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The large-scale deployment of sustainable energy sources has become

a mandatory goal to reduce pollution from electricity production. As

photovoltaic (PV) plants replace conventional synchronous generators (SGs),

their significant inherent rotational inertia characteristics are reduced. The

high penetration of PV results in reduced system inertia, leading to system

frequency instability. Virtual inertial control (VIC) technology has attracted

increasing interest because of its ability to mimic inertia. Adoption of the

energy storage system (ESS) is hindered by the high cost, although it can be

used to provide virtual inertia. The determined forecast gives PVs the ability

to reserve power before shading and compensate the power when a system

power drop occurs, which can increase system inertia. Nevertheless, it has

forecast errors and energy waste in a stable state. To improve the stability

of the microgrid and improve the ESS efficiency, this study proposes an

adaptive forecasting-based (AFB) VIC method using probabilistic forecasts.

The adaptive power reserve and virtual inertia control are proposed to reduce

energy waste and increase system inertia. The simulation results reveal that the

proposed method has adaptive system inertia to reduce the reserved power,

required ESS power capacity, and battery aging.

KEYWORDS

micro-grid, frequency regulation, virtual inertial control, forecasting, power reserve

1 Introduction

Local loads, energy storage systems (ESS), and distributed generators (DGs) comprise
a micro-grid. Due to the clean, sustainable, and environmentally friendly nature of
solar energy sources, photovoltaic power generation has seen rapid growth in remote
areas as one of the most promising renewable energy sources (Woodhouse et al., 2011).
The amount of energy obtained from renewable energy has increased exponentially
over the last decade, making distributed generation a viable scheme for mainstream
power generation (Askarian et al., 2018). The evolution of the global power generation
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mode has changed and will continue to change the prospects
of the power system. The adaptability of micro-grids allows
for rapid tracking of fluctuations in renewable energy power
generation. It has the potential to reduce demand from large grid
power systems (Zhang et al., 2020a).

For the 2030 scenario, the Australian Energy Market
Operator (AEMO)has proposed a 100% renewable power system
(RPS) composition (Gu et al., 2018). The RPS of the national
electricity market (NEM) generation mix projection is expected.
The PV power ratio accounts for 22% of total power while
providing 51% of the peak demand power. Thus, with the
increasing PV penetration level, the intermittent nature of solar
energy poses new challenges for the conventional grid. Non-
dispatchable PV power may result in a loss of system inertia and
increased frequency deviation. Mararakanye and Bekker (2019)
specified two conditions for frequency control in the NEM:
±0.5 Hz/s RoCoF and ±0.15 Hz frequency deviations.

Because of the high penetration of PVs, system inertia is
reduced, resulting in an unstable system frequency in micro-
grids (Dreidy et al., 2017). Due to the high penetration of PVs,
many researchers have considered the impact of low inertia on
the stability and operation of grid systems (Gu et al. 2018; Tielens
and Van Hertem, 2016; Ulbig et al. 2014). For the response to
system contingencies, frequency regulation actions must be
implemented multiple times. The problem of reducing system
inertia and the challenges of system operation are investigated in
Tielens andVan Hertem (2016).Themain challenge forAustralia
is to maintain enough inertia in the system to ensure safe
operation (Gu et al., 2018). Ulbig et al. (2014) investigates the
impact of low inertia on the operation and stability of micro-
grids at high PV penetration levels. It is demonstrated that in
a micro-grid with low inertia, it may result in rapid frequency
changes and overshoot the frequency policy limitations. Because
of the high penetration of PVs in the micro-grid, the generator
may not increase power in time to regulate frequency when the
frequency drops. As a result, the low inertia issues are widely
acknowledged.

