0

F3(x) � ∑n
i�1
(∑i
j�1
xj)2

30 [−100,100] 0

F4(x) � maxj{|xi ,1≤ i ≤ n} 30 [−100,100] 0

F5 � ∑n−1
i�1

[100(xi+1 − x2i )2 + (xi − 1)2] 30 [−30,30] 0

F6(x) � ∑n
i�1
([xi + 0.5])2 30 [−100,100] 0

F7(x) � ∑n
i�1
ix4i + random[0, 1] 30 [−1.28,1.28] 0

F8(x) � ∑n
i�1

− xi sin(
���|xi |√ ) 30 [−500,500] 0

F9(x) � ∑n
i�1
[x2i − 10 cos(2πxi) + 10] 30 [−1.25,1.25] 0

F10(x) � −20 exp {−0.2
������
1
n
∑n
i�1
x2i

√√
}

− exp (1
n
∑n
i�1
cos(2πx1)) + 20 + e

30 [−32,32] 0

F11(x) � 1
4000 ∑n

i�1
x21 −∏n

i�1
cos( x1�

t
√ ) + 1

30 [−600,600] 0

F12(x) � π

n
{10 sin(πy1) + ∑n−1

i�1
(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2}

+ ∑n
i�1
u(xi ,10, 100, 4)

30 [−50,50] 0

yi � 1 + xi+1
4 u(x, a, k,m) �

⎧⎪⎨⎪⎩ k(x,−a)m xi > a
0 − a< xi < a
k(−x,−a)m xi < − a

F13(x) � 0.1{sin2(3πx1) + ∑n
i�1
(xi − 1)2[1 + sin2(3πi + 1)] + (xn − 1)2[1 + sin2(2πxn)]} + ∑n

i�1
u(xi , 5, 100, 4) 30 [−50,50] 0

F14(x) � (+ 1
500 + ∑25

j�1
1

j+∑2

i�1(xi−aij )
) − 1

2 [−65,65] 1

F15(x) � ∑11
i�1
[ai − x1(b2i +bix2 )

(b2
i +bi x3+x4 )

]2 4 [−5,5] 0.00030

F16(x) � 4x21 + 2.1x41 + 1
3x

6
1 + x1x2 − 4x22 + 4x42 2 [−5,5] −1.0316
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The algorithm program was written based on Matlab 2020b.
Table 1 shows the full names and abbreviations of the
algorithms and their parameter settings.

Simulation experiments were carried out on
13 benchmark functions. Table 2 shows the details of the
test functions. Among them, functions F1–F7 are unimodal
benchmark functions, and there is only one global optimal
meridian, used to evaluate the convergence speed of the
algorithm. Functions F8–F13 are multimodal benchmark
functions used to evaluate the algorithm’s performance in
avoiding local optimization and exploration. Functions
F14–F16 are fixed-dimension multimodal benchmark
functions.

5.2 Experimental Results and Analysis
To prove the effectiveness and robustness of the proposed IEO,
the IEO algorithm was compared with the MPA, SCA, PSO,
TSA, and EO algorithms. The population number of all
algorithms was 30, and the maximum number of iterations
was 500. All algorithms were run independently on
13 benchmark functions, 50 times, and the average and
standard deviation of these 50 times was taken as the final
evaluation index. Table 3 shows the specific experimental data,
where Avg represents the average optimal fitness value and Std

represents the standard deviation; the best results are shown in
bold text.

According to Table 4, in the unimodal function, the proposed
IEO algorithm is better than the other algorithms because of the
introduction of parameters α1, α2, and α3. It improves the
integrity of the algorithm. It balances the optimization
performance well in terms of exploration and exploitation. In
the multimodal function, the performance of the proposed IEO
algorithm is also better than the other algorithms, because the
introduction of Gaussian disturbance can enhance the ability of
particles to escape from local optimization.

5.3 Convergence Analysis
Figure 3 shows the convergence evaluation results of the IEO
algorithm and the comparison algorithms in Table 1 for different
functions. To facilitate observation, the logarithm with base
10 was taken as the ordinate. From Figure 3, it can be seen
that the convergence speed of the proposed IEO algorithm is
faster than the other algorithms in both the exploration and
exploitation stages. It shows that the three parameters introduced,
α1, α2, and α3, can cause the algorithm to reach a dynamic
equilibrium state and help the particles converge in a better
direction. Furthermore, the search accuracy is better than the
other algorithms. This result is inseparable from the strategy of

TABLE 3 | Experimental comparison results.

