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The increase in the penetration rate of distributed renewable energy sources

has brought unprecedented challenges to the economic and stable operation

of the active distribution network (ADN). To improve the operating efficiency

and total benefits of the ADN, it is necessary to establish an optimization model

considering the stakeholders’ market behavior and the game relationship

among them under the market environment. In this paper, a multi-

stakeholder potential game model in the ADN considering the bounded

rationality of small users is proposed. The game relationships among five

stakeholders, including the distributed photovoltaic generation aggregators,

the distributed wind power aggregators, the energy storage operators, the large

users and the load aggregators, are modeled on an hourly time scale. Existing

research has proved that the game equilibrium of the potential game model

must exist. Based on the information transfer and the strategy update mode on

the social network, a demand response evolutionary game model for small

users is established. Moreover, a distributed algorithm is designed to obtain the

pure strategy equilibrium. Finally, a case with five stakeholders and 160 small

users is used to verify the rationality and feasibility of the proposed model.
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1 Introduction

With the continuous development of the global economy, the

energy demand is growing rapidly. However, the shortage of

traditional energy and the climate change hinder the further use

of traditional energy. This leads to the rapid development of clean

and renewable energy (Shahbaz et al., 2020). Moreover, to ensure

sustainable development, many countries have further

accelerated the construction of renewable energy based on

wind power and solar (Qazi et al., 2019; Levenda et al., 2021).

Due to the large-scale connection of the distributed renewable

energy generations to the distribution network, the number of

stakeholders in the distribution network continually growing.

Coordinating the stakeholders with different competition and

cooperation relations and actualizing optimal operation are the

urgent problems to be solved in the development of the

distribution network. The concept of the active distribution

network (ADN) provides technology and solution that can

effectively coordinate the “source-network-load-storage”

quaternary structure in the distribution network. This can

contribute to the local energy accommodation and efficient

utilization of distributed renewable energy (Conte et al., 2019).

Besides, trading or sharing energy within the ADN can

significantly improve the social efficiency (Chen et al., 2020).

Therefore, clarifying the relationship between various

stakeholders and establishing a reasonable optimization model

under the framework of the ADN is an important research

direction for the future distribution network.

Most of the research on the multi-agent coordination and

optimization modeling of the ADN concentrate on establishing

traditional optimization models. For example, an energy trading

model of the distribution network was proposed by (Maharjan

et al., 2013), which was designed based on the Stackelberg game

and was solved by optimization algorithm. The branch power

flow equations were relaxed into the convex second-order cone

format to ensure global optimality by (Taylor and Hover, 2012).

(Mirzapour-Kamanaj et al., 2020) applied the Karush-Kuhn-

Tucker (KKT) conditions and the Big-M method to simplify

and linearize the bi-level optimal model in the distribution

network. However, the traditional models are very strict with

the form. They need complex processing such as second-order

cone relaxation or KKT conditions to transfer the objective

function and constraints into forms that are relatively easy to

solve. This sacrifices the accuracy and utility of the model.

Game theory is an effective tool to analyze the relationship

between different stakeholders. A number of scholars focus on

analyzing the game relationship among multiple stakeholders.

The relevant game models can be divided into the following two

categories:

Non-cooperative game: A non-cooperative game model was

proposed by (Dashti et al., 2019) to describe the pricing

mechanism in a distribution network with multiple

microgrids. Similar methods were also studied by

(Ghorbanian et al., 2021), where the trading relationship

among the consumers, the grid operators, and the distributed

generations (DGs) were presented as a game model considering

the impact of users’ autonomous demand response. (Pang and

Shi, 2021) proposed a planning-operation model of ADN based

on non-cooperative game. The game relationship among three

different stakeholders (distribution network operator, distributed

generation operator and demand response operator) was

described by a bi-level optimization problem, which was

solved by particle swarm optimization algorithm.