The low inertia issues in a micro-grid system can be
improved by virtual inertial control (VIC). In Tielens and
Van Hertem (2016), the rate of change of frequency (RoCoF)
is increased to a higher level. Iit uses the VIC technique to
increase system inertia by simulating the properties of traditional
synchronous generators (SGs). Most VIC strategies necessitate
the use of additional ESS energy, such as a battery or super
capacitor. Hammad et al. (2019) proposed an efficient virtual
inertial measurement method. It is suitable for actuated ESS.
Although the ESS efficiently provides enough power for VIC, it
results in higher capital and operating costs.

The PV-based VIC method is comparable to other ESS-
VIC technologies. A sufficient power supply for the VIC
can be provided by reserving PV power (Crăciun et al., 2014;
Hua et al., 2017; Yan et al., 2018). This approach is provided

by the development of active power reserves (Hoke and
Maksimović, 2013; Yang et al. 2016). However, to provide
sufficient power buffers to the VIC when frequency deviations
occur, the aforementioned method usually necessitates a
constant power reduction, such as 10% of themaximumavailable
power. This study describes the process of modeling the PV
small signal with VIC and implements the details of simulating
the dynamic properties of SGs (Li et al., 2019). As a result, once
the micro-grid system is stabilized, there is a constant waste of
energy.

Algorithms for determining forecasting PV power
using historical solar irradiance data are proposed in the
literature reports (Chen et al., 2019; Mahmud et al., 2021;
da Luz et al., 2020; Han et al., 2019; Wang et al., 2020). The
impact of data normalization on forecast performance
is introduced in Mahmud et al. (2021) using a variety of
performance indicators. Han et al. (2019) proposed a reserve
method in which the optimal operation plan of a controllable
generator is used to deal with the forecast error uncertainty. The
methods described earlier typically require forecast information
about the PV power drop. The reserve method, known as
local curtailment (LC), is used at the local PV power station.
Forecasting errors are unavoidable.With forecast errors, PVmay
not provide the required virtual inertia. It may cause a frequency
deviation that exceeds the grid limit.

Coordinate control is proposed in Chang et al. (2021) to
reduce the effect of forecast error. In a large distributed area,
the PV stations have a geographical distance. When power
is changed at one local PV station, using other remote PV
station’s reserve power can provide constant virtual inertia. The
remote reserve has improved frequency stability via probabilistic
forecasting. However, it works in a transient state with constant
virtual inertia and cannot limit the frequency deviation in policy.
As a result, it is challenging to limit frequency deviations in any
limitations.Given the policy constraints in continuous operation,
an adaptive virtual inertia parameter and a power reserve control
strategy are required.

The contribution of this study is listed as follows:

1) The proposed reserve strategy is capable of filtering and
determining the working point in quantile regression results.
It reduces reserve power in stable irradiance and improves the
efficiency of reserved power in the regulating frequency.

2) The ESS capacity and charge/discharge times are reduced by
improved virtual inertia control for the remote reserve using
adaptive inertia parameters. The virtual inertia is changed to
be suitable for different scenarios of the PV power drop. The
system frequency and RoCoF variation are reduced in the
continuous control throughout the single daytime.

3) Considering the policy of RoCoF and frequency nadir
limitation to the virtual inertia control, coordinated control
of PV and ESS helpsmicro-grids improve the system stability.
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FIGURE 1
Framework of the islanded micro-grid.

The remainder of this study is structured as follows. The
framework and islanded micro-grid components are described
in Section 2.The system inertia and control strategies are defined
in Section 3. The simulation results are presented and discussed
in Section 4. Conclusion is provided in Section 5.

