
Sparse Dictionary Learning for
Transient Stability Assessment
Qilin Wang1*, Chengzong Pang1 and Cheng Qian2

1Department of Electrical and Computer Engineering, Wichita State University, Wichita, KS, United States, 2Burns & McDonnell
Engineering Co., Inc., Houston, TX, United States

Transient stability assessment (TSA) has always been a fundamental and challenging
problem for ensuring the security and operation of power systems. With more power
electronic interface resources integrated into the grid and large renewable energies,
the stability of the power system is jeopardized. Therefore, TSA of the power system
should be considered in advance to keep the system running stable. In recent years,
with the development of artificial intelligence (AI) technologies such as artificial neural
network (ANN), support vector machine (SVM), and Markov decision process, TSA
has improved dramatically. In this study, a sparse dictionary learning approach is
proposed to improve the precision of the classification accuracy of transient stability
assessment in power systems. Case studies of TSA using multi-layer support vector
machine (ML-SVM) and long short-term memory network–based recurrent neural
network (LSTM-RNN) are discussed as benchmarks to validate the proposed method.
The stable and unstable dictionary learnings are designed based on datasets obtained
by simulating thousands of different time-domain simulation (TDS) scenarios
performed on the New-England 39-bus system in the PSAT (power system
analysis toolbox) toolbox. Stable and unstable dictionaries are developed based
on the K-SVD approach. The testing dataset contains both stable and unstable
samples which steps into the sparse coding process to obtain the indexes. Compared
with the indexes, the system’s final TSA is targeted. The proposed method
exhibits satisfactory classification accuracy in transient stability prediction and
provides the ability to reduce false alarms both in positives and negatives of the
power system.

Keywords: sparse dictionary learning, transient stability assessment, power system, artificial intelligence,
K-singular value decomposition

1 INTRODUCTION

In power system stability studies, transient stability of a power system usually refers to the ability
of the synchronous machines to remain in synchronism after a large disturbance (Kundur et al.,
2004). Due to the increasing penetration of electricity demand and the integration of renewable
energies, the power system’s dynamic characteristics are becoming more and more complex.
The demand for dynamic security assessment of power systems is increasing. Transient
stability assessment (TSA) is part of the dynamic security assessment of power systems,
which involves evaluating the ability of a power system to remain in equilibrium under
severe but credible contingencies. Therefore, TSA has been considered one of the main
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challenges and played a critical role in ensuring the reliability
and stability of the power system’s operation.

Typically, the main approach used to solve the TSA can be
summarized into three different categories: time-domain
simulation method (Scala et al., 1998), direct method
(Kakimoto et al., 1984), and artificial intelligence (AI) method
(You et al., 2013; Wang et al., 2016). The basic idea for the time-
domain simulation method is to solve the differential-algebraic
equations (DAEs) of the power system. The time-domain
simulation method has been widely used in the past decades
because of its good performance on reliability. Scala et al. (1998)
introduced a time-domain simulation method that solves the
state-space differential equations to obtain the detailed dynamic
behaviors of the power systems. Chan et al. (2002) presented a
new development in online transient stability assessment and
control using the time-domain simulation method. From the
assessment results shown in the aforementioned study, the
proposed approaches have a good stability accuracy rate, but it
is also easy to find that the calculation results highly depend on
the system model and parameters which means the
computational effort is at a high level.

The principle of the direct method refers to constructing an
energy function including the Lyapunovmethod (Kakimoto et al.,
1984), transient energy function (TEF) method (Vittal et al.,
1989), and extended equal area criterion (EEAC) method (Xue
et al., 1989; Huang and Wang, 2019) to describe the transient
stability of power systems. This method can provide a relatively
fast response and a good accuracy rate when not solving the
differential state-space equations. Vittal et al. (1989) introduced
an approach using transient energy function (TEF) which
consists of determining sensitivity coefficients and the
development of the dynamic sensitivity equations. Xue et al.
(1989) revealed the role of the extended equal area criterion
(EEAC) method. This method aims to extract essential
information out of a robust simulation and show the
improvements and extensions that enhance the EEAC
accuracy and its capability. Transient stability assessment of a
stochastic multi-machine system based on EEAC is proposed by
Huang and Wang (2019). The numerical simulation is based on
the Monte Carlo method, and the simplicity and effectiveness are
verified in the end. To summarize, the advantage of the direct
method is the quick response and its ability to provide a stable
margin, but it requires a large number of calculations since the
energy function is difficult to construct.