Stackelberg game: The energy trading process in distribution

network including multiple microgrids was presented as a

Stackelberg game with one leader and N followers by (Lin

et al., 2021). The game model was solved by the combination

of heuristic algorithm (differential evolution algorithm) andMIP

method. (Aguiar et al., 2021) proposed a Stackelberg game model

to determine the trading prices of flexible users in distribution

network.

Different algorithms were applied to solve the game model of

distribution network. An optimal scheduling model that

coordinates the interests of multiple stakeholders was

established by (Lu et al., 2019), and the CEQ (λ) learning

algorithm was used to solve the equilibrium strategy. An

improved NSGAII algorithm was used to solve the multi-

objective optimal dispatching model of ADN by (Mazidi et al.,

2013). The final compromise solution in the Pareto optimal

solution set was selected by Nash equilibrium game. In the

above research, since the mathematical forms of the game

models of ADN were complex, they were generally solved by

heuristic algorithms because of its complicated mathematical

form. However, the heuristic algorithms are easy to fall into local

optimum, and the accuracy of the solution is hard to guarantee.

Moreover, there is a common problem of in solving the game

equilibrium, that is, it needs to prove the existence of Nash

equilibrium. Some scholars use mathematical methods to prove

and find the Nash equilibrium of the game model in the

distribution network (Ghorbanian et al., 2021). The proof

process is too complex and applies only to a single type of

model. This also limits the model establishment and may

increase the difficulty of solving. The potential game, which

does not have strict requirements for the mathematical form

and equilibrium proof of the game model (Monderer and

Shapley, 1996), is suitable for the model establishment of

ADN. In addition, the above studies do not take into account

the game relationship within the group of small users in the

ADN. The bounded rationality of small users as homo

economicus with social attributes is also ignored.

In response to the above problems, the main contributions of

this paper are as follows.

1) The competing relationship between the stakeholders in the

ADN is analyzed. Then, the potential game model of ADN is

established based on the utility model of different agents
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through potential game theory. The utilization of potential

game theory ensures the existence of Nash equilibrium.

2) Considering the bounded rationality and social attributes of

small users, in this paper, a social network among small

users is established based on information interaction and

strategy learning patterns. Then, an evolutionary game

model for demand response among small users is

established.

3) A distributed optimization algorithm and corresponding

trading mechanism are proposed based on the potential

game model. Moreover, the rationality and effectiveness of

the proposed models and algorithms are proved through

numerical simulation.

2 Potential game model of active
distribution network

2.1 Components of an active distribution
network

Under the market environment, the ADN usually consists of

five main agents, namely, distributed photovoltaic generation

aggregators (DPGA), distributed wind power aggregators

(DWGA), energy storage operators (ESO), large users (LU),

and load aggregators (LA). LU is generally a large industrial

or commercial user. It purchases electricity to meet its own

energy demand. LA integrates the load of small users and

purchases electricity from other agents to meet the demand of

small users. It represents small users to participate in the demand

response. In addition, the ADN purchases electricity from the

main grid (MG) through transmission lines to supplement the

shortage of electricity. The interaction relationships among the

five agents are shown in Figure 1.

2.2 Potential game theory

The potential game is a special kind of non-cooperative

game. It can be defined as follows:

For a given game G � {S1, ..., Sn; u1, ..., un} with a finite

number of players, where S1, ..., Sn are decision space, u1, ..., un
are utility functions, if there exists a function P: S → R

, ∀i ∈ N,∀s−i ∈ S−i,∀x, z ∈ Si:

ui(x, s−i) − ui(z, s−i) � P(x, s−i) − P(z, s−i) (1)

then G is said to be an exact potential game (EPG) (Monderer

and Shapley, 1996).

The finite improvement property of the potential game

ensures that the game model established by the potential

game definitely has a Nash equilibrium. Thus there is no need

to prove the existence of the equilibrium.