F MPA SCA PSO TSA EO IEO

F1 Avg 4.7445E+00 3.1894E-07 1.5165E-06 8.8952E-20 4.3219E+00 5.6668E-44
Std 2.8718E+01 1.2919E-07 1.9585E-06 5.9106E-20 1.0161E+01 3.8395E-43

F2 Avg 2.3510E-01 1.9826E-04 1.5670E+00 2.4537E-12 1.8211E+01 5.3338E-24
Std 1.8730E-01 1.8929E-04 1.4412E+00 1.4582E-12 9.8341E+00 5.1264E-23

F3 Avg 3.9062E+02 2.5508E-05 1.7820E+02 5.3122E-04 1.1335E+03 2.3566E-25
Std 5.1273E+02 3.3652E-06 9.6656E+02 1.2320E-03 6.5789E+03 8.5664E-24

F4 Avg 7.5089E+00 2.5103E-03 1.0829E+01 3.4255E-01 4.5534E+00 0.0000E+00
Std 4.2117E+00 5.5788E-04 3.0867E+00 4.5735E-01 1.2190E+00 0.0000E+00

F5 Avg 3.8267E+01 2.1045E+01 5.4418E+02 2.1558E+02 5.6236E+03 2.8849E+00
Std 4.1821E+01 1.2110E-01 2.2959E+03 4.8350E+00 6.2007E+02 1.5555E+01

F6 Avg 3.2623E+00 2.1784E+00 5.6368E-07 3.7115E+01 6.2147E+01 1.5200E-02
Std 9.6180E+00 1.3530E-01 8.8301E-07 8.8560E-01 1.3183E+01 1.1010E-01

F7 Avg 5.4020E-01 2.0166E+00 1.9320E-01 1.2500E-03 4.6550E-01 2.3000E-04
Std 4.4040E-01 5.3780E-01 5.8900E-02 3.2000E-02 2.4150E-01 5.6000E-04

F8 Avg −1.0784E+03 −5.1790E+02 −8.2344E+03 −6.0703E+02 −5.6571E+03 −9.0247E+01
Std 4.2453E+02 2.5113E+02 7.5517E+02 9.8836E+02 5.3369E+02 6.5132E+01

F9 Avg 6.1249E+00 3.4945E-05 5.6287E+01 5.6795E+02 6.7198E+01 5.8694E-08
Std 3.2154E+00 2.8164E-06 1.5620E+01 1.6312E+02 8.2325E+00 1.2473E-08

F10 Avg 6.7870E-01 1.8674E-04 2.3457E+00 2.1101E+00 1.8670E+01 2.5387E-15
Std 8.1360E-01 2.3538E-05 7.5820E-01 1.6599E+00 6.3013E+01 5.8652E-15

F11 Avg 1.3159E+00 7.2287E-06 3.8200E-02 2.2680E-01 8.2657E+00 0.0000E+00
Std 1.5370E-01 1.3813E-06 1.6100E-02 3.3830E-01 3.7816E+00 0.0000E+00

F12 Avg 6.5100E-02 7.5160E-01 6.5805E+00 6.1361E+00 4.5679E+00 2.5600E-02
Std 1.8600E-02 2.5480E-01 3.4634E+00 4.5975E+00 2.1132E+00 5.6800E-02

F13 Avg 3.2800E-01 2.7776E+00 1.4521E+01 1.8879E+00 2.7848E+02 1.3400E-02
Std 3.9200E-02 1.3600E-02 1.3158E+01 1.6815E+00 8.4141E+01 2.1400E-02

F14 Avg 1.1600E-01 1.0200E+00 1.1800E-01 1.2200E-01 1.0050E-01 1.1080E-01
Std 6.6285E-02 5.5623E-04 1.1125E-02 7.6250E-03 2.9890E-05 3.2516E-15

F15 Avg 3.1200E-03 3.1500E-03 3.3000E-03 3.9800E-03 3.0500E-03 3.0000E-04
Std 4.5680E-02 5.2500E-03 6.6200E-04 3.3500E-03 1.2500E-05 2.5600E-06

F16 Avg −1.0300E+00 −1.0298E+00 −1.0314E+00 −1.0313E+00 −1.0315E+00 −1.0316E+00
Std 5.2360E-06 4.2980E-05 1.2350E-05 2.2250E-06 5.6800E-04 3.1560E-07

The best results are shown in bold text. The best results means the closer the value of std and avg is to 0, the better the algorithm solving ability is.
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TABLE 4 | Air resistance quantity of some branches.

