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With the increase in renewable energy penetration, energy deviation settlement penalties
are imposed on incremental distribution and retail companies (IDRCs). Most IDRCs are
at financial risk. Given this background, a bidding model of the two-stage dynamic
alliance is proposed to maximize IDRCs’ profits. In the first stage, potential alliances of
IDRCs are established by the gravity model. In the second stage, the bi-level bidding
model is modeled in energy and primary frequency regulation markets, where the
upper level maximizes alliance profits by considering the cooperation costs and alliance
constraints, and the lower level simulates market clearing. Then, the bi-level model is
transformed into a mixed-integer linear programming model by the strong duality theory,
Karush–Kuhn–Tucker conditions, and large M method. Verified by the complex network
theory, results show that a complex alliance network has a high transmission efficiency
and capacity to resist risk. Moreover, IDRCs with large capacity and superior location are
important in the alliance. In addition, the proposed model increases the satisfaction rate
by 20%, which increases IDRCs’ profits and reduces cooperation costs.

Keywords: complex network, two-stage dynamic alliance, cooperation cost, alliance conditional constraints,
bidding strategy

1 INTRODUCTION

With the reform of the electricity market in China (Fu et al., 2022), IDRC has become a strategic
player in the wholesale electricity market, operating the distribution network and distributed energy
resources (DERs). Under the background of carbon neutrality and carbon peak (Li et al., 2022),
the penetration of renewable energy in the distribution network gradually increases. Due to the
uncertainty of renewable energy output and load, the deviation between contract and actual
volume is inevitable for IDRC (Moghimi and Barforoushi, 2020). Before establishing the spot
market in China, an energy deviation settlement (EDS) mechanism is proposed to balance
the deviation (Lu et al., 2021). Nearly 80% of IDRCs suffer losses monthly (Hwang et al., 2020).
Therefore, optimization decision has great significance for IDRCs.

The operation problem of the IDRC as a strategic player has been studied in several
works. In an active distribution network (ADN), a risk-based competitive bi-level framework
is proposed by Hamedi et al. (2021). As the leader of the game, IDRCs offer an optimal
price for winning the competition. Moghimi and Barforoushi (2020) stated that IDRC owns
conventional and energy storage systems. Under real-time pricing, the profits from selling
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energy are maximized. Zhongkai et al. (2020) proposed a bi-
level programming approach for an ADN with multiple virtual
power plants (VPPs). As a pricemaker, IDRCs participate in the
energy and reserve markets, as stated by Bahramara et al. (2018).
The strategic behavior of the IDRC is modeled as a bi-level
optimization problem.

In the above studies, the IDRC is operated independently.
The cooperative strategy has been studied in several works
to reduce the deviation penalty. The cooperation of IDRCs
has many aspects, such as DERs cooperation, retail business
cooperation, and VPP cooperation. Lu et al. (2020) proposed the
cooperative strategy of internalDERs and external electric vehicle
aggregators (EVAs) to deal with uncertainty, where average
deviation penalties are reduced. A cooperative strategy for the
wind-storage system is proposed by Xie et al. (2021). Storage
arbitrages by absorbing low-cost energy and selling at a higher
price. To realize the carbon neutralization of an integrated energy
system composed of hydrogen and natural gas storage, Yang and
Wang (2021)proposed a cooperative game model.

Due to the physical characteristics of the distribution network,
power deals among adjacent IDRCs are not transferred by the
transmission network (Huang et al., 2021), which reduces the
deviation penalty of the measurement gateway. Therefore, the
location of IDRC is considered in the cooperation strategies of
IDRCs, which firstly motivates this work.

On the premise that all members participate in the alliance
(Lasemi and Arabkoohsar, 2020; Fan et al., 2022), the following
studies focus on maximizing alliance profits and profit
distribution. A two-stage energymanagement system is proposed
by Lasemi and Arabkoohsar (2020), including wind turbine,
photovoltaic, and energy storage. Based on symbiosis theory, a
spot quotation alliance model of cascade hydropower stations
is proposed by Zhu et al. (2021). In a bi-level cooperative game
model, the planned output of renewable energy and the capacity
allocation are optimized by Fang et al. (2020). Fan et al. (2022)
proposed a bi-level optimization model of wind and thermal
power plants in electricity markets. The results show that joint
participation is more profitable than an independent one.

However, the cooperation cost is not considered in the
above research. Although EDS costs of IDRCs are minimized
when all IDRCs join the same alliance, IDRCs in an alliance
inevitably compete for their own profits (Zhang et al., 2019). Due
to dissatisfaction with the distribution of profits, IDRC may
violate the alliance agreement, resulting in cooperation costs
and limiting the scale of the alliance. Tang et al. (2021) proposed
an alliance strategy for IDRCs considering regional advantages
and cooperation costs. The results show that the geographical
advantage of IDRC directly affects the revenues, and the cost of
cooperation affects the size of the alliance.Therefore, cooperation
costs need to be considered. If the satisfaction rate of the alliance
players is improved, disputes and cooperation costs are reduced.
When distribution profits are more than expected, IDRC is
allowed to align and alliances vary dynamically with expected
profits, which secondly motivates this work.

The complex network theory studies network characteristics
based on network topology (Aleksandra et al., 2021), which
is often used to analyze network vulnerability, transmission

efficiency, and the importance of nodes. This theory is widely
used in themilitary, aviation, and other fields (Zhao and Li, 2021;
Yang et al., 2021). A security evaluation model and index system
are proposed for the supply chain network system by Zhao
and Li (2021). Based on the complex system, a coordinated
optimization model of the green supply chain is established
(Guan et al. (2021). Papakostas et al. (2016) considered the
deployment of combat communications as a complex multi-
layer network, where each layermay be a group of helicopters and
vehicles, among others. Yang et al. (2021) used complex networks
to study the dynamics of airline networks. In the electricity
industry, complex networks are often used to analyze power
networks, such as fault identification (Tikariha et al., 2021),
vulnerable line analysis (Shi et al., 2018), and power grid
modeling (Nepal et al., 2020). However, this method is not used
in analyzing the alliance network. Therefore, it is necessary to
evaluate the alliance network structure and vulnerability based
on the complex network, which thirdly motivates this work.