In recent years, the development and value of artificial
intelligence technologies have been widely recognized around
the world. Compared with the conventional TSA methods, the
utilization of artificial intelligence technology applied to TSA
provided new perspective methods such as neural network
(Bahbah and Girgis, 2004; Gupta et al., 2017) and support
vector machine (SVM) (You et al., 2013; Hu et al., 2018).
Gupta et al. (2017) presented an online monitoring system
using a GRU-based RNN, which continuously predicts the
current status based on the past data. Wang et al. (2021a)
proposed an ensemble machine learning approach (multi-layer
support vector machine model) to help improve the transient
stability assessment during fault events. In addition, some of the

previous works develop different feature selection methods for
AI-based TSA. Li and Yang (2017) proposed a novel pattern
recognition–based transient stability assessment (PRTSA)
approach based on an ensemble of OS-extreme learning
machines (EOSELM) by using the binary Jaya algorithm to
select the optimal features with the use of phasor
measurement unit (PMU) data. The experimental results show
that the proposed method has superior computation speed and
prediction accuracy. The basic idea of AI approaches is to build an
AI-based assessment model of the power system’s operational
parameters as input to evaluate the stability of the power system.
In other words, the AI method can be considered a classification
problem. By establishing the nonlinear mapping relationship
between the data in a short time and the strong learning
ability, the AI method exhibits a good performance in
improving the assessment precision and accelerating the
computation speed. Table 1 shows the principles, pros, and
cons of different kinds of TSA methods (Zhang et al., 2021).

Although these AI methods have gained much popularity and
success, the most important part of implementing the efficiency is
the feature selection and optimization that have different
sensitivities to condition changes (Liu et al., 2014). Based on
the study by Wang et al. (2021b), the SVM can only achieve
accurate classification results in a small sample space due to the
structural risk minimization principle. Moreover, in the data
training process, for example, the optimization parameters for
certain classifiers in the SVM, such as the radial basis kernel
function, is a key step to acquire significant accuracy, which
increases the complexity of the procedure. In other words, the
object and extracted features usually change, affecting the
classifier’s performance. For GRU, it is very important to
determine the weight matrices and bias vector so that the
update gate and reset gate can get rid of the useless
information delivered, which no doubt increases the
complexity of the model. Thus, the development and
improvement of AI technologies for simplifying the feature
selection and the classification model is necessary. In some
recently reported ideas, the sparse dictionary learning that uses
the sparse representation of connected neural networks based on
the sparse coding approach developed has been suggested to
address the concerns mentioned earlier.

In general, the basic idea of sparse dictionary learning is
finding a sparse representation of the input data to form a
linear combination of basic elements. These elements
combined with the original elements themselves are called
atoms, and they are used to compose a dictionary. In other
words, sparse representation represents the natural signals by
a sparse linear combination of atoms in a fixed dictionary
(Donoho et al., 2006). Sparse signals are characterized by non-
zero coefficients in one of their transformation domains
(Stanković et al., 2019). Sparse dictionary learning has
attracted widespread attention in real-world applications such
as signal processing and in power system areas. For example,
Akhavan et al. (2022) investigated the dictionary learning
problem for sparse representation when there is hidden
Markov model dependency among the training signals, and
the proposed approach improves the performance of the
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dictionary learning algorithms in the mentioned scenario.
Dictionary learning sparse decomposition is implemented by
Cai et al. (2019) for a highly accurate and fast quality
disturbance classification. The results demonstrate that the
dictionary learning method has good improvement in
computational complexity and classification accuracy. In the
study by Ren et al. (2016), a joint model of sparse-
representation-based and SVM on fault diagnosis approach is
proposed to compute the sub-dictionaries and represent the
testing sample.