Branch
number

Q R Adjustable Branch
number

Q R Adjustable Branch
number

Q R Adjustable Branch
number

Q R Adjustable

m3 · s−1 N · s2 ·m−8 m3 · s−1 N · s2 ·m−8 m3 · s−1 N · s2 ·m−8 m3 · s−1 N · s2 ·m−8

1 5.4983 0.00008936 N 23 68.0493 0.00402 N 45 2.716 0.00000831 N 67 0.3253 0.00000452 Y
2 5.4983 0.00006899 N 24 68.0493 0.00001746 N 46 33.7613 0.00006497 N 68 1.3207 0.00006467 Y
3 3.7018 0.00006706 Y 25 68.0493 0.00009132 N 47 33.7613 0.0000496 N 69 0.3466 0.00002022 Y
4 3.7018 0.00007189 Y 26 3.8702 0.00007788 N 48 58.8938 0.00008058 N 70 1.3207 0.008884 N
5 236.4348 0.00003053 N 27 1.8825 0.00006844 N 49 58.8938 0.00005265 N 71 67.8693 0.001224 N
6 236.4348 0.00005315 N 28 2.9562 0.00002784 N 50 28.0962 0.00009993 Y 72 61.3069 0.001661 N
7 236.4348 0.0000976 N 29 2.9562 0.00005758 N 51 1.7168 0.00004133 N 73 97.5121 0.003326 N
8 2.211 0.00001674 N 30 2.8893 0.00006941 N 52 29.4379 0.00009551 Y 74 85.7333 0.0168 N
9 1.9289 0.00007748 N 31 1.8943 0.00006489 N 53 1.9103 0.00002441 N 75 85.3752 0.00657 N
10 1.9289 0.00009682 N 32 1.8943 0.00009893 N 54 10.0563 0.00004614 N 76 97.3418 0.0003496 N
11 14.7881 0.07755 N 33 1.8943 0.00003318 Y 55 10.0563 0.07459 Y 77 57.5472 0.016 N
12 14.7881 0.000073 N 34 3.091 0.00004701 Y 56 1.9103 0.06913 N 78 86.985 0.001299 N
13 14.7881 0.00003508 N 35 3.091 0.00000208 N 57 2.4061 0.00216 N 79 20.5388 0.00008421 N
14 14.7881 0.00009285 N 36 18.7454 0.06289 N 58 14.6298 0.01554 N 80 57.0161 0.008713 N
15 27.0952 0.0807398 N 37 18.7454 0.196 Y 59 14.6298 0.009927 Y 81 56.5316 0.008741 N
16 2.9222 0.00003218 N 38 2.3364 0.00009302 N 60 1.4414 0.00004113 Y 82 55.7443 0.04114 N
17 24.1731 0.00003854 N 39 2.3364 0.00001179 N 61 1.3453 0.00006609 N 83 44.2401 0.00512683 N
18 24.1731 0.08833 N 40 2.3364 0.00001153 Y 62 0.962 0.00005929 Y 84 26.0291 0.15778 N
19 3.8702 0.00004987 N 41 52.2002 0.00003354 Y 63 0.962 0.00006413 Y 85 55.4608 0.0785 N
20 3.356 0.00003534 N 42 0.4844 0.00001574 N 64 6.5623 0.00005967 Y 86 56.4557 0.0015 N
21 0.5141 0.00000241 Y 43 2.716 0.00005122 N 65 1.0818 0.00006483 Y 87 122.087 0.00003188 N
22 0.5141 0.00000135 N 44 2.716 0.00002944 Y 66 0.3253 0.00001766 N 88 56.9318 0.001873 N
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introducing Gaussian disturbance. Figure 4 is a boxplot showing
these algorithms on the test function. It can be seen from Figure 4
that the degree of deviation from the optimal value found by the
IEO algorithm in the process of 50 operations is much less than
with the other five algorithms. It can be seen fromTable 3 that the
proposed IEO algorithm has faster convergence speed and higher
optimization accuracy in both unimodal and multimodal
functions.

6 ENGINEERING APPLICATION ANALYSIS

6.1 Optimization Algorithm for a Mine
Ventilation System Based on the Improved
Equalization Optimizer Algorithm
The specific process of the mine ventilation optimization
algorithm based on the IEO algorithm is as follows:

FIGURE 3 | Average convergence curve of nine test functions. Graphs showing the convergence of solution at every iteration on test functions using IEO and five
classical algorithms.
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Step 1: input population size M; maximum iteration
number Tmax; constants a, b, c, d, e, and f; the number
of ventilation network nodes and branches; branch air
quantity; and wind resistance. Each particle in the
equalization optimizer represents the initial air quantity
value of the branch.

Step 2: create Ceq1-Ceq4, four empty lists to store four
candidate solutions.