In some of the studies above, the IDRC’s decision problem is
modeled as a single-level model (Lu et al., 2020). These models
cannot accurately reflect the behavior of IDRC as a strategic
player. In the bi-level models, IDRC does not adopt a cooperative
strategy (Zhongkai et al., 2020). In the cooperative strategy,
location advantages, alliance update, and cooperation costs are
ignored (Fan et al., 2022). In addition, an alliance network is
complex, which needs to evaluate the transmission efficiency
and network vulnerability through the complex network theory.
Table 1 shows the features of previous research and this study.

The IDRC alliance and bidding strategy are studied to reduce
the penalty cost of EDS. In the medium- and long-term alliance
strategies, potential alliances are updated dynamically with the
establishment of IDRC.Meanwhile, IDRC’s location and capacity
are considered to improve transmission efficiency and risk-
resistance ability. In the bidding model of the day-ahead alliance,
the cost of cooperation is considered.Themain contributions are
presented below.

In energy and PFR markets, a bidding model of the two-stage
dynamic alliance is proposed. In the medium- and long-term
alliance strategies, IDRCs’ potential alliance is determined by the
gravity model. The bidding strategy of the day-ahead alliance
is the bi-level model. The upper level maximizes the profits of
the alliance, where the cooperation costs and alliance condition
constraints are considered. Alliance profits are distributed by the
Shapley value method. The lower level maximizes social welfare.

In the bi-level model, the lower level is transformed into the
constraints of the upper level by the KKT conditions. Then,
the strong duality theory and large M method transform the
single-level mathematical planning with equilibrium constraints
(MPEC) into MILP.

The complex alliance network is formed by the proposed
model. The vulnerability and transmission efficiency of alliance
network are evaluated by the basic parameters of the complex
network theory.

The rest of this study is organized as follows. Section II
presents the complex alliance network and the decision
framework of IDRC. The bidding model of the two-stage
dynamic alliance is presented in Section III. The model solution

Frontiers in Energy Research | www.frontiersin.org 2 August 2022 | Volume 10 | Article 924106

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Li et al. Two-Stage Dynamic Alliance Bidding

TA
B
LE

1
|
th
e
fe
at
ur
es

of
pr
ev
io
us

re
se
ar
ch

an
d
th
is
st
ud

y.

R
ef
.

In
d
ep

en
d
en

t
o
p
er
at
io
n

C
o
o
p
er
at
iv
e
o
p
er
at
io
n

M
ar
ke

t
M
o
d
el

S
o
lu
ti
o
n

C
o
m
p
le
x
ne

tw
o
rk

Lo
ca

ti
o
n

A
lli
an

ce
up

d
at
e

C
o
o
p
er
at
io
n
co

st
s

E
ne

rg
y
m
ar
ke

t
A
nc

ill
ar
y
se

rv
ic
es

m
ar
ke

t

H
am

ed
i e
t a

l. 
(2
02

1)
3

3
B
i-l
ev
el

Th
e
ge

ne
tic

al
go

rit
hm

M
og

hi
m
ia
nd

B
ar
fo
ro
us

hi
, 2

02
0)

3
3

B
i-l
ev
el

K
K
T
+
th
e
du

al
th
eo

ry
Zh

on
gk

ai
 e
t a

l. 
(2
02

0)
3

3
3

B
i-l
ev
el

K
K
T
+
th
e
du

al
th
eo

ry
Lu

 e
t a

l. 
(2
02

0)
3

3
S
in
gl
e
le
ve
l
K
K
T
+
th
e
du

al
th
eo

ry
Ya

ng
an

d
W
an

g,
 (2

02
1)

3
3

S
in
gl
e
le
ve
l
Li
ne

ar
de

ci
si
on

ru
le
s

Xi
e 
et
 a
l. 
(2
02

1)
3

3
S
in
gl
e
le
ve
l
S
tr
on

g
du

al
th
eo

ry
La

se
m
ia
nd

A
ra
bk

oo
hs

ar
, (
20

20
)

3
3

S
in
gl
e
le
ve
l
P
ar
tic

le
sw

ar
m

op
tim

iz
at
io
n

Zh
u 
et
 a
l. 
(2
02

1)
3

S
in
gl
e
le
ve
l
P
ar
tic

le
sw

ar
m

op
tim

iz
at
io
n

Fa
ng

 e
t a

l. 
(2
02

0)
3

3
B
i-l
ev
el

P
ar
tic

le
sw

ar
m

op
tim

iz
at
io
n

Fa
n 
et
 a
l. 
(2
02

2)
3

3
B
i-l
ev
el

Li
ne

ar
se
gm

en
ta
tio

n
Zh

an
g 
et
 a
l. 
(2
01

9)
3

3
3

S
in
gl
e
le
ve
l

Ta
ng

 e
t a

l. 
(2
02

1)
3

3
3

3
S
in
gl
e
le
ve
l
D
ep

th
-fi
rs
ts

ea
rc
h

Th
is
st
ud

y
3

3
3

3
3

B
i-l
ev
el

K
K
T
+
th
e
du

al
th
eo

ry
3

Frontiers in Energy Research | www.frontiersin.org 3 August 2022 | Volume 10 | Article 924106

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Li et al. Two-Stage Dynamic Alliance Bidding

is presented in Section IV. Case studies and conclusions are,
respectively, described in Sections V and Sections V.

2 THE MARKET DECISION FRAMEWORK
BASED ON COMPLEX NETWORK

2.1 IDRCs’ Complex Alliance Network and
Characteristic Parameters
Considering the complexity of IDRCs’ alliance operation, the
complex alliance network is proposed by referring to the complex
supply chain (Guan et al., 2021) and complex power network
(Nepal et al., 2020).

The complex alliance network is modeled as a graph
G = (V,E), composed of edges set E and nodes set V. IDRC is
modeled as the network nodeN = |V|. Node information includes
IDRC number, unit type, and capacity.The edgeM = |E| between
twonodes indicates that the twonodes have cooperative relations.
As the reciprocation of bilateral trade, the complex alliance
network is undirected.

2.1.1 Node Degree
Node degree ki is the number of edges directly connected to node
i. The higher the degree is, the more important the node is. The
scale-free characteristic is that the high degree nodes are a few,
and the degree distribution has power-law properties.