The literature reviews aforementioned established a clear
point of view that the dictionary-based learning approach in
power systems has been successfully applied to signal processing,
power quality disturbance classification, and fault diagnosis.
Therefore, the main contribution of this study is applying the
sparse dictionary learning approach to transient stability
assessment to improve the precision of the classification
accuracy of TSA in power systems. Furthermore, this study
investigates performance comparisons of TSA using multi-
layer support vector machine (ML-SVM) and long short-term
memory network–based recurrent neural network (LSTM). The
proposed method exhibits satisfactory classification accuracy in
transient stability prediction and provides the ability to reduce
false alarms both in positives and negatives of the power system.
The data are obtained by simulating thousands of different time-
domain simulation (TDS) scenarios which are performed on the
New-England 39-bus system in the PSAT (power system analysis
toolbox). The K-SVD approach is used to develop stable and
unstable dictionaries.

The rest of this article is organized as follows: Section 2
presents the basic idea of sparse representation theory and the
K-SVD algorithm. Section 3 introduces the philosophy of the
proposed dictionary learning TSA method. Section 4 is the case
study using different AI technologies. The simulation and results
are given in Section 5. The last part of the article is the conclusion.

2 THEORETICAL BACKGROUND

2.1 Sparse Representation Theory
In recent years, sparse representation theory has attracted more
attention. We simply consider dictionary learning a method of
learning a matrix which is called a dictionary such that we can
write a signal as a linear combination of as few columns from the

matrix as possible. Generally speaking, the basic idea of sparse
dictionary learning is finding a sparse representation of the input
data to form a linear combination of basic elements. These
elements combined with the original elements themselves are
then called atoms to compose a dictionary. In other words, sparse
representation represents the natural signals by a sparse linear
combination of atoms in a fixed dictionary (Donoho et al., 2006).
The basic model of this method is illustrated in Figure 1. As
mentioned previously, the model assumes that a digital signal is
represented as a sparse linear combination of atoms obtained
from a fixed dictionary. Atoms in the dictionary can be an over-
complete spanning set, not to be orthogonal strictly. For an input
signal y ∈ Rm×n (m is the number of the samples and n is the
property of the samples ), the expression is y � Dx, where
D ∈ Rm×k is the dictionary and x ∈ RK×m is the sparse
matrix. The dictionary matrix D contains K atoms, where
dk ∈ Rm, k � 1, 2, /K are its columns (Han et al., 2018). If
m<K, the dictionary is over-complete. When the dictionary D
and input signal y are fixed, we will obtain the sparsest
representation matrix, in which the majority of the entries in
the sparse matrix are zero.

TABLE 1 | Pros and cons of difference AI methods.

Methods Principles Pros Cons

Time-domain
simulation

Solves the state-space differential equations to obtain the system’s
detailed dynamic behaviours

Good on the large-scale power
systems

Highly depends on the system model

More computational effort needed

Direct method Builds an energy function to describe the transient stability of power
systems

Provides a relatively fast response
speed

The energy function is challenged to
build

Artificial intelligence Applies different AI methods to the transient stability assessment Learning ability, fast response and
calculation speed

Maybe not as stable as the
conventional methods

Good feature extraction

FIGURE 1 | Basic model of sparse representation theory.
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The dictionary learning algorithm is usually formulated as the
following optimization problem.

minx‖x‖0 s.t.y � Dx, (1)
where ‖ · ‖0 is the l0 pseudo-norm, which represents the number
of non-zeros entries in the sparse matrix x. Our goal is to find x
such that the error y − Dx2 is small. That means x has to be as
sparse as it could be so that we only use a few of the available
atoms in the dictionary. We could try to minimize the error
aforementioned to get a sparse x, but in most certain works, it is
hard to achieve since the equality constraint y − Dx is too strict.
Therefore, we add l0-regularization with a threshold ε, and the
optimization problem becomes

(P0,ε)minx‖x‖0 s.t.
����y − Dx

����2≤ ε, (2)
where ε depends on the noise level of the signal. The optimization
process is called sparse coding. The corresponding unconstrained
form of the aforementioned equation can be represented using
the Lagrange multipliers as

(P0,λ)minx
1
2

����y − Dx
����
2
2
+ λ

����x‖0. (3)

The approaches provided earlier can obtain an approximate
solution that is not globally optimal because Eqs. 1, 2 are
underdetermined system equations. This is a combinational
optimization problem, and the process is a non-deterministic
polynomial (NP) hard problem. To solve this, in the past few
decades, several efficient approximate solutions are proposed in
practice. Generally, these methods can be divided into two main
categories: greedy algorithm and relaxation algorithm. For greedy
algorithms, matching pursuit (MP) (Mallat and Zhang, 1993) and
orthogonal matching pursuit (OMP) (Chen et al., 1989) are
widely used to select the dictionary atoms sequentially based
on the correlation between the columns of the dictionary and the
input signal to compute the inner products.