FIGURE 1
Composition of ADN, interest relationship and information interaction of various stakeholders.
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2.3 Game model of stakeholders in active
distribution network

In this paper, we assume that the transmission capacity of

the distribution network lines is large enough that multi-

stakeholder transactions do not cause line blocking and the

transmission loss can be ignored. Therefore, the network

constraint is ignored.

1) Distributed photovoltaic generation aggregator.

DPGA’s utility includes income from electricity sales and PV

subsidies. Its costs include operation cost and maintenance costs.

Its total utility at time slot t can be given as follows:

FDPGA,t � IDPGA
sell,t + IDPGA

s,t − CDPGA
r,t (2)

where FDPGA,t is the total utility of DPGA at time slot t. IDPGA
s,t is

the PV subsidy of DPGA at time slot t. CDPGA
r,t is the operation

and maintenance cost of DPGA at time slot t. IDPGA
sell,t is the

revenue from electricity sales of DPGA at time slot t.

IDPGA
sell,t � (cDPtoE

sell,t PDPtoE
sell,t + cDPtoLU

sell,t PDPtoLU
sell,t + cDPtoLA

sell,t PDPtoLA
sell,t )Δt (3)

IDPGA
s,t � cDP

s PDP
sell,tΔt (4)

CDPGA
r � cDP

r,t P
DP
sell,tΔt (5)

where cDPtoE
sell,t , cDPtoLU

sell,t and cDPtoLA
sell,t are the price of electricity sold

from DPGA to ESO, LU, and LA at time slot t, respectively. cDP
s

and cDP
r are the PV generation subsidy coefficient and PV

operation and maintenance cost coefficient, respectively.

PDPtoE
sell,t , PDPtoLU

sell,t and PDPtoLA
sell,t are the electricity sales from

DPGA to ESO, LU, and LA at time slot t, respectively. PDP
sell,t

is the total electricity sales of DPGA at time slot t.

Both the electricity sales price variable and the electricity

variable in the utility function have upper and lower bound

constraints, then the decision space can be given as follows:

{ cDP
sell,min ≤ {cDPtoE

sell,t , cDPtoLU
sell,t , cDPtoLA

sell,t }≤ cDP
sell,max

PDP
sell,min ≤P

DPtoE
sell,t + PDPtoLU

sell,t + PDPtoLA
sell,t ≤PDP

sell,max

(6)

where cDP
sell,max, c

DP
sell,min, P

DP
sell,min and PDP

sell,max are the upper and

lower bounds of the DPGA electricity sales price and electricity

sales at time slot t, respectively.

2) Distributed wind power aggregator.

The utility composition of DWGA is similar to that of

DPGA, including the revenue from electricity sales, wind

power subsidies and operating costs. Its total revenue at time

slot t can be given as follows:

FDWGA,t � IDWGA
sell,t + IDWGA

s,t − CDWGA
r,t (7)

where FDWGA,t is the total utility of DWGA at time slot t. IDWGA
s,t

is the wind power subsidy of DWGA at time slot t. CDWGA
r,t is the

operation and maintenance cost of DWGA at time slot t. IDWGA
sell,t

is the revenue of electricity sales of DWGA at time slot t.

IDWGA
sell,t � (cDWtoE

sell,t PDWtoE
sell,t + cDWtoLU

sell,t PDWtoLU
sell,t + cDWtoLA

sell,t PDWtoLA
sell,t )Δt

(8)
IDWGA
s,t � cDW

s PDW
sell,tΔt (9)

CDWGA
r,t � cDW

r PDW
sell,tΔt (10)

where cDWtoE
sell,t , cDWtoLU

sell,t and cDWtoLA
sell,t are the price of electricity

sold from DWGA to ESO, LU and LA at time slot t, respectively.

cDW
s and cDW

r are the wind power subsidy coefficient and wind

power operation and maintenance cost coefficient, respectively.