2 System configuration

Theproposed framework of the AFB-VIC strategy, including
PV, load, SG, and ESS connected to a micro-grid controlled by
a micro-grid control center, is depicted in Figure 1. There is a
geographical distance between PV stations where the irradiance
changes asynchronously. The forecast information from the
shaded PV station is used to generate reserve power demand in
the stable station, shown as the orange arrow.Whenone of the PV
stations is expected to be shaded, the other stable PV begins to
reserve power. Following a power drop in a shaded PV station,
the ESS and reserved power can be released to provide VIC.
For load frequency control (LFC), SG provides constant inertia.
Figure 2 shows a simple mathematical schematic representation
of an islanded micro-grid. The system’s inertia is divided into
two parts. The governor (GOV) of the power plant provides
the constant inertia. The virtual inertia is controlled by PV
and ESS. The parameters of virtual inertia can be adaptively
changed according to the forecasting information. The RoCoF
and frequency nadir methods are used to control the value of
virtual inertia. The following sections follow the specifics of the
proposed control strategy.

2.1 Synchronous generators

An SG module to regulate the system frequency with
feedback control is proposed in Liu et al. (2016). The constant

inertia is provided by SGs in the micro-grid. The control system
of the SG is shown in Figure 2; the GOV is used to change the
shaft power Pm when angular frequency deviation occurs. The
difference between the SG output angular frequency ω0 and the
rated angular frequency ωr is the angular frequency deviation.
TheGOVdroop coefficient is kp. In control, a first-order equation
is added to represent inertia, where td is the inertial response of
the governor. The automatic voltage regulator (AVR) is shown
in Figure 3. It consists of a power calculation, root-mean-square
(RMS), and proportional–integral (PI) control. The excitation
system provides the DC to regulate the SG voltage, where kq is
the AVR droop coefficient.

2.2 Photovoltaic

A maximum power point (MPP) estimation method for PV
power sources is proposed in Belhachat and Larbes (2019). The
maximum available power is estimated by irradiance G and
temperature T, which is represented as

Pmp =
25°C ⋅G

T
⋅ K
√A

2π ⋅ 0.02
s+ 1
, (1)

where K is a constant parameter and A is the PV panel area.
Here, s represents the continuous domain. As shown in Figure 4,
PV reserve power means changing the working point from A
to B. Vcmd is the reserved voltage to regulate the PV voltage.
Figure 5 depicts the PV power control strategy that employs
MPP estimation and reserve control. Pr is the PV working away
from the MPP to reserve power for VIC. The controlled power
is limited to less than the reserve power. It ensures PV will not
over-regulate. The control strategy of VIC is shown in the PV-
controlled power in Figure 2. PVs can compensate the power
with virtual inertia when frequency deviation occurs. The VIC
function is determined by

Dp ⋅Δω = (2Hpvs+Dpv) ⋅ Pc, (2)

where Dp is pω droop coefficient, Hpv is the virtual inertia,
and Dpv is the virtual damping. The ramp-rate violations are
considered in power-reserved processing. The PV power change
rate should be suitable for the forecast horizon. The ramp rate
limitsRs will help grid stability in the reserve strategy. It limits the
reserve speed before the stable PV provides the virtual inertia.

Rs = |
dPPV
dt
|. (3)

2.3 Energy storage system

The frequency deviation in the power system is caused by a
mismatch between supply and demand as a result of a generator
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FIGURE 2
Schematic representation of the micro-grid plant model.

FIGURE 3
Control system of the automatic voltage regulator.

FIGURE 4
Movement of PV power reserves by the operating point away
from the MPP.

fault. Furthermore, frequency deviation exists in the forecasting
system as a result of forecasting errors. Keeping the ESS state
of charge (SOC) in the middle of its capacity can increase
delivered energywhile decreasing its capacity.Figure 6 illustrates
the ESS charge and discharge control strategy. It is stable in the
middle of the SOC and is only affected by minor frequency
deviations.

The virtual inertia and damping components of the ESS
recovery control are similar to the grid forming control forVICof

FIGURE 5
Power reserve and the VIC strategy of the PV.

FIGURE 6
SOC control and limitation to charging.

PVs. When there is a frequency deviation, the ESS compensates
the power to the system except for the no-action region. The
following Figure 2 illustrates ESS control, which consists of
energy recovery control and virtual inertia-damping emulation.
It is similar to the VIC of the PV. The ESS virtual inertia is He,
and damping is De.