For the relaxation algorithm, basis pursuit (BP) (Chen et al.,
2001) is another well-known algorithm in this category. BP
converts Eqs. 1, 2 to their convex counterparts by replacing
the l0 pseudo-norm with l1 pseudo-norm.

(P1,ε)minx‖x‖1 s.t.
����y − Dx

����2≤ ε, (4)

where ‖ · ‖1 is the l1 pseudo-norm. Compared to the l0
pseudo-norm, the l1 pseudo-norm has a better mathematical
performance to serve as the objective function of the
optimization model. The corresponding unconstrained form of
the aforementioned equation can be represented using the
Lagrange multipliers as

(P1,λ)minx
1
2

����y − Dx
����
2

2
+ λ‖x‖1. (5)

x tends to be sparser when λ becomes larger, so fewer dictionaries
are obtained.

2.2 K-Singular Value Decomposition
Algorithm
In sparse representation, the K-singular value decomposition
(K-SVD) algorithm (Aharon et al., 2006) is a highly effective
method for training over-complete dictionaries (Rubinstein
et al., 2012). The purpose of the sparse dictionary learning
method is to choose a suitable dictionary. Predesigned
transform such as the wavelet (Mallat, 1999), curvelet (Candes
and Donogo, 2000), or contourlet transforms (Do and Vetterli,
2006) is one of the methods to emerge from the dictionary. The
other method is finding the dictionary from the input data using
training process. The K-SVD algorithm is a type of data training
technique to train the dictionary. The high efficiency makes it
successfully applied in several image processing tasks (Elad and
Aharon, 2006; Mairal et al., 2008; Protter and Elad, 2008).

The K-SVD algorithm accepts an initial over-complete dictionary
D0, a number of iterations k, and a set of training signals arranged as
the columns of the matrix X. In general, the purpose of the K-SVD
algorithm is to improve the dictionary iteratively to make the
representation of the signals as sparse as it could be in the matrix
X by solving the following optimization problem:

minD,Γ‖X − DΓ‖2F s.t. ∀
����γi

����0≤K, (6)
where γ is the sparse representation and K is the target sparsity.
There are two basic steps involved in the K-SVD algorithm to
constitute the algorithm iteration:

1) The signals in X are sparse-coded given the current
dictionary estimate, producing the sparse representation
matrix Γ;

2) The dictionary atoms are updated given the current sparse
representation.

Line 4 of the pseudocode in Table 2 shows the sparse
coding part which is commonly implemented using OMP.
The second loop between line 5 to line 12 indicates the
updated dictionary which is performed using one atom
each time and individually optimizes the target function for
each atom. The rest of the atoms are kept fixed (Rubinstein
et al., 2012).

The innovation of the algorithm is to update the atom which is
utilized while preserving the constraint in Eq. 6. To achieve this, the

TABLE 2 | Pseudocode of K-SVD algorithm.

K-SVD Algorithm

Input: Input signal X , initial dictionary D0, target sparsity K, number of iterations k
Initialization: D � D0

for n � 1/k do
∀i: Γ i � Argminγ xi − Dγ22 s.t. γ0 ≤K
for j � 1/L do
Dj � 0
I � {indices of the signals in X whose representation use dj}
E � XI − DΓ I
{d, g} � Argmind,g E − dgT 2

F s.t. d2 � 1
Dj � d
Γ j,I � gT

end for
end for
Output: Dictionary D, sparse matrix Γ, such as X � DΓ
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update step uses only the signals in X whose sparse representation
uses the current atom. I denotes the index of the signals in X which
uses the jth atom. The optimization of the target function is

‖XI − DΓI‖2F. (7)
The problem is a rank-1 approximation task by

{d, g} � Argmind,g
����E − dgT

����
2

F
s.t.‖ d‖2 � 1, (8)

where E � XI − ∑
i≠j

diΓi,I is the error matrix without the jth

atom, d is the updated atom, and gT is the new coefficients
row in ΓI.