2.1.2 Average Path Length
The average path length L is the average distance among all
nodes, which is an important index to evaluate the transmission
efficiency of the network. A small-world network is a network
model between the regular and randomnetworks, widely existing
in various complex networks.The characteristic of this network is
the small average path length, which aggravates fault propagation:

L = 1
N (N + 1)/2

∑
i≠j
dij (1)

2.2 Decision Framework for IDRC
With the reform of the Chinese electricity market, IDRC sells
electricity and operates DERs as the new market player. As the
uncertainty of load and renewable energy output, IDRC has a
high risk of deviation penalty (Huang et al., 2021). In order to
reduce the deviation penalty, cooperative alliances are built to bid
strategically. In the electricity market, many IDRCs are reduced
to a few alliances, which reduces the trading complexity.

The IDRCs’ decisions are composed of two parts. On the one
hand, the penalty is reduced by the strategic alliance. The two-
stage alliance strategy includes medium- and long-term alliance
decision and day-ahead alliance decision. In the medium- and
long-term alliance decision, IDRC’s location and capacity are
considered. Potential alliances are dynamically updated as the
growth of complex alliance network nodes. In the day-ahead
alliance decision, the binary variables of the alliance are added by
alliance constraints. When the distributed profits of the alliance
are higher than expected, IDRC participates in the alliance. The

alliance constraints improve the satisfaction rate, reducing the
cooperation cost caused by disputes.

On the other hand, IDRC buys energy fromwholesalemarkets
and sells it to consumers. To maximize profits in the energy
and PFR markets, IDRC strategically bids as the owner of DERs
in the distribution network. Market participants submit bidding
plans to the Distribution System Operator (DSO). Then, DSO
completes market clearing (Wang et al., 2022). Participants also
include generation companies (Gencos) and retailers. To sum
up, how to form alliances and how to strategically bid are the
key to IDRCs’ decisions. The bidding decision process of the
two-stage dynamic alliance is shown in Figure 1. Firstly, in
the medium- and long-term strategy, IDRC selects a potential
alliance. Moreover, a potential alliance network is formed. Then,
IDRCdecides on the day-ahead alliance and bidding.Meanwhile,
the bidding strategy is reported to DSO. Finally, the energy and
PFR markets are cleared by DSO.

3 THE BIDDING MODEL OF TWO-STAGE
DYNAMIC ALLIANCE

3.1 The Medium- and Long-Term Alliance
Strategy
Considering the complementation of the deviation volume
among IDRCs, the alliance of IDRCs is established. When the
IDRC in the alliance faces a deviation penalty, the power of other
IDRCs is dispatched to reduce the deviation, which alleviates
profits losses. The complex alliance network is changed as social
capital investment or the alliance willingness.These changes have
medium and long term. In order to maximize IDRC’s profits, the
medium- and long-term potential alliances are updated with the
change of alliance network.

The gravity model is widely used to quantify the economic
relation intensity in trade fields (Wang and Li, 2021). In the mid-
and long-term alliance strategy, the above model is applied to
quantify the alliance intensity. The gravity model is as follows:

Tij = k
MiMj

dij
(2)

The alliance intensity Tij forms an alliance intensity matrix T:

T =
[[[[[

[

T11 ⋯ T1j ⋯ T1u
⋮ ⋮ ⋮
Ti1 ⋯ Tij ⋯ Tiu
⋮ ⋮ ⋮
Tu1 ⋯ Tuj ⋯ Tuu

]]]]]

]

(3)

Til =max
j
{Tij} (4)

l is a potential alliance company of i. The potential alliance set is
described asW = {w1,w2,…,wj,…,wJn}. The nodes of connected
graph form potential alliance set wj. In the complex alliance
network, Til forms the edge of the network.
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FIGURE 1 | The bidding decision process of the two-stage dynamic alliance.

3.2 The Bidding Strategy of Day-Ahead
Alliance
In the energy and PFR markets, the bidding strategy of the day-
ahead alliance is modeled as a bi-level optimization model in
Figure 2. In the upper model, alliance profits are maximized, and
the day-ahead alliance is determined. The alliance bidding plan
is passed to the lower model. In the lower model, the market
is cleared to maximize social welfare. After market-clearing,
clearing powers and clearing prices are fed back to the upper
level.

3.2.1 Upper Level
Alliance profits are the total profits of IDRCs minus the
cooperation costs. Equation 5 represents the objective function
of alliance operation.The first term is IDRCs’ profits in the energy
market. In the PFR market, the second term is IDRCs’ mileage
profits, and the third term is IDRCs’ capacity profits.The last term
is the cooperation cost. The low operating costs of wind turbines
and energy storage are ignored. With the increase in IDRCs in
alliance, profits disputes increase.The cooperation cost is linearly
related to the number of IDRCs. As the alliance constraints,
the players’ profits in the alliance mostly meet the expected,
reducing the cooperation cost. However, disputes are inevitable.
The cooperation cost is still considered. The multi-scenario
method describes the error between the predicted output and the
actual one.

If i is allied, ui = 1. If not, ui = 0. If IDRC is honest, ci is small:

max∑
w
ρw∑

i,t
ui [(p

out
t,i − p

in
t,i)π

e
α,t + πm

α,tp
ri
t,i + π

c
α,tprit,i]

−∑
i
ciui (5)

ui ∈ {0,1} (6)

Equations 7–9 are used to justify the relation betweenpossible
scenarios and outcomes:

poutt,i =∑
w
ρwp

out
w,t,i (7)

pint,i =∑
w
ρwp

in
w,t,i (8)

prit,i =∑
w
ρwp

ri
w,t,i (9)

Power balance constraints of IDRC:

pinw,t,iηp
out
w,t,i/η +∑

a
pwtw,t,a +∑

b
(−pchw,t,b/η

ch + pdchw,t,bη
dch )

= pLw,i,t (10)

Pri
w,t,i =∑

a
prww,t,a +∑

b
prew,t,b (11)
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FIGURE 2 | The energy and PFR markets framework.