PDWtoE
sell,t , PDWtoLU

sell,t and PDWtoLA
sell,t are the electricity sales from

DWGA to ESO, LU and LA at time slot t, respectively. PDW
sell,t

is the total electricity sales of DWGA at time slot t.

Similar to DPGA, the decision space can be given as follows:

{ cDW
sell,min ≤ {cDWtoE

sell,t , cDWtoLU
sell,t , cDWtoLA

sell,t }≤ cDW
sell,max

PDW
sell,min ≤PDWtoE

sell,t + PDWtoLU
sell,t + PDWtoLA

sell,t ≤PDW
sell,max

(11)

where cDW
sell,max, c

DW
sell,min , PDW

sell,min and PDW
sell,max are the upper and

lower bounds of the electricity sales price and electricity sales of

DWGA at time slot t, respectively.

3) Energy storage operator.

The energy storage operator makes profit by purchasing

electricity at a low price and selling it at a high price. Its

income comes from the sale of electricity. The cost includes

the cost of electricity purchase and the cost of charging and

discharging operation and maintenance. Its total utility at time

slot t can be given as follows:

FESO,t � IEsell,t − CE
buy,t − CE

r,t (12)

where FESO,t is the total utility of the ESO at time slot t. IEsell,t is the

revenue of the ESO from electricity sales at time slot t.CE
buy,t is the

electricity purchase cost of the ESO at time slot t. CE
r,t is the

operation and maintenance cost of the ESO at time slot t.

IEsell,t � (cEtoLUsell,t PEtoLU
sell,t + cEtoLAsell,t PEtoLA

sell,t )Δt (13)
CE

buy,t � (cEfDP
buy,t P

EfDP
buy,t + cEfDW

buy,t PEfDW
buy,t + cEfNbuy,tP

EfN
buy,t)Δt (14)

CE
r,t � cEr P

E
all,tΔt (15)

where cEtoLUsell,t and cEtoLAsell,t are the prices of electricity sold from ESO

to LU and LA at time slot t. cEfDP
buy,t , c

EfDW
buy,t and cEfNbuy,t are the prices

of electricity sold to ESO from DPGA, DWGA, and the MG at

time slot t. cEr is the operation and maintenance cost coefficient of

the storage device. PEtoLU
sell,t and PEtoLA

sell,t are the electricity sales from

ESO to LU and LA at time slot t. PEfDP
buy,t , P

EfDW
buy,t and PEfN

buy,t are the

electricity sales fromDPGA to ESO, DWGA, andMG at time slot

t. PE
all,t is the total electricity sales of ESO at time slot t.

The charging and discharging of the energy storage device

cannot be carried out at the same time slot, so:
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{ 0≤PEtoLU
sell,t + PEtoLA

sell,t ≤ stPdis,max

0≤PEfDP
buy,t + PEfDW

buy,t + PEfN
buy,t ≤ (1 − st)Pch,max

(16)

where st is the Boolean variable of charging state. st � 1 indicates

that it is in the discharge state, otherwise, it is in the charging

state. Pdis,max and Pch,max are the maximum discharge electricity

and the maximum charging electricity of the energy storage

device respectively.

In addition, the energy storage device has a rated capacity

and minimum quantity of electric charge. and its state of charge

shall be within the allowable range, that is:

{ SOC(t) � SOC(t − 1) + (Pch,tηch − Pdis,t/ηdis)Δt
SOCmin ≤ SOC(t)≤ SOCmax

(17)

where SOC(t) is the state of charge at time slot t. SOCmin and

SOCmax are the maximum and minimum values of charge

respectively. Pch,t and Pdis,t are the total charging electricity

and discharge electricity at time slot t, respectively. ηch and

ηdis are the charging efficiency and discharge efficiency

respectively.