Step 3: perform chaotic mapping to initialize the population
and obtain a higher quality initial population.

Step 4: determine whether the current iteration number Iter is
less than the maximum iteration number Maxiter. If it is less,
repeat Steps 1 to 9 until the iteration stop condition is met.
Otherwise, go to Step 10.

Step 5: calculate the fitness of each particle in the
population.

FIGURE 4 | Boxplot comparison of nine test functions. IEO and five classical algorithms run independently for 50 times IGD index box diagram.
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Step 6: select four particles as candidate solutions according
to the fitness of population particles, and calculate the average
of the four candidate solutions as the average candidate
solutions.

Step 7: build an equilibrium pool and randomly select a
candidate solution.

Step 8: perform Gaussian perturbation to perturb the particles
in the equilibrium pool to further balance the algorithm’s global
and local search capabilities.

Step 9: enter the updating stage of individual concentration
and update the particle position. If i is smaller than the population
size M, update F and G with the improved formula of the
trigonometric function and a section of attenuation function.
Update particle positions until they meet the iteration stop
conditions. Otherwise, update the current particle fitness value
and the four candidate solutions.

Step 10: output the number and amount of adjusting roadway,
and calculate the optimal objective function value.

Figure 5 is a flow chart showing this process.

6.2 Introduction of a Three-Dimensional
Ventilation Simulation System in
Wangjialing Mine
Using the Visual Studio 2019 platform, we developed three-
dimensional ventilation simulation and optimization system
software using C# and C ++ mixed programming. The
optimization method was applied to simulate Wangjialing coal
mine belonging to Zhongmei Huajin Energy Co., Ltd. First
measurement the resistance of the ventilation system of
Wangjialing mine, then imported the measured data and the
ventilation system diagram into the software, through the
software we can simulated the air quantity distribution of the
ventilation system in Wangjialing mine. To improve the
calculation speed, simplify the mine ventilation system without
affecting the results. Figure 6 shows a simplified mine ventilation
system diagram. Figure 7 shows the ventilation system network
diagram of Wangjialing mine. Numbering each branch and node
in the diagram, the ventilation system of the mine has 213 nodes
and 283 branches. Table 4 shows the basic parameters of some of
the branches. See Supplementary Appendix SA for the
complete data.

At present, there are three intake ventilation shafts in
Wangjialing mine. The actual intake air quantities are

FIGURE 5 | Flow chart of the ventilation optimization algorithm based on
the improved equalization optimizer algorithm.

FIGURE 6 | Ventilation system diagram of Wangjialing mine.

FIGURE 7 | Ventilation system network of Wangjialing mine.
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1286 m3 ·min−1, 2980 m3 ·min−1, and 16,089 m3 ·min−1 The
actual air quantity demand of the mine is 16,079 m3 ·min−1. The
return ventilation shaft has an air quantity of 20,542 m3 ·min−1,
the ventilation resistance is 2970 Pa, the total output power of the
main fan is 1868 kW, the total air quantity intake ratio is 127% in
the mine, and the air intake is far greater than the actual demand,
resulting in a major waste of energy.

Therefore, the method for optimizing mine ventilation
systems based on the IEO algorithm proposed in this paper
has been adopted by Wangjialing mine to reduce energy waste.

6.3 Analysis of Optimization Results
To verify the effectiveness of the proposedmethod, we compared the
method with the MPA, SCA, PSO, TSA, and EO algorithms. The
parameter settings were the same as those described in Section 5.1.
Then, Eq. 10was used as the particle fitness function. Each of the six
algorithms was run 50 times. Table 5 shows the statistical results.

It can be seen from the Table 5 that after the six algorithms
were used to optimize the ventilation system of Wangjialing
mine, the IEO algorithm reduced the power used by the mine
fan by 333 kW, a reduction of 17.83%, which was the most
significant among the six algorithms. The intake air quantity
was reduced by 3969 m3/min, a reduction of 19.32%.
Compared with the other five algorithms, the IEO algorithm
can effectively reduce the air quantity, and the total inlet air
ratio is reduced to 103%, which greatly reduces the air
quantity. The convergence algebra is 278.34 generation,
which is the fastest convergence speed among the six
algorithms. The convergence time was slightly slower than
the PSO algorithm, but the optimization result was much
better than with the PSO algorithm. Therefore, the
effectiveness and timeliness of the proposed algorithm have
been demonstrated. Using this method can effectively reduce
the energy consumed by a mine ventilation system and achieve
the purpose of energy conservation and emission reduction.