Bidding power constraints of IDRC:

0 ≤ pwtw,t,a + p
rw
w,t,a ≤ ̄p

wt
w,t,a (12)

0 ≤ pchw,t,b + p
re
w,t,b ≤ p

e
b (13)

0 ≤ pdchw,t,b + p
re
w,t,b ≤ p

e
b (14)

Ew,t,b = Ew,t−1,b + p
ch
w,t,b − p

dch
w,t,b (15)

Ek ≤ Ew,t,b ≤ Ek (16)

Bidding price constraints of IDRC:

0 ≤ πoi
t,i ≤ π

oi
t,i (17)

0 ≤ πbi
t,i ≤ π

bi
t,i (18)

0 ≤ πci
t,i ≤ π

ci
t,i (19)

0 ≤ πmi
t,i ≤ π

mi
t,i (20)

Alliance constraints of IDRC: alliance profits are distributed
by the Shapley value method. On the left of the constraint is the
distributed profits. On the right is the binary alliance decision
variable multiplied by the expected profits:

∑
K⊂wj

(∑
i
ui − |K |)! (|K | − 1)!

(∑
i
ui)!

(vΨ − vΨ/i) ≥ uiW (21)

K are the whole subsets of wj, which include i. When the
distributed profits in the day-ahead market are higher than
expected, IDRC joins the alliance and vice versa:

XUL = [pwtw,t,i,p
rw
w,t,i,p

ch
w,t,b,p

dch
w,t,b,p

re
w,t,b,π

oi
t,i, π

bi
t,i,π

ci
t,i,π

mi
t,i ,ui]. Exter-

nal decision variables of the upper level are [πoi
t,i,π

bi
t,i,π

ci
t,i,π

mi
t,i ],

which are passed to the lower-level model. After comparing
the expected profits with the distributed ones, some IDRCs
that do not meet the alliance condition withdrew from the
alliance.Therefore, the complex alliance network is dynamic.The
node exiting the alliance and the nodes originally connected are
regarded as a virtual node. After the node exits, the remaining
internal nodes of the virtual node are connected to each other.
The external edges remain unchanged.The exiting node becomes
the independent node.

3.2.2 Lower Level
IDRCs participate in energy and PFR markets to maximize
profits, which are operated by DSO. Market participants also
include Gencos and retailers. The behaviors of Gencos and
retailers are considered non-strategic to stimulate the opening-up
of the distribution side.

Maximum social welfare means minimum system costs.
Eq. 22 is the objective function of the lower level. In the energy
market, Gencos sell energy and retailers buy energy, modeled
as first and second terms. The third and fourth terms are,
respectively, the sale and purchase of energy by IDRCs. In the PFR
market, the regulation costs of Gencos, retailers, and IDRCs are
modeled in the other terms, respectively:

min∑
t,n
πog
n,tp

g
n,t −∑

t,m
πbr
m,tprm,t +∑

t,i
πoi
i,tp

out
i,t −∑

t,i
πbi
i,tp

in
i,t

+∑
t,n
(πcg

n,t + π
mg
n,t )p

rg
n,t +∑

t,m
(πcr

m,t + πmr
m,t)prrm,t

+∑
t,i
(πci

i,t + π
mi
i,t )p

ri
i,t (22)

Power balance constraints in energy and PFRmarkets: energy
and regulation balance constraints are modeled as follows:

∑
m
prm,t −∑

n
pgn,t +∑

i
pini,t −∑

i
pouti,t +∑

β
Bα,β (θα,t − θβ,t) = 0 ∶ π

e
α,t

(23)

∑
m
prrm,t +∑

n
prgn,t +∑

i
prii,t = p

sys
t +∑

β
Bα,β (θα,t − θβ,t) ∶ π

r
α,t (24)

The mileage offer of the marginal regulation unit is the
mileage clearing price.The capacity clearing price is the difference
between the regulation clearing price and the mileage clearing
price.

Gencos’ power constraints: operational constraints of Gencos
in both energy and PFR markets are modeled as follows:

0 ≤ pgn,t ∶ μgn,t (25)

pgn,t + p
rg
n,t ≤ p

g
n ∶ μ

g
n,t (26)
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0 ≤ prgn,t ≤ p
rg
n ∶ μ

rg
n,t
,μrgn,t (27)

Retailers’ power constraints: operational constraints of
retailers in both energy and PFRmarkets are modeled as follows:

0 ≤ prm,t ∶ μrm,t (28)

prm,t + p
rr
m,t ≤ p

r
m ∶ μ

r
m,t (29)

0 ≤ prrm,t ≤ p
rr
m ∶ μ

rr
m,t
,μrrm,t (30)

IDRCs’ power constraints: operational constraints of IDRCs in
both energy and PFR markets are modeled as follows:

0 ≤ pouti,t ∶ μ
out
i,t

(31)

pouti,t + p
ri
i,t ≤ p

i
i ∶ μ

out
i,t (32)

0 ≤ pini,t ≤ p
i
i ∶ μ

in
i,t
,μini,t (33)

0 ≤ prii,t ≤ p
ri
i ∶ μ

ri
i,t
,μrii,t (34)

Line power flow and node phase angle constraints: the
constraints of network blocking are modeled as follows:

−Fα,β ≤ Bα,β (θα,t − θβ,t) ≤ Fα,β ∶ εα,β,εα,β (35)

θα ≤ θα,t ≤ θα ∶ δα,δα (36)

θα,t(α=1) = 0 ∶ δref (37)

XLL is the decision variables of the lower level, defined as
XLL = [pgn,t ,p

rg
n,t ,prm,t ,p

rr
m,t ,p

out
i,t ,p

in
i,t ,p

ri
i,t ,θα,t]. The external decision

variables are [pouti,t ,p
in
i,t ,p

ri
i,t ,π

e
α,t ,πm

α,t ,π
c
α,t], which are passed on to the

upper-level model.
Note that πe

α,t ,πr
α,t ,μgn,t ,μ

g
n,t ,μrgn,t ,μ

rg
n,t ,μrm,t ,μ

r
m,t ,μ

rr
m,t
,μrrm,t , μout

i,t
,

μouti,t ,μ
in
i,t
,μini,t ,μ

ri
i,t
,μrii,t ,εα,β,εα,β,δα,δα,δref are the dual variables of

the lower-level constraints.