3 Proposed control strategy

For the evaluated adaptive virtual inertia, forecasting results
must be transformed into system inertia demand. As a result, the
PV and ESS can share the inertia demand with their respective
energy capacities. For frequency regulation, the control strategy
employs a two-part strategy that includes forecasted reserve
control and inertia control.
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FIGURE 7
Relationships of inertia and power in different RoCoF limitations.

3.1 Inertia

A sudden change in irradiance causes PV power deviations,
whichmay lead to a generation-demand disequilibrium. Initially,
the inertia prevents the system’s frequency drop. The primary
control is to operate the output power of generators to
compensate for the frequency deviations. The inertia could be
provided by SG, ESS, and reserved power in the PV.

The instantaneous RoCoF is determined by system inertia,
and the power of contingency size is expressed by

RoCoFmax =
f0Pd
2Hsys
, (4)

where Pd is the contingency size, f0 is the nominal system
frequency, and Hsys is the total system inertia. If the permissible
RoCoF is determined, the required minimum system inertia can
be formulated as

Hmin =
f0Pd

2RoCoFmax
. (5)

Figure 7 shows the relationship between the contingency
size, maximum RoCoF, and minimum system inertia. It can
be seen that the minimum system inertia and contingency
size have a positive relationship. On the contrary, there is
an inverse relationship between minimum system inertia and
maximum RoCoF. When the maximum RoCoF is determined,
the contingency size determines the minimum system inertia.

Another critical indicator of frequency control is the
frequency nadir. Chávez et al. (2014) proposed the overall
generator power response in the event of a sudden loss of
generation. Figure 8 depicts the relationship between the
frequency nadir and drop power. It uses a simplified dynamic
model that approximation underestimates the actual response
and validates the assumption.

where f0 is the nominal frequency and Gsys is the
approximation-aggregated ramp rate limit of the system primary
reserve. Re-arranging the integral limits leads to a lower limit
equal to zero so that the integral of Eq. 5 between time 0 and

FIGURE 8
Relationship of the frequency nadir and drop power in primary
control.

tnadir of the frequency nadir can be formulated by

∫
tnadir

0

df (t)
dt

dt =
f0

2Hsys
∫
tnadir

0
Pddt. (6)

An approximation ramp rateGsys of total governor responses
is assumed (Chávez et al., 2014) to facilitate the definite integral
calculation of power imbalance, as shown in Figure 8.

fnadir − f0 = −
f0

2Hsys
⋅

P2d
2Gsys
, (7)

where tnadir is the time frequency it takes to reach the nadir, and
it can be represented by

tnadir =
Pd
Gsys
. (8)

In Liu et al. (2020), it establishes a frequency nadir prediction
model (FNP) and predicts the time required to reach the
maximum frequency deviation, following a major disturbance.
The analytical FNP model has a simple structure to the
polynomial fitting step response for each governor. The
minimum-squared-error method for governors in the islanded
model is used to solve the coefficient vector Pi = [pr0, i, pr1, i,
…prn, i,]. Here, αi is the transfer coefficient per unit; the time of
maximum frequency deviation can also be represented by

tnadir =
[−1

2
A+√1

4
A2 + 16

3
BHsys]

4
3
B

, (9)

where

{
A = ∑NG

i=1αipr1, i
B = ∑NG

i=1αipr2, i
(10)
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FIGURE 9
Single daytime forecasting results.

3.2 Forecasted reserve control

A lasso-based short-term forecasting model for a PV
system is proposed in Zhao et al. (2019) and Wang et al. (2022).
It constructs a penalty function that allows it to compress
some regression coefficients to obtain a refined model.
Zhang et al. (2020b) proposed a hybrid forecasting framework
based on the LSTM model. The quantile regression architecture
for deep learning is probabilistic forecasting.