Calculated according to the standard of 0.725 yuan/kWh of power
consumption costs in the industrial level period, the annual electricity
costs saved after optimization of the air shaft fan using the six
algorithms is shown in Table 6. This was calculated by: reduced
power × 24 (h) × 0.725 yuan RMB/kWh × 365 (day). It can be seen
from Table 6 that the IEO method proposed in this paper can save
about 2.11 million yuan for the mine every year, making it the most
cost-effective of the six algorithms.

The results of a certain operation are shown in Table 7. A
negative sign indicates that the pressure value in the roadway has
been reduced. In engineering applications, the corresponding
roadway can be found by numbering and the resistance value of

TABLE 5 | Comparison of the average results of 50 optimizations.

Algorithm Original MPA SCA PSO TSA EO IEO

Fan power (kW) 1868 1732 1719 1725 1711 1,668 1,535
Power reduction — 136.00 149.00 143.00 157.00 200.00 333.00
Power reduction (%) — 7.28 7.98 7.66 8.40 10.71 17.83
Total air quantity intake (m3/min) 20,542 19,008 18,805 18,901 18,807 18,235 16,573
Reduced air intake quantity (m3/min) — 1,534 1737 1,641 1735 2,307 3,969
Percentage reduction of total air intake (%) — 7.47 8.46 7.99 8.45 11.23 19.32
Total air intake ratio (%) 127 118 117 118 117 113 103
Convergence algebra — 351.25 336.78 321.58 366.12 310.55 278.34
Convergence time (min) — 77.55 80.25 50.25 90.25 60.22 53.12

TABLE 6 | Analysis of annual cost savings.

Algorithm Annual cost savings
(yuan RMB)

MAP 863,736
SCA 946,299
PSO 908,193
TSA 997,107
EO 1,270,200
IEO 2,114,883

TABLE 7 | Results of optimization of the ventilation system.

Number
of branches

MPA SCA PSO TSA EO IEO

Q/ m3 · s−1 h/Pa Q/ m3 · s−1 h/Pa Q/ m3 · s−1 h/Pa Q/ m3 · s−1 h/Pa Q/ m3 · s−1 h/Pa Q/ m3 · s−1 h/Pa

33 1.1943 — 1.1025 — 1.0025 — 1.5623 — 0.1943 −0.12 0.2435 0.67
37 17.7454 — 15.6325 −1.10 17.6638 — 18.1064 — 17.6121 — 16.9354 —

50 26.0962 −2.05 27.0663 — 24.0258 −2.11 27.6528 — 27.0962 — 20.1312 3.05
59 13.5598 — 14.8215 — 13.6298 — 19.8528 +0.02 13.5581 — 12.8357 —

191 2.9002 — 2.8235 — 1.9352 — 2.0025 — 1.0262 −1.25 2.0652 —

199 3.5146 — 3.6521 — 3.6658 — 3.9687 — 3.8612 — 4.0052 −0.28
210 13.1215 −0.44 16.528 — 17.258 −0.55 15.2115 — 17.5512 — 16.211 —

226 1.8513 — 1.8522 — 1.8524 — 1.9000 — 1.8733 — 1.5521 —

246 2.4061 — 2.3625 — 2.0257 — 2.3301 — 0.1051 −2.98 0.0101 3.06
276 2.6252 — 2.0897 — 2.0126 — 1.8262 −1.25 2.5987 — 2.2586 —
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the roadway can be adjusted, so as to achieve the purpose of
optimizing the mine ventilation system.

7 CONCLUSION AND FUTURE
DIRECTIONS

To conserve energy and reduce emissions in mines, combined
with the mine ventilation law, the total power consumption of the
ventilation network was minimized. This was achieved by
establishing a mine nonlinear optimization model, which was
converted into a non-constrained optimization problem by using
the penalty function method and solved using the IEO algorithm.
The experimental analysis of the algorithm showed that the
convergence speed and accuracy of the algorithm are better
than those of other algorithms. The engineering application
showed that this method can effectively reduce the fan power
by 333 kW, saving more than 2 million yuan RMB per year. This
will have a pronounced effect on energy conservation and
emission reductions.

With the continuous progress of 5G technology, mine
ventilation systems will become more intelligent. In the future,
various sensors can be arranged in the branches to collect real-time
monitoring data. These data can then be input into intelligent
decision-making systems to achieve efficient, energy saving, and
safe operation of the mine ventilation system. Furthermore, the
optimization of mine ventilation systems is not only related to the
efficiency of the main fans but can also be considered by
establishing a multi-objective optimization model to determine
the largest fan shaft power, the highest efficiency of the main fans,
and the smallest total resistance of mine ventilation.
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