4 SOLUTION METHOD

In the bidding model of the day-ahead alliance, the upper level
is nonlinear and the lower level is linear. Generally, there are two
kinds of solving methods for the bi-level programming problem.

To handle the nonlinear or nonconvex of these bi-level
optimization models, some heuristic methods, such as the
particle swarm and genetic algorithms, are developed by
Fang et al. (2020) and Hamedi et al. (2021). However, when the
number of variables is large, these kinds of methods often suffer
from local optimal and solution time is lone.

The bi-level programming model is transformed into
MPEC by some mathematical tools, such as the KKT
conditions in Zhongkai et al. (2020) and linear segmentation
in Fan et al. (2022). Then, the equivalent model can be easily
solved by traditional mathematical programming methods.
However, this kind of approach confronts challenges if the model
is nonlinear and nonconvex. In this article, MPEC is nonlinear as
themultiplication of decision variables. For an easier solution, the
nonlinear terms of MPEC are replaced with linear terms by the
strong duality theory and largeMmethod. After the linearization,
MPEC is transformed into the MILP model, which can be solved
directly by commercial solvers. The transformation process is
shown in Figure 3.

4.1 The KKT Conditions
In the bi-level model, the decision variables of the upper-
level model are considered constants of the lower-level model.
Therefore, the lower level is a linear model, which is replaced by
KKT conditions. The KKT conditions of the lower-level model
consist of equality constraints Eqs. 23–24 and Eqs. 37–63:

πog
n,t + μ

g
n,t − μgn,t + π

e
α,t = 0 (38)

πcg
n,t + π

mg
n,t + μ

g
n,t + μ

rg
n,t − μrgn,t + π

r
α,t = 0 (39)

−πbr
m,t + μrm,t − μ

r
m,t
− πe

α,t = 0 (40)

πcr
m,t + πmr

m,t + μ
r
m,t + μ

rr
m,t − μ

rr
m,t
+ πr

α,t = 0 (41)

πoi
i,t + μ

out
i,t − μ

out
i,t
+ πe

α,t = 0 (42)

−πbi
i,t + μ

in
i,t − μ

in
i,t
− πe

α,t = 0 (43)

πci
i,t + π

mi
i,t + μ

out
i,t + μ

ri
i,t − μ

ri
i,t
+ πr

α,t = 0 (44)

Bα,β (εα,β − εβ,α) −Bα,β (εα,β − εβ,α) + δα − δα
−Bα,β (π

e
α,t − π

e
β,t) +Bα,β (π

r
α,t − π

r
β,t) + δref = 0 (45)

0 ≤ pgn,t⊥μgn,t ≥ 0 (46)

0 ≤ (pgn,t + p
rg
n,t − p

g
n)⊥μ

g
n,t ≥ 0 (47)

0 ≤ prgn,t⊥μrgn,t ≥ 0 (48)

0 ≤ (prgn − p
rg
n,t)⊥μ

rg
n,t ≥ 0 (49)
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FIGURE 3 | The transformation process of the model.

0 ≤ prm,t⊥μrm,t ≥ 0 (50)

0 ≤ (prm,t + prrm,t − p
r
m)⊥μ

r
m,t ≥ 0 (51)

0 ≤ prrm,t⊥μ
rr
m,t
≥ 0 (52)

0 ≤ (prrm − p
rr
m,t)⊥μ

rr
m,t ≥ 0 (53)

0 ≤ pouti,t ⊥μ
out
i,t
≥ 0 (54)

0 ≤ (pii − p
out
i,t − p

ri
i,t)⊥μ

out
i,t ≥ 0 (55)

0 ≤ (pii,t − p
in
i,t)⊥μ

in
i,t ≥ 0 (56)

0 ≤ pini,t⊥μ
in
i,t
≥ 0 (57)

0 ≤ (prii,t − p
ri
i,t)⊥μ

ri
i,t ≥ 0 (58)

0 ≤ prii,t⊥μ
ri
i,t
≥ 0 (59)

0 ≤ [Bα,β (θα,t − θβ,t) + Fα,β]⊥εα,β ≥ 0 (60)

0 ≤ [Fα,β −Bα,β (θα,t − θβ,t)]⊥εα,β ≥ 0 (61)

0 ≤ (θα,t − θα)⊥δα ≥ 0 (62)

0 ≤ (θα − θα,t)⊥δα ≥ 0 (63)

4.2 Linearize MPEC
MPEC is composed of Eqs. 5–21, 23, 24, and37 –63. The
objectives of Eq. 5 and Eqs. 46–63 are nonlinear, caused by
multiplying the decision variables. The nonlinear terms are
linearized to solve MPEC effectively.

The objective function is linearized by the strong duality
theory as follows:
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α,tp
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α,tprit,i

= −psyst πr
α,t + p

g
nμ

g
n,t + p

rg
n μ

rg
n,t + p

r
mμ

r
m,t + p

rr
mμ

rr
m,t

+ piiμ
out
i,t + p

i
iμ

in
i,t + p

ri
i μ

ri
i,t + Fα,βεα,β + Fα,βεα,β

+ θαδα + θαδα + π
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m,tprm,t + (π

cg
n,t + π

mg
n,t )p
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m,t)p

rr
m,t − p

i
iμ
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i
iμ
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ri
i μ
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i,t (64)

Nonlinear equations46 –63 are linearized by the big M
method. Take the linearization of Eq. 47 as an example:

pgn,t + p
rg
n,t − p

g
n ≥ 0 (65)

μgn,t ≥ 0 (66)

pgn,t + p
rg
n,t − p

g
n ≤ a

g
n,tM

g
n,t (67)

μgn,t ≤ (1− a
g
n,t)M

g
n,t (68)

5 CASE ANALYSIS

The effectiveness of the model is verified by using the illustrative
test case, the IEEE 33-bus system case, and the PG&E 69-bus
system case. The model is implemented in MATLAB using the
CPLEX solver.

5.1 Illustrative Example
This section analyzes the implications of alliance strategies on the
characteristics of complex networks by the illustrative test case.
A fictitious power system is presented. This test system has 10
Gencos, 30 IDRCs, and 3 retailers. Tables 2, 3 provide the data
of the Gencos and the retailers, respectively, including the energy
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TABLE 2 | Gencos’ parameters.