In this work, the forecast model is trained on a publicly
available dataset obtained on Oahu Island, Hawaii, installed by
the National Renewable Energy Laboratory (NREL). The details
of the dataset are recorded in Sengupta and Andreas (2014).
The results of single-daytime forecasting are shown in Figure 9,
with cloudy conditions, resulting in significant forecast errors.
The blue line is the actual PV power. The orange line represents
the determined forecast information. The red line represents the
quantile results of the probabilistic forecast. A deeper red color
indicates that the results are closer to 50%. The gray area depicts
the ability of SGs to compensate for power using Eq. 5 and Eq. 7.
If the PV power fluctuated between gray areas, the frequency
deviations could adhere to the NEM limitations by only using
SGs to regulate the frequency. When PV power fluctuates
dramatically, the determined forecast has lower accuracy. For
probabilistic forecasting, lower quantile results perform better
in terms of accuracy at unstable states. However, in a stable
irradiance state, it wastes power.

The proposed reserve strategy is to add the filter and
determine quantile processing. The SG boundary, as shown in
Figure 9, can cover a portion of the forecasting results. The SG
boundary primarily coincides with 15% quantile results. As a
result, the quantile can be calculated. The reserve strategy is
illustrated in Figure 10.The blue line represents the actual power
drop, while the yellow line represents the determined forecasted
power. Forecasted results may not equal actual power at the start
of the operation. Thus, even if the calculated forecasted drop
power results are equal to the actual drop power, the LC reserve
strategy wastes energy due to initial errors. The AFB-VIC was
more concerned with the power shift. It has reduced the amount
of energy wasted due to initial errors. Furthermore, Eq. 5 and

FIGURE 10
Reserved power control using forecasting results.

Eq. 7 show that the constant inertia of SG results in a limited
boundary of power change. This portion of the power can also
be reduced to reduce the energy waste. The power drop can be
handled by the sum of virtual inertia in the PV and constant
inertia in the SG.

3.3 Inertia control strategy

Inertia has a relationship with RoCoF and the frequency
nadir. Thus, the system inertia demand can be calculated by
the normalized forecasting results. The system inertia demand,
according to Eq. 5 and Eq. 7, is the sum ofHrocof andHnadir . The
system inertia distribution of SG, PV, and ESS is expressed by

Hsys =
NG

∑
i∈ϕSG

Hixi +
NG

∑
i∈ϕPV

Hjxj +
NG

∑
i∈ϕESS

Hkxk, (11)

where ϕSG, ϕPV, and ϕESS are sets of SGs, PVs, and ESSs in
the islanded micro-grid, and the SG has constant inertia. The
requirement forminimum system inertia can be evaluated by the
adaptive virtual inertia of the PV and ESS.

The SGmaintains constant inertia. If the stable PV is working
at the MPP, it cannot provide virtual inertia to the micro-grid.
When the rapid power drops from the shaded PV, the SG may
not be able to compensate for the total system inertia demand.
The remaining virtual inertia must be distributed adaptively by
reserve power at the stable PV and ESS. Figure 11 depicts the
inertia demand when PV power is reduced in a single day. The
actual power drop at the shaded PV station is depicted by the
blue line. The orange line depicts the LC strategy. It reserves
power at the shaded PV by determined forecasting. The red line
represents the virtual inertia supplied by the remote stable PV
via AFB-VIC. The gray portion represents the constant inertia
provided by the SG. The remainder of the inertia demand needs
to be compensated by the PV and ESS. As a result, SG inertia
reduces the power demand in a remote stable PV.The PV reserve
power can be used to charge the ESS when considering the ESS
recovery process. As a result, the PV and ESS have distributed
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Algorithm 1. LC − pseudo code.

virtual inertia, and the parameters of Hpv are governed by the
NEM guideline limitation.