The decision variables of ESO also have upper and lower

limit constraints:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cEsell,min ≤ {cEtoLUsell,t , cEtoLAsell,t }≤ cEsell,max

cEbuy,min ≤ {cEfDP
buy,t , c

EfDW
buy,t , cEfNbuy,t}≤ cEbuy,max

PE
sell,min ≤PEtoLU

sell,t + PEtoLA
sell,t ≤PE

sell,max

PE
buy,min ≤P

EfDP
buy,t + PEfDW

sell,t + PEfN
buy,t ≤P

E
buy,max

(18)

where cEsell,max, c
E
sell,min, P

E
sell,min and PE

sell,max are the upper and

lower bounds of the ESO’s electricity sales price and electricity

sales at time slot t, respectively. cEbuy,max, c
E
buy,min, P

E
buy,min and

PE
buy,max are the upper and lower bounds of the ESO’s electricity

purchase price and electricity purchase at time slot t, respectively.

4) Large users.

LU satisfies its own electricity demand by purchasing

electricity from each electricity seller. The utility function

consists only of the cost of electricity purchase, and its total

utility at time slot t can be given as follows:

FLU,t � −CLU
buy,t

� −(cLUfDP
buy,t PLUfDP

buy,t + cLUfDW
buy,t PLUfDW

buy,t + cLUfEbuy,t P
LUfE
buy,t

+ cLUfNbuy,t P
LUfN
buy,t )Δt (19)

where FLU,t is the total utility of LU at time slot t. CLU
buy,t is the

electricity purchase cost of LU at time slot t. cLUfDP
buy,t , cLUfDW

buy,t ,

cLUfEbuy,t and cLUfNbuy,t are the electricity purchase prices of LU from

DPGA, DWGA, ESO, and MG at time slot t, respectively.

PLUfDP
buy,t , PLUfDW

buy,t , PLUfE
buy,t and PLUfN

buy,t are the electricity

purchase from DPGA, DWGA, ESO and MG at time slot t,

respectively.

⎧⎨⎩ cLUbuy,min ≤ {cLUfDP
buy,t , cLUfDW

buy,t , cLUfEbuy,t , c
LUfN
buy,t }≤ cLUbuy,max

PLUfDP
buy,t + PLUfDW

buy,t + PLUfE
buy,t + PLUfN

buy,t � PLU
load,t

(20)

where cLUbuy,max and c
LU
buy,min are the upper and lower bounds of the

LU’s electricity purchase prices at time slot t, respectively. PLU
load,t

is the load demand of large consumers at time slot t.

5) Load aggregator (small users).

The load aggregator integrates small customer load resources

to participate in demand response. It purchases electricity from

each electricity seller on behalf of small customers to meet the

total load demand, and its total utility consists of the cost of

electricity purchase only, which can be given as follows:

FLA,t � −CLA
buy,t

� −(cLAfDP
buy,t PLAfDP

buy,t + cLAfDW
buy,t PLAfDW

buy,t + cLAfEbuy,t P
LAfE
buy,t

+ cLAfNbuy,t P
LAfN
buy,t )Δt (21)

where FLA,t is the total utility of LA at time slot t. CLA
buy,t is the cost

of electricity purchased by LA at time slot t. cLAfDP
buy,t , cLAfDW

buy,t ,

cLAfEbuy,t and cLAfNbuy,t are the price of electricity purchased by LA from

DPGA, DWGA, ESO, and MG at time slot t, respectively.

PLAfDP
buy,t , PLAfDW

buy,t , PLAfE
buy,t and PLAfN

buy,t are the electricity

purchased by LA from DPGA, DWGA, ESO and MG at time

slot t, respectively.

⎧⎨⎩ cLAbuy,min ≤ {cLAfDP
buy,t , cLAfDW

buy,t , cLAfEbuy,t , c
LAfN
buy,t }≤ cLUbuy,max

PLAfDP
buy,t + PLAfDW

buy,t + PLAfE
buy,t + PLAfN

buy,t � PLA
load,t

(22)

where, cLAbuy,max and c
LA
buy,min are the upper and lower bounds of the

LA electricity purchase price at time slot t, respectively. PLA
load,t is

the load demand of large customers at time slot t, and its value is

the result of the demand response of small customers, which is

related to the tariff set {cLAfDP
buy,t , cLAfDW

buy,t , cLAfEbuy,t , c
LAfN
buy,t } and will be

analyzed further in Section 2.