Genco G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

pGencon [MW] 300 650 300 450 500 620 600 350 320 500

πGenco,offer
n,t [ $/MWh] 40 65 39 52 23 33 34 29 30 48

πGenco,cap
n,t [ $/MWh] 5 5 5 5 3.5 5 5 5 5 5

πGenco,mil
n,t [ $/MWh] 27 30 35 31 33 30 26 35 29 35

TABLE 3 | Retailers’ parameters.

Retailer pRetm [MW] πRet,bid
m,t [$/MWh] πRet,cap

m,t [ $/MWh] πRet,mil
m,t [ $/MWh]

R1 250 60 5 25
R2 250 45 5 30
R3 250 40 5 35

bids/offers, the capacity bids/offers, the mileage bids/offers, and
the maximum power of the Gencos and the retailers. The
maximum regulation capacity of Gencos is 10% of the maximum
power generation. IDRCs’ load requirements are reduced to three
categories. The load requirements of retailers and IDRCs are
shown in Figure 4. Themaximum regulation capacity of retailers
is 10% maximum power.

The regulation capacity requirement of the system is 1% of the
system load. The regulation mileage requirement is the capacity
requirement multiplied by the historical mileage capacity ratio
(take 10). IDRCs establish three types of wind turbines and two
types of energy storage. Probability scenarios of wind turbine
output are obtained by Monte Carlo simulation and scene
reduction algorithm. The SOC of energy storage is 10%–90%
of capacity. The SOC of the initial and end periods is 10% of
capacity. Charge and discharge efficiencies are 92%. The data of
IDRCs are shown in Table 4, including the capacity of different
units and dimensionless position coordinates. In order to verify

FIGURE 4 | Load demand from retailers and IDRCs.

the effectiveness of the proposed potential alliance model, the
characteristic parameters of the complex alliance network are
compared in different alliance strategies. The three potential
alliance strategies are as follows:

Case 1: when forming potential alliances, the capacity of IDRC
is considered and the advantage of the location is ignored.

Case 2: when forming potential alliances, the advantage of the
location is considered and the capacity of IDRC is ignored.

Case 3: when forming potential alliances, the advantage of
the location and capacity is considered, which is the strategy
proposed in this study.

5.1.1 Comparison of Average Path Lengths
The average path length is an important index reflecting network
transmission efficiency. The long average path length increases
the energy loss.

As shown in Figure 5, case 1 has the longest average path
length, which is 1.87. In case 1, the capacity of IDRC is only
considered. Therefore, all IDRCs are connected with the IDRC
of the largest capacity, which increases the resistance to the risk.
However, it also decreases the efficiency of energy transmission.
Case 2, which only considers the location, has the shortest
average path length. IDRC tends to align with neighboring
companies.Therefore, the average distance length is the smallest,
which effectively improves the transmission efficiency of energy.
However, as the small average path length, the potential alliance
network has small-world properties. Faults are easily spread to
adjacent and non-adjacent nodes, where networks are vulnerable.
The average path length of case 3 is medium, which is 1.3.
The alliance strategy of case 3 considers installed capacity
and location, which improves the ability to resist risks and
the efficiency of energy transmission. The effectiveness of the
potential alliance strategy is verified.

5.1.2 Comparison of Degree Distributions
The degree distributions of different strategies are shown in
Figure 6. The horizontal axis is degrees. The vertical axis is
the probability of degree. The blue points in Figure 6 are the
distribution of degrees. The red curves are power-law fitting
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TABLE 4 | Retailers’ parameters.

IDRC Wind turbine (MW) Energy storage (MW) Position Load type IDRC Wind turbine (MW) Energy storage (MW) Position Load type

I1 20 9 (6.42) 2 I16 30 14 (17.37) 2
I2 3 9 (41.7) 3 I17 23 2 (32.39) 2
I3 23 10 (17.4) 3 I18 13 14 (27.2) 3
I4 12 15 (13.5) 2 I19 12 10 (34.28) 8
I5 11 25 (18.9) 1 I20 16 3 (28.31) 1
I6 15 16 (19.17) 1 I21 20 5 (30.16) 3
I7 6 5 (28.16) 2 I22 7 9 (27.7) 2
I8 21 30 (29.1) 3 I23 17 15 (20.10) 1
I9 8 25 (20.27) 1 I24 5 15 (32.8) 1
I10 20 17 (20.5) 3 I25 16 3 (16.31) 2
I11 14 20 (26.8) 2 I26 30 12 (2.18) 3
I12 18 33 (33.32) 1 I27 21 8 (13.39) 2
I13 7 16 (48.43) 1 I28 17 13 (33.28) 2
I14 5 12 (37.49) 1 I29 10 6 (4.2) 1
I15 16 6 (21.29) 3 I30 6 3 (12.2) 3

FIGURE 5 | The average path lengths of different cases.

curves of degree distribution. The diameter of the blue point
indicates the total capacity in degree.

In case 1, the capacity of IDRC is only considered. The
IDRC with the largest capacity has the maximum degree.
The degrees of other nodes are 1. Degree distribution has
no power-law properties. The IDRC with the largest capacity
is the most important in the complex alliance network. In
case 2, degree distribution has power-law properties, where
p(k) = k−𝜆(𝜆 = 2.029,R−square = 0.9692).Many degrees of nodes are
2 and a few ones are 5. As the degree increases, the total capacity
decreases. The number of small degree nodes is large, and the
corresponding capacity is large. When the degree increases, the
number of nodes decreases, decreasing the capacity. The IDRC
closest to other IDRCs has the highest degree, meaning the most
important in case 2.

In case 3, degree distribution also has power-law properties,
where 𝜆 = 0.8597 and R−square = 0.9606. The degree of maximum
probability is 1. Furthermore, the degree of minimumprobability

is 5. With the increase in degree, the total capacity decreases,
increases, and decreases again. Although the IDRCs of small
degrees have a small capacity, they have a considerable number.
Therefore, the total capacity is large. When the degree increases,
the number of IDRCs decreases, decreasing the total capacity.
Then, IDRCs of large capacity appear, increasing the total
capacity. Finally, the number of large-capacity IDRCs declines,
decreasing the total capacity. Aligning with neighboring and
large-capacity IDRCs can improve the capacity of resisting risk
and transmission efficiency. IDRCs of excellent location and large
capacity have a large degree, which shows the effectiveness of the
potential alliance strategy.