Maximum power point tracking (MPPT) control, local
curtailment (LC), determined region reserve (DRR), and AFB-
VIC are the four PV power control strategies. TheMPPT control
is defined as the PV operating at the MPP at all times. It does
not require any forecasting data. Based on forecast information,
LC is the reserved power in the local PV station. It has a
ramp limit to reserve power before the PV power drops. As
a result, the reserved processing avoids frequency deviation.
Algorithm 1—Local curtailment—Pseudo Code depicts the
control strategy.TheDRR is comparable to LC control. It uses the
determined forecast result at PV1 but reserves power at a stable
PV station.

Based on probabilistic forecast data, AFB-VIC is a method of
reserving power at geographically separated, stable PV stations.
It also has a ramp limit for power reserves. When the other PV
station is shaded, the reserved power at the stable PV station
can be released to compensate for the loss of power. The system
inertia consists of SG, PV, and ESS. SG has constant inertia.
The required virtual inertia is provided by the PV and ESS. The
value of virtual inertia is thus adaptively changed for different
forecasted PV power levels, according to Eq. 7. Within the limits
of RoCoF and the frequency nadir, the SG can compensate
for a constant power deficit. The PV and ESS must supply the
remainder of the predicted power and inertia demand. As a
result, the power reserved in the PV can be calculated using the
Algorithm 2-AFB-VIC-pseudo code.

4 Simulation results

As shown in Figure 1, an islanded micro-grid with the SG,
PV, ESS, and load has been modeled using MATLAB/Simulink.
The actual power change in a single day (36000s, 7:30–19:30) is

Algorithm 2. AFB-VIC − pseudo code.

FIGURE 11
Inertia demand and distribution.

FIGURE 12
Basic output power and load demand in 36,000 s of a single
daytime.
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TABLE 1 Corresponding parameters of the tested system.

Parameter Value

Constant inertia of SG H 1.7 s
Constant damping of SG D 1.2 p.u.
Virtual inertia of ESS H 1.0 s
Virtual damping of ESS D 1.0 p.u.
SG time constant Td 0.6 s
Capacity of SG 6 MW
Capacity of shading PV 3.2 MW
Capacity of the stable PV 2.2 MW
Load 8 MW
Ramp rate limit Rs 40 W/s

FIGURE 13
Reserved power of the determined forecast and AFB-VIC
probabilistic forecast reserve strategy.

FIGURE 14
Value of virtual inertia in the PV using AFB-VIC.

depicted in Figure 12. PVs, ESS, and SG supply load demand in
this islanded micro-grid system.The AFB-VIC strategy employs
two PVs to simulate the frequency variation. According to the
forecasting results, one of the PV stations will be shaded. The
other has consistent irradiance.Table 1 shows the corresponding
parameters of the tested system.

To validate the effectiveness of the proposed AFB-
VIC strategy, the other three cases, including traditional
MPPT, DRR, and LC strategies, are simulated and compared.
Podder et al. (2019) used a traditional MPPT control strategy
that employs a fixed-step-size perturb and observed the
algorithm (P&O). Single-day forecasting results, including
spot and probabilistic methods, are used for power reservation

FIGURE 15
Micro-grid frequency response with different
control strategies.

FIGURE 16
Close-up view of the frequency deviation.

FIGURE 17
RoCoF response.

purposes. LC uses determined forecast results of PV1 and makes
PV1 reserve power before shading and lets PV2 always work at
its MPP. The DRR uses a determined forecast to reserve power
at PV2 and then releases it to provide VIC, which performs
PV1 work at the MPP. AFB-VIC reserves power in stable PV2 by
probabilistic forecasting while allowing shaded PV1 to operate at
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FIGURE 18
ESS power provided to the micro-grid.

the MPP.The ESS is configured to compensate power only when
frequency deviations exceed±0.05 Hz. It is designedwith infinite
capacity and no constraints to ignore the effect of the energy
capacity that could show the different rated energy capacities
controlled with four strategies.