3 SPARSE DICTIONARY LEARNING TSA
MODEL

3.1 Top–Down Philosophy of the Sparse
Dictionary Learning Transient Stability
Assessment Model
By determining the relative generator rotor angles, the stability of
the system can be analyzed. Figure 2 describes the top–down
philosophy of the proposed sparse dictionary learning TSA
method.

The data samples will be divided into training datasets for
dictionary learning and testing datasets for evaluation. For the
dictionary learning part, in order to obtain the fittest sparse
dictionary, the training dataset is separately labeled into two
datasets: stable and unstable. The stable dataset is used as input

data for implementing the stable dictionariesDs, and the unstable
dataset is used as input data for establishing unstable dictionaries
Du. The K-SVD algorithm is used to develop the sparse
dictionaries.

The testing dataset contains both stable and unstable samples.
The stable and unstable sparse codingXs andXu are individually
stepped into the learned dictionary Ds and Du to determine the
stability status of the system, respectively. Two indexes are used to
determine the stability status: if the RMSE index of the output in
the stable dictionary RMSE(i) is less than that of the unstable
dictionary RMSE(j), then the system is considered stable. In the
opposite direction, the system is targeted as being unstable. By
applying these analysis criteria, the classification accuracy, the
reliability (false positive success rate), and security (true negative
success rate) can be evaluated.

3.2 Transient Stability Assessment
Performance
Not only the classification accuracy should be outlined but also
the following evaluation indexes are necessary to be considered.
The confusion matrix in Table 3 can better evaluate the proposed
model not only using the accuracy.

TP is true positive, indicating the number of stable samples
correctly predicted; FP is false positive, which means the number
of unstable samples incorrectly predicted; FN means false-
negative, which represents the number of stable samples but
mispredicted; and TN is true-negative, which is the number of
unstable samples correctly predicted. In order to evaluate the
performance of the proposed TSA model comprehensively, the
following indexes are calculated:

The A index is the accuracy, which defines the ability of the
method to correctly classify the testing samples compared to the
observed data:

A(%) � TP + TN

TP + TN + FN + FP
. (9)

The Ru index allows for evaluating the performance of
misjudging the unstable sample as a stable one. As once, this
situation happens in a power system, and it may lead to a large
electricity blackout. In other words, if the classification results
consider an unstable case as a stable one, no further action will be
taken, which will destroy the operation of the system. Therefore,
the Ru index could ensure the reliability of the system.

Ru(%) � TN

TN + FP
. (10)

The Rs index is used to evaluate the prediction of stable
samples. Once the classification results mispredict the stable

FIGURE 2 | Top–down philosophy of sparse dictionary
learning–based TSA.

TABLE 3 | Confusion matrix for TSA classification.

Predicted class Real stable Real unstable

Stable TP FN
Unstable FP TN
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cases as unstable ones, the operator needs to take action to clear
the fault. But actually, there is no fault occurring at the moment.
Therefore, the Rs index is used to ensure the security of the
system.

Rs(%) � TP

TP + FN
. (11)

4 CASE STUDIES

Wang et al. (2021a) conducted a transient stability assessment
using the multi-layer support vector machine (ML-SVM)
method. Figure 3 shows the framework of the method. The
“Classifier” module on the left processes all the input data to the
feature selection stage. With different feature subsets, ML-SVM
trains and tests that information separately. Then, all different
classification results are integrated together to represent the
system’s stability in the “Integrated TSA” part.

A genetic algorithm (Xiang et al., 2007) is used to perform the
feature selection. The simulation is carried out on the IEEE 9-bus

system in PowerWorld simulator. A three-phase fault sets on bus
7 at t = 1.0 s and clears at t � 1.077 s. In total, 30 input features are
selected for the simulation process. By changing the generator
and load levels in a specific range, a total of 1,000 samples are
generated from the time-domain simulation. To validate the
efficiency, 800 of them are the training set and 200 of them
are used as the testing set. Transient stability is determined by the
relative rotor angles of the generators. The result shows that the
proposed advanced SVM method has a 93% classification
accuracy.

In the study by Wang et al. (2021b), the authors propose a
transient stability prediction method based on the long short-term
memory (LSTM) network (Hochreiter and Schmidhuber, 1997).
The detailed schematics of an LSTM block is illustrated in Figure 4.
As shown in the figure, a cell state, input gate, forget gate, and output
gate compose a general LSTM unit. The forget gate is used to control
what information in the past state needs to be discarded. Then, the
selected information is delivered to the current state. Each LSTM
block connects to the following block directly in a sequence to form
the LSTM network module. The initial state is the preset input from

FIGURE 3 | Framework of ML-SVM based TSA.