6) Main grid.

As an agent to fill the electricity shortage of the distribution

network, the MG has a fixed tariff curve. Moreover, it will meet

the electricity demand of other agents as much as possible within

the allowed limits.

2.4 Construction of the potential function

The key to establishing the potential game model of ADN is

the construction of the potential function. The potential function

is constructed as the sum of the utility of all agents, taking into

account the electricity supply and demand balance of the large

and small users as well as the consistency of tariff and electricity
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decisions between the two sides of the transaction. The final

potential function is obtained as follows.

P(s) � P(si, s−i)
� ∑

i

Fi − α1(PLUfDP
buy,t + PLUfDW

buy,t + PLUfE
buy,t + PLUfN

buy,t − PLU
load,t)2

−α2(PLAfDP
buy,t + PLAfDW

buy,t + PLAfE
buy,t + PLAfN

buy,t − PLA
load,t)2

−∑
i

∑N
c
i

k

αi,k3 (ci,ksell,t − ci,kbuy,t)2 −∑
i

∑N
p
i

k

αi,k4 (pi,k
sell,t − pi,k

buy,t)2
(23)

where α1, α2, α
i,k
3 and αi,k4 are the penalty factors. cbuy,t and csell,t

are the electricity sales price variables of buyers and sellers in a

given electricity transaction, respectively. pi,k
buy,t and pi,k

sell,t are the

electricity sales variables of buyers and sellers in a given electricity

transaction, respectively.Nc
i andN

p
i are the number of electricity

sales price variables and electricity decision variables for the ith

agent, respectively. NLU is the number of LU.

Accordingly, the penalty function is added to the utility

function of each agent to satisfy the constraint.

Ui(s) � Ui(si, s−i)
� Fi − α1(PLUfDP

buy,t + PLUfDW
buy,t + PLUfE

buy,t + PLUfN
buy,t − PLU

load,t)2
−α2(PLAfDP

buy,t + PLAfDW
buy,t + PLAfE

buy,t + PLAfN
buy,t − PLA

load,t)2
−∑

i

∑N
c
i

k

αi,k3 (ci,ksell,t − ci,kbuy,t)2 −∑
i

∑N
p
i

k

αi,k4 (pi,k
sell,t − pi,k

buy,t)2
(24)

The potential game model established based on Eqs 23, 24

can be proved to be a full potential game.

Proving that the established potential game model is a full

potential game requires a classification for discussion:

1) If the agent i is not the LU or the LA, then we have

P(si, s−i) − P(si′, s−i) � Fi − Fi′ − ⎡⎢⎢⎣∑
i

∑N
c
i

k

αi,k3 (ci,ksell,t − ci,kbuy,t)2

−∑
i

∑N
c
i

k

αi,k3 (ci,k′sell,t − ci,k′buy,t)2⎤⎥⎥⎦
(25)

U(si, s−i) − U(si′, s−i) � Fi − Fi′ − ⎡⎢⎢⎣∑
i

∑N
c
i

k

αi,k3 (ci,ksell,t − ci,kbuy,t)2

−∑
i

∑N
c
i

k

αi,k3 (ci,k′sell,t − ci,k′buy,t)2⎤⎥⎥⎦
(26)

where, ci,k′sell,t and ci,k′buy,t are the corresponding electricity purchase

and sales price variables, respectively.

Therefore, P(si,s−i)−P(si′,s−i) �Ui(si,s−i)−Ui(si′,s−i) holds.