4.1 Photovoltaic reserved power

Using the forecast information in Figures 9, Figure 13
depicts the reserved power change for LC, DRR, and AFB-
VIC. The orange zone denotes reserved power via LC and DRR
control. The reserved power was shown in red using AFB-VIC.
At a stable state, LC control has reserved power ranging from t1
to t2. AFB-VIC reduced the reserved power between t1 and t2.
Furthermore, in an unstable state, it reserves more power. The
LCAlgorithm 1 obtains the new working point to reserve power
in shaded PV1. When shading arrives, ESS and the reserved
power in PV1 should compensate for PV1 power loss. However,
if the determined forecast is incorrect, the actual power drop will
exceed the calculated forecast. It leads to PV1 becoming a burden
in this islanded micro-grid system. More power is required from
the SG and ESS to regulate the frequency. AFB-VIC uses PV2
to reserve power and employs probabilistic forecast results from

PV1. If there is a forecast error in PV1, PV2 can continue to
provide power indefinitely. It has the advantage of the structural
parameter variety for AFB-VIC. A probabilistic forecast can
accommodate a higher power change than a determined forecast.
As a result, AFB-VIC can mitigate some of the effects of forecast
errors in PV1. Compared to these two methods, AFB-VIC has a
highermaximum reserve power than LC. Furthermore, as shown
in Figure 14, AFB-VIC has provided adaptive virtual inertia in
the PV to limit frequency deviation.

4.2 Frequency response

We simulated the single daytime frequency deviations of
MPPT, LC, DRR, and AFB-VIC strategies in Figure 15 using
the irradiance results in Figure 9. In NEM, the frequency nadir
is represented by the black dashed line. The frequency limit is
49.85 Hz. The MPPT control strategy is represented by the blue
line. It has a frequency nadir of 49.826 Hz. Moreover, there are
four ways to exceed the frequency nadir limitation. The orange
line represents the frequency response of the LC control strategy.
The frequency nadir falls below the limitation once during a
single daytime simulation, reaching 49.833 Hz, and it has three
chances to shoot over the frequency limitation. The gray line
depicts the DRR results. The frequency nadir is 49.536 Hz, and
it has three points above the frequency nadir. The ESS and SG
cannot compensate for the power and inertia caused by the
determined forecast error. The red line represents the AFB-VIC
strategy. There is only one instance of the over-frequency nadir
during the single daytime simulation. It has the lowest nadir
frequency of 49.84 Hz. The SG provides the majority of the
inertia. AFB-VIC has lower frequency deviations and times of
the over-frequency nadir when compared to these methods.

Figure 16 shows a close-up of the frequency response at
3.58 h.The black dashed line represents a SOC constraint. When
the frequency falls below 49.95 Hz, the ESS is discharged. The
PV, ESS, and SG all worked together to control the frequency in
the first 3 s. Only the ESS and SG are used in the MPPT control
strategy to compensate for power and provide inertia. As a result,
the frequency nadir is lower, and the recovery time is longer.
Due to the MPPT and LC not having any reserve power after

TABLE 2 Results of theMAPE and RMSE.

AFB-VIC LC DRR MPPT

MAPE
Frequency 0.08 0.10 0.09 0.11
RoCoF 0.18 0.24 0.21 0.30

RMSE
Frequency 5.25 5.67 5.49 6.40
RoCoF 18.31 19.21 18.97 24.06

Times over limitation
Frequency 1 3 3 9
RoCoF 28 52 45 137

Charge and discharge times 120 183 156 287
ESS capacity (p.u.) 1.7 2.4 1.9 3.7

The bold values means the minimum results is the best performance in frequency response.
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the first 3 s, the frequency regulation has only relied on the SG
after that. The DRR can provide VIC using reserved power, but
it has a lower reserve capacity than AFB, so it takes longer to
reach 50 Hz. In comparison to these methods, AFB-VIC limits
frequency deviation to a narrower range and reducesmore subtle
oscillations. Furthermore, AFB-VIC only uses 10 s to restore the
frequency.