However, as degree distribution is scale-free in case 3, the
high degree nodes have a great impact on the vulnerability of
the alliance network. Therefore, how to rationally distribute the
alliance profits of important nodes is the focus of future research.

5.2 The IEEE 33 Node System Case
The topology of the IEEE 33-bus distribution system is shown
in Figure 7. The line parameters refer to Baran and Wu (1989).
In order to verify the effectiveness of the proposed day-
ahead alliance strategy, IDRCs’ satisfaction rates and profits
are compared in different strategies. The period of meeting
expectations to the total period is the satisfaction rate. The
analysis of profits takes the I3 as an example. In addition, a
sensitivity analysis of expected profits is performed. The three
day-ahead alliance strategies are as follows:

Case 1: IDRC bids as an independent market player and does
not participate in the alliance.

Case 2: IDRC participates in the alliance, and the alliance
constraints are not considered in the day-ahead alliance strategy.

Case 3: IDRC participates in the alliance, and the alliance
constraints are considered in the day-ahead alliance strategy.

5.2.1 Comparison of Satisfaction Rates and Profits
Satisfaction rates of IDRCs under different strategies are shown
in Figure 8A.The satisfaction rate in case 1 is the lowest. Because
IDRC does not participate in the alliance, the risk of deviation
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FIGURE 6 | The degree distributions of different cases. (A) Case 1. (B) Case 2. (C) Case 3.

FIGURE 7 | IEEE 33-bus distribution system.

cannot be reduced by power complementation between IDRCs.
In addition, the independent bidding is conservative as the risk
of deviation. The profits are low and do not meet the expected
profits in most periods, which is also reflected in the comparison
of the expected profits with the profits of case 1.

In case 2, the satisfaction rate is greatly improved. IDRCs
reduce the cost of deviation penalty by complementary deviation.
IDRCs bid aggressively and strategically adjust the clearing price,
which is stimulated by the alliance. In Figure 8B, the profits are
higher than those in case 1. Moreover, the difference is significant
during the heavy load periods. As a seller in the PFR market,
the IDRC aggressive bids, raising the clearing price and profits.
However, the satisfaction rate of case 2 is still lower than that of

case 3. In case 3, the alliance constraints reduce the cooperation
cost, increasing the distribution profits. This is also reflected in
the profits comparison between case 2 and case 3 in Figure 8B.

5.2.2 Sensitivity Analysis
Figure 8B reflects the impact of expected profit on the profits
of case 3. As shown in the red circle, when the load demand is
small and the expected profit is high, the I3 does not meet the
alliance conditions. Binary decision variable of alliance limits to
the alliance of I3. After leaving the alliance, the profits of case 3 are
basically the same as the ones of case 1.When the load demand is
small, alliance strategy bidding has little influence on the market.

As shown in the blue circle, when the system load demand
is high and the expected profit of I3 is low, the binary decision
variable of the alliance has no significant impact on the profits.
However, in the green circle, the expected profit of the I3 is
high.The binary decision variable again limits alliance.Then, the
profits of I3 are decreased, which are still higher than the profits
in case 1. This is the result of the alliance’s strategic behaviors.

When the load demand is large, the strategic bidding of the
alliance has a significant influence on the market. When the
alliance sells capacity in the PFR market, the regulation clearing
price is raised by the alliance’s strategic behaviors. When the
power demand is not afforded by the wind turbines and storage,
the alliance acts as a buyer in the energy market and the energy

FIGURE 8 | (A) The satisfaction rates of IDRCs. (B) Expected profit and market profits of different strategies.
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FIGURE 9 | PG&E 69-bus distribution system.

clearing price is reduced. Meanwhile, to reduce purchasing
power, the distributed resources of the alliance are adjusted to
increase power generation.

It is seen from the above analysis that IDRCswith conservative
expectations are more likely to align and increase profits. In
order to prevent the IDRC from violating the alliance agreement,
ci is increased with dishonest behavior, which is negative for

participating in the alliance. The effectiveness of the day-ahead
alliance model is verified.

5.3 PG&E 69 Node System
In order to verify the applicability of the proposedmodel in large-
scale distribution networks, the PG&E 69-bus system is used to
test. The topology is shown in Figure 9, and line parameters are
listed in Baran and Wu (1989).

5.3.1 Analysis of Clearing Results
The market-clearing results are shown in Figures 10–12. In the
energy market, the power generation of Gencos is described
in Figure 10. The regulation capacity of market participants is
shown in Figure 11. In the energy and PFRmarkets, percentages
of the optimal decisions are shown in Figure 12.

In Figure 10, except for peak periods 15–18 and 20–22, the
load demand is afforded by the G5, G3, G1, and G4 of low price.
As the load in these periods is small, the low-offer Gencos are
cleared first and the clearing price is low in the energy market.
During the peak periods of 15–18 and 20–22, theG2 of high-offer
wins the bid. Meanwhile, the power generation of wind turbines

FIGURE 10 | Power generation of Gencos to meet the demand.

FIGURE 11 | Regulation capacity provided by each player.
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FIGURE 12 | Optimal decisions percentage of the alliances.

and energy storage is adjusted to reduce the energy purchase by
the alliance. This is the result of the alliance’s strategic behavior,
which reduces the complexity of the transaction and the clearing
price of the energy market. However, the influence of strategic
behavior is limited. For example, in hours 12–14, the total load of
the system is decreased by alliance strategy, whichmakes G2 free.
In hour 15, G2 cannot be free due to insufficient power generation
in the alliance.