2) If the agent i is a LU, then we have

P(si, s−i) − P(si′, s−i)
� Fi − Fi′ − α1 PLUfDP

buy,t + PLUfDW
buy,t + PLUfE

buy,t + PLUfN
buy,t − PLU

load,t)
2([

− (PLUfDP′
buy,t + PLUfDW′

buy,t + PLUfE′
buy,t + PLUfN′

buy,t − PLU
load,t)

2]
− ⎡⎢⎢⎣∑

i

∑N
c
i

k

αi,k3 (ci,ksell,t − ci,kbuy,t)2 −∑
i

∑N
c
i

k

αi,k3 (ci,k′sell,t − ci,k′buy,t)2⎤⎥⎥⎦

− ⎡⎢⎢⎢⎢⎢⎣∑
i

∑N
p
i

k

αi,k4 (pi,k
sell,t − pi,k

buy,t)2 −∑
i

∑N
p
i

k

αi,k4 (pi,k′
sell,t − pi,k′

buy,t)2⎤⎥⎥⎥⎥⎥⎦
(27)

U(si, s−i) − U(si′, s−i)
� Fi − Fi′ − α1[(PLUfDP

buy,t + PLUfDW
buy,t + PLUfE

buy,t + PLUfN
buy,t − PLU

load,t)
2

− (PLUfDP′
buy,t + PLUfDW′

buy,t + PLUfE′
buy,t + PLUfN′

buy,t − PLU
load,t)

2]
− ⎡⎢⎢⎣∑

i

∑N
c
i

k

αi,k3 (ci,ksell,t − ci,kbuy,t)2 −∑
i

∑N
c
i

k

αi,k3 (ci,k′sell,t − ci,k′buy,t)2⎤⎥⎥⎦

− ⎡⎢⎢⎢⎢⎢⎣∑
i

∑N
p
i

k

αi,k4 (pi,k
sell,t − pi,k

buy,t)2 −∑
i

∑N
p
i

k

αi,k
4 (pi,k′

sell,t − pi,k′
buy,t)2⎤⎥⎥⎥⎥⎥⎦

(28)
where PLUfDP′

buy,t , PLUfDW′
buy,t , PLUfE′

buy,t and PLUfN′
buy,t are the

corresponding electricity purchase and sales price variables,

respectively.

Therefore, P(si, s−i) − P(si′, s−i) � Ui(si, s−i) − Ui(si′, s−i)
holds.

3) If the agent i is a LA, then we have

P(si, s−i) − P(si′, s−i)
� Fi − Fi′ − α2[(PLAfDP

buy,t + PLAfDW
buy,t + PLAfE

buy,t + PLAfN
buy,t − PLA

load,t)
2

− (PLAfDP′
buy,t + PLAfDW′

buy,t + PLAfE′
buy,t + PLAfN′

buy,t − PLA
load,t)

2]
− ⎡⎢⎢⎣∑

i

∑N
c
i

k

αi,k3 (ci,ksell,t − ci,kbuy,t)2 −∑
i

∑N
c
i

k

αi,k3 (ci,k′sell,t − ci,k′buy,t)2⎤⎥⎥⎦

− ⎡⎢⎢⎢⎢⎢⎣∑
i

∑N
p
i

k

αi,k4 (pi,k
sell,t − pi,k

buy,t)2 −∑
i

∑N
p
i

k

αi,k4 (pi,k′
sell,t − pi,k′

buy,t)2⎤⎥⎥⎥⎥⎥⎦
(29)
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U(si, s−i) − U(si′, s−i)
� Fi − Fi′ − α2 PLAfDP

buy,t + PLAfDW
buy,t + PLAfE

buy,t + PLAfN
buy,t − PLA

load,t)
2([

− (PLAfDP′
buy,t + PLAfDW′

buy,t + PLAfE′
buy,t + PLAfN′

buy,t − PLA
load,t)2]