Accordingly, the RoCoF limitation is another condition in
the micro-grid of NEM. Figure 17 shows the RoCoF response
of these methods. The RoCoF change is mainly concentrated
because irradiance rapidly changes. The blue line shows the
RoCoF change region of the MPPT. It is −1.3 ˜1.4 Hz/s. With
the power being reserved in PV1 using LC, the PV power
drop is reduced. Therefore, the RoCoF change region is −1.2
˜1.3 Hz/s of local curtailment. Because the DRR reserve power in
stable PV2 uses determined forecasting results, it provides power
and virtual inertia when irradiance changes in PV1, and the
RoCoF deviation region is −1.0 ˜1.3 Hz/s. The AFB-VIC using
probabilistic forecasting results has reduced the RoCoF change
region to −0.6 ˜1.2 Hz/s. For the RoCoF, AFB-VIC has reduced
21.7%, 28%, and 33%, compared to DRR, LC, and the MPPT
strategies, respectively. Moreover, the times over the RoCoF
limitation using MPPT, LC, DRR, and the AFB-VIC strategy are
137, 52, 45, and 28, respectively.

The mean absolute percentage error (MAPE) and root mean
squared error (RMSE) are considered.TheMAPE and RMSE are
standard criteria to evaluate the accuracy of frequency or RoCoF.

MAPE = 100%
n

n

∑
i=1
|
ŷi − yi
yi
| , (12)

RMSE = √ 1
n

n

∑
i=1
(ŷi − yi)

2. (13)

ŷi denotes the frequency or RoCoF value, while yi denotes the
reference value of frequency andRoCoF.Although themaximum
range of deviations and times over frequency or the RoCoF
limitation can offer a comparison of the control strategies, the
accuracy of deviations is still an essential result of the model.

4.3 Energy storage system

The ESS is programmed to operate at 50% SOC and has
an infinite power capacity. It clearly shows the maximum ESS
power used for frequency regulation. The charge and discharge
power capacity of these methods is depicted in Figure 18. As
shown in Table 2, the times of charge and discharge of MPPT,
local curtailment, DRR, andAFB-VIC are 287, 183, 156, and 120,
respectively.Thus, the AFB-VIC has the potential to reduce costs
by extending the life cycle. The MPPT control has a maximum
ESS capacity of 3.7 p.u. in the 36000 s daytime simulation
due to PV being continuously operated at the MPP. The local

curtailment reduces the ESS power capacity to 2.4 p.u. The DRR
requires 1. p.u. of the ESS capacity. The AFB-VIC strategy has a
minimum power capacity of the ESS. It only requires 1.7 p.u.

5 Conclusion

The AFB-VIC method is proposed in this study to improve
the system stability caused by the irradiance drop. It simulates
a daytime of continuous operations. With the high penetration
of the PV and the geographical distance between the PVs,
we proposed a power reserve strategy based on probabilistic
forecasting results to reduce the reserved power with stable
irradiance and increase the power reserve with unstable
irradiance. Using the stable PV station generates VIC. The
adaptive virtual inertia and power reserve are controlled by
the NEM RoCoF and frequency nadir limitation. The proposed
AFB-VIC offers advantages in the following areas:

The RoCoF and frequency nadir can both be restricted. The
virtual inertia is changed adaptively based on the forecasted PV
power drop. It continuously provides virtual inertia, even with
an initial forecast error in shaded PV stations. Furthermore, it
shortens the time required for frequency regulation.

The AFB-VIC proposed a method for calculating and
filtering quantile regression from probabilistic forecasting
results. It reduces the power waste in a stable state and increases
reserve power in a large range of areas. It improves the
reserved power efficiency in the frequency nadir and RoCoF
limitation.

The ESS power capacity has been reduced due to the
proposed AFB-VIC. Furthermore, it extends ESS aging by
reducing charge and discharge times.
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