FIGURE 4 | Architecture of an LSTM block.

FIGURE 5 | One-line diagram of the New-England 39-bus system.

TABLE 4 | Input features.

Name
of input features

No. of features

Active power of generators (No. 1–10) 10
Reactive power of generators (No. 11–20) 10
Bus voltage (No. 21–59) 39
Bus angle (No. 60–98) 39
Active power of load (No. 99–119) 21
Reactive power of load (No. 120–140) 21
Total no. of features 140
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the system. The input to the next block consists of the hidden states
from the previous block layer.

To validate the proposed method, the New-England 39-bus
system is adopted, and the simulation assumes that a three-phase
fault occurs at bus 31 at t = 1.0 s and is cleared at t = 1.08 s.
Different levels of generators and loads based on the power flow
are generated, and the relative rotor angles are used to determine
the transient stability of the system. Compared to the results from
the previous case study, the classification accuracy of the LSTM
method improved by 4%, which increased to 97%.

5 SIMULATION AND RESULTS

5.1 Model
For the purpose of evaluating the efficiency of the proposed
approach, the same simulation model in Section 4 has been

applied as a benchmark. Figure 5 shows the one-line diagram of
the classical New-England 39-bus system (Padiyar, 1990). The
New-England 39-bus system consists of 10 generators and
21 loads.

To make the best diversity of the sample data, the disturbance
considered is three-phase short-circuit faults at bus 31 with
various locations at 20%, 40%, 60%, and 80% of the
transmission line length. The faults are set at a time equal to
1 s, and the fault clears after 0.08 s. Fault samples are selected by
N-1 accident. The duration of the simulation is 5 s. The fault is
repeated at different generator levels and loading levels (the range
of the level varies between 80% and 120% of the rating values by
an increment of 10%). All the simulation data are generated by
performing the time-domain simulation in PSAT (Milano, 2005)
with the MATLAB platform. In terms of the model settings, the

FIGURE 6 | Unstable case from PSAT.

FIGURE 7 | Stable case from PSAT.

FIGURE 8 | Stable dataset K-SVD convergence.

FIGURE 9 | Unstable dataset K-SVD convergence.
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fault samples are 6,355 with different input features. Due to the
longer time to display the change of the generator’s rotor speed,
the generator’s rotor angle reflects faster to evaluate the stability
of the system (Gomez et al., 2011). Therefore, the stability is
denoted based on the transient stability index (TSI) calculated in
terms of the relative generator rotor angles. The TSI index is
defined as

η � 360° − |Δδ|max, (12)
where |Δδ|max is the absolute value of the maximum rotor angle
difference between any two generators after the fault is removed.

5.2 Input Features and Data Training
To evaluate the model properly, the input features need to fully
reflect the dynamic behavior of the system. The case studies in
Section 4 have further proved that the bus voltage and angle can
accurately represent the system’s behavior. In addition, the node
dynamic variables such as active and reactive power both on
generators and loads, which reflect the system dynamics, are also
used to generate the input features of TSA. There are a total of 140
features including active and reactive power of generators (No.
1–20), bus voltage and angle (No. 21–98), and active and reactive
power of the loads (No. 99–140). Table 4 shows the detailed
features of the input dataset.

In the data training process, both the OMP and K-SVD
implementations are made using the platform of MATLAB
with OMP-Box v10 and KSVD-Box v13 (Rubinstein et al.,
2008). The K-SVD toolbox uses the K-SVD algorithm to
recover the dictionary, and the convergence of the K-SVD
target function and the fraction of the recovered atoms are
computed.