In Figure 11, the winning bidders include Gencos, retailers,
and IDRCs in the PFR market. G1 and G2 participate in both
the energy and PFR markets. As the low offer of G5 in the
energy market, all the power of G5 is cleared in the energy
market without participating in the PFRmarket.The percentages
of optimal decisions are reflected in Figure 12. In the energy
market, the energy sources of IDRC are divided into three parts.
42% of the energy is purchased from the market, 44% from

internal wind turbines, and 14% from internal energy storage. In
the PFR market, the proportion of energy storage significantly
increases to 68%. The proportion of wind turbines decreases
to 32%. The excellent regulation performance of energy storage
reduces the cost of regulation, making it easier for IDRC to win
the bidding in the PFR market. Therefore, investing in energy
storage benefits IDRCs in the PFR market.

5.3.2 Impact of Grid Congestion
In order to analyze the impact of grid congestion on clearing
results, the clearing power and clearing prices of the two cases
are compared. The two cases are as follows:

Case 1: in the PG&E 69-bus system, grid congestion
constraints are not considered.

Case 2: in the PG&E 69-bus system, grid congestion
constraints are considered. In different cases, Figure 13 shows
the clearing power and the clearing electricity prices at Bus 4.
In the energy market, generated power of G4 is studied. The
power of case 2 is decreased obviously during the peak periods
of 15–18 and 20–22. Due to the heavy load of the system, the
transmission power of the line is large, resulting in line blockage.
In order to reduce the transmission power of overloaded lines,
the generated power of G4 is reduced, and one of the high-
priced G2 is increased. In the period of 20, G2 is free neglecting
grid blockage. However, when network blockage is considered,
G2 wins the bidding and the energy clearing price is increased
to 65 $/MWh. In the PFR market, the bidding price of R2 and
G2 is the same. When the system load is low, the regulation
power is purchased from R2 to reduce the power loss. With
the system load increases, regulation power from G2 increases
to reduce the transmission power on the overloaded line. With
the increase in power losses and IDRCs’ strategic behavior,
the PFR clearing price is increased after considering grid
congestion.

FIGURE 13 | The clearing power and the clearing electricity price of different cases. (A) The energy market. (B) The PFR market.
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6 CONCLUSION

In energy and PFR markets, a bi-level bidding model of the two-
stage dynamic alliance is proposed. The dynamic of the complex
alliance network is considered in the two-stage alliance strategy.
In the medium- and long-term alliance strategy, the location
and capacity of IDRCs are considered. In the day-ahead alliance
strategy, binary alliance decision variables are added by alliance
condition constraints. The main conclusions are as follows.

As installed capacity and distance are considered in the
medium- and long-term alliance strategy, the alliance risk
resistance and transmission efficiency are improved. The degree
distribution of alliance has power-law properties. IDRCs with
large capacity and superior location are important in the alliance.

Binary alliance decision variables improve the satisfaction rate
of the alliance. The cost of cooperation is reduced, increasing the
profits of the alliance. A sensitivity analysis on excepted profits
shows that this parameter has an important impact on the IDRC’s
profits. IDRCs need to reasonably choose expected profits to
maximize their own profits. Furthermore, the IDRC’s dishonest
behavior affects its subsequent alliance.

The IDRC optimizes the operation of internal generation
resources, which adjusts the clearing price and maximizes
social welfare. In the PFR market, energy storage is more
likely to profit as excellent regulation performance. In addition,
grid blockage affects market-clearing prices and players’
profits. Network location should be considered when investing
in IDRC.

In this study, the research on alliance bidding strategy provides
a reference for IDRC participating in the energy and PFR
markets. With the complexity of electricity market transactions,
the distribution of alliance profits is simplified. How to distribute
profits according to the importance of IDRC is studied in future
work.
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NOMENCLATURE

Abbreviations
i, j, l Number of IDRCs

N Total number of IDRCs

n,m Number of Gencos and retailers

w Number of scenarios

t Time interval

a,b Number of wind turbines and batteries

α,β Bus index

k Relative gravitational coefficient

ci Historical credibility of IDRCs

ρw Probability of a scenario

Mi,Mj Total capacity of IDRCs

dij Shortest path edges between IDRCs

η Efficiency of the IDRCs transformer

ηchb ,η
dch
b Charging/discharging efficiency of the battery

pLw,i,t Energy demand of IDRC

pWT
w,t,a Maximum power of wind turbine

peb Maximum charging/discharging power of battery

Ek,Ek Minimum and maximum energy storage of battery

πoi
t,i,π

bi
t,i Max price of IDRCs offer and bid in energy market

πci
t,i,π

mi
t,i Max price of IDRCs capacity and mileage in the PFR market

Wi Excepted profits of IDRC

πcg
n,t ,π

mg
n,t Capacity and mileage bidding price of Genco in PFR market

πcr
m,t ,π

mr
m,t Capacity and mileage bidding price of retailer in PFR market

πog
n,t Offer price of Genco in energy market

πbr
m,t Bid price of retailer in energy market

psyst Regulation power of the system

pgn,p
rg
n Max generated power and max regulation power of Genco

prm,p
rr
m Max purchased power and max regulation power of retailer

pii,p
ri
i Max sold/purchased power and max regulation power of

IDRC

Fα,β Max power flow of transmission line

θα,θα Max and min phase angle at bus

Bα,β Susceptance of line

Mg
n,t A large constant

L Average path length

Tij Alliance intensity between IDRCs

T Alliance intensity matrix

Til Row maximum value matrix

Jn Total number of potential alliances

ui Binary decision variable of alliance

pwtw,t,a Power generation of wind turbine

pchw,t,b,p
dch
w,t,b Charging/discharging power of the battery

prww,t,a,p
re
w,t,b Regulation power of wind turbine and battery

poutt,i ,p
in
t,i Power sold and purchased by the IDRC

πe
t Energy market price

πm
t ,π

c
t ,π

r
t Mileage, capacity, and regulation clearing prices in PFR

market

prit,i Regulation power of IDRC

Ew,t,b Energy storage of battery

πoi
t,i,π

bi
t,i Offer and bid price of IDRC in energy market

πci
t,i,π

mi
t,i Capacity and mileage bidding price of IDRC in PFR market

K,|K| Virtual alliance and number of IDRCs in virtual alliance

vΨ,vΨ/i Profits of joining and not joining virtual alliance

pgn,t ,p
rg
t,i Power generated and regulation power of Genco

prm,t ,p
rr
t,i Power purchased and regulation power of the retailer

θα Phase angle of bus

agn,t A binary variable.
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