Hyperparameters such as the ratio of training and testing
dataset, the number of iterations, and the sparsity of the dataset
are important factors for the simulation. The ratio of the dataset
indicates how to divide the samples into the training and testing
dataset so that we could obtain the best simulation result. The
number of iterations is based on the convergence of the k-mean
method where the value is not changed during the sparse signal
decomposition process. In other words, the last iteration has the
least contribution to the percent of correct representation
(Lachiheb et al., 2015). The coefficient of sparsity is used to
determine the performance of the trained dictionary, which is

computed in the OMP process. In order to receive the best
performance of the K-SVD algorithm and obtain the most
suitable dictionaries, the automated machine learning method
(Li et al., 2022) is used to determine all the hyperparameters. In
terms of the proposed simulation model, 70% of the obtained
samples are considered the training set and 30% of them are used
as the testing dataset. The optimal sparsity turns out to be k � 15,
and a maximum of 800 iterations is observed in the end.

5.3 Experimental Results
The simulations were run on an ASUS computer with an Intel core
i7 processor running at 2.4 GHz using 6MB of RAM. The whole
simulation environment runs on theWindows 10Operating System.
From Section 5.1, the stability of the system is simulated by
evaluating the η index. η> 0 means any of the two generator
rotor angles exceeds 360° as shown in Figure 6, and the system
is considered unstable and a label of “−1” is assigned to it. Otherwise,
a label of “+1” is set to represent the stable cases, as shown in
Figure 7. With the aforementioned parameter settings in 5.2,
Figure 8 and Figure 9 and Table 5 shows the comparison of the
TSA results of the proposed method among the benchmarks. As
shown in the table, the classification accuracy improved by around
1.5% compared to the LSTM method and 5.5% compared to the
ML-SVM method. As the Ru and Rs indexes are not listed in the
LSTM case, we only compare themwith theML-SVMmethod. Both
evaluation indexes of Ru and Rs of the proposed method are higher
than those in the ML-SVM method.

5.4 Performance Comparison Under Noise
Environment
In practical applications and real industrial environments, any
uncertain scenarios such as noise are inevitable in PMU
measurement. The aforementioned simulation was only
implemented under the ideal conditions without any noise. In
order to investigate the diagnostic ability of the proposed
approach under noise environments, different levels of white
Gaussian noise are artificially added to the model with different
signal-to-noise ratios (SNRs). This experiment is conducted in
the condition of a 50% transmission line length fault location. The
main contribution of the proposed approach is applying the
sparse dictionary learning method to solve the stability of the

TABLE 5 | Comparison of the TSA results.

Methods A index (accuracy) Ru Index (reliability) Rs Index (security)

Proposed method 98.45% 98.2% 99.6%
Multi-layer SVM 93% 96.6% 98.3%
LSTM 97% N/A N/A

TABLE 6 | Performance with difference degrees of noise.

SNRs −2 dB 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB 12 dB 14 dB w/o noises

Classification rate (%) 78.33 88.62 90.15 95.21 95.69 96.33 97.46 97.68 97.89 98.45
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power system. Therefore, in terms of this principle, the noises are
not considered during the PMUmeasurement. Instead of that, all
the SNRs are added to the K-SVD algorithm in the sparse
representation process to obtain the optimal dictionaries under
the noise environment. The diagnostic result is given in Table 6.
The intensive noise condition is under SNR � −2, where the
classification accuracy is around 78%. After that, with a
continuously increased SNR ratio, the accuracy rates present
an obvious upward trend correspondingly. From the results, it
is clear to find that the proposed method retains a relatively high
classification accuracy rate with a variety of SNRs.

6 CONCLUSION

An advanced artificial intelligence method using sparse dictionary
learning is presented in this study to improve the transient stability
of the power system in classification accuracy, reliability, and
secure operation. The New-England 39-bus system is adopted
to validate the proposed approach. By comparing the
experimental results with the case studies and the discussions
presented in the study, the following conclusions can be drawn:

• Timely feedback and adaptation are major evaluation
factors in power systems. Implementation of the sparse
dictionary learning method is time-saving and
straightforward since the proposed method eliminates the
feature selection process. In addition, the proposed
approach could apply to a variety of models as we only

need the sparse dictionary to find the optimal sparse
representation of the input data.

• Not only the stability but also the reliability and security are
the top priority for running a system. Compared with other
AI methods, the proposed method improves 2–6% of the
classification accuracy and reduces approximately 1.5
percent of the false alarms. Furthermore, the difference
in the accuracy rate after the noises adding to the system
is acceptable, which proves the robustness of the proposed
method under a noise environment.

• The proposed method could help the system operator by
providing a good decision-making tool, which improves the
stability of the system operation and decreases the
possibility of blackouts happening.
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