− ⎡⎢⎢⎣∑
i

∑N
c
i

k

αi,k3 (ci,ksell,t − ci,kbuy,t)2 −∑
i

∑N
c
i

k

αi,k3 (ci,k′sell,t − ci,k′buy,t)2⎤⎥⎥⎦

− ⎡⎢⎢⎢⎢⎢⎣∑
i

∑N
p
i

k

αi,k4 (pi,k
sell,t − pi,k

buy,t)2 −∑
i

∑N
p
i

k

αi,k4 (pi,k′
sell,t − pi,k′

buy,t)2⎤⎥⎥⎥⎥⎥⎦
(30)

where PLAfDP′
buy,t , PLAfDW′

buy,t , PLAfE′
buy,t and PLAfN′

buy,t are the

corresponding electricity purchase and sales price variables,

respectively.

Therefore, P(si, s−i) − P(si′, s−i) � Ui(si, s−i) − Ui(si′, s−i)
holds.

In summary, ∀i ∈ N,∀si, si′ ∈ Si,∀s−i ∈ S−i, there is

P(si, s−i) − P(si′, s−i) � Ui(si, s−i) − Ui(si′, s−i). Therefore, the

established game model is a perfect potential game.

3 A small user evolutionary game
model based on social networks

Small users in the ADN generally participate in the game

through demand response (Chen et al., 2018). Since the demand

response potential of individual users is small, the demand-side

flexible load resources of small users are often integrated and

unified through LA. The LA has bargaining power in the ADN

and actively participate in the operation of the distribution

network. It purchases electricity from the distribution network

and sells it to small users at a certain price. The price of the

electricity sold has an impact on the level of demand response of

small users. In turn, the total demand response of small users

directly affects the LA’s strategy when playing with other

stakeholders in the distribution network, and further affects

the price of electricity purchased from the distribution

network. In other words, each small user’s electricity

consumption decision can affect the electricity price released

by the LA to small users.

It is clear from the above that the demand response decisions

of the individual small users will indirectly affect the interests of

other small users. As individuals with social attributes, small

users will exchange information with other small users through

social interaction. The network reflecting the social relationship

and information interaction among small users is a social

network, which is a typical complex network. Therefore, the

demand response decision-making process of the small users is

essentially a game process on a complex network. Based on this,

an evolutionary game model on a small users’ social network will

be established in this section.

3.1 Social network model for small users

In this paper, a graph theory approach is used to model the

social network of small users. In the social network, nodes

represent different small users, and the connection between

nodes represents the social connection between users. If two

nodes are connected, it means that there is a social relationship

between two users, which means there is information interaction

and vice versa. (Bandyopadhyay and Kar, 2018; Huang et al.,

2018; Wu et al., 2021) demonstrate that the small-world property

and the scale-free property are the two main properties of social

networks. The scale-free distribution means that the degree

distribution of nodes obeys a power-law distribution. The

small-world property of complex networks means that the

network has a short average path length along with a large

agglomeration coefficient. The average path length is the

average of the shortest path length between any two points in

the network.

Considering that the group of small users in the actual

distribution network has obvious community attributes, which

means it has the characteristics of gathering in a community.

There are strong connections within the community and

relatively few social connections outside the community.

Combining the small-world properties and scale-free

characteristics of social networks, the scale-free community

network (Santos and Pacheco, 2005) is used to establish a

social network model for simulating the small user social

network in the actual distribution network.

3.2 Evolutionary game model of demand
response for small users

The load aggregator acts as an agent for small customers

and purchases electricity from other distribution network

agents in order to meet the customers’ electricity demand.

It also publishes electricity prices to small users, who

respond according to the prices. Due to the interaction and

transmission of information among customers, each

customer evaluates and learns from the demand response

decisions of other customers with whom he or she has social

relationships, thus continuously optimizing his or her own

electricity consumption strategy and improving the interests

and satisfaction level of electricity consumption. Therefore,

each customer’s decision is directly influenced by the

decisions of customers with whom he or she is socially

connected, and the process of improving interests through

strategy evaluation and learning is a reflection of the limited

rationality of small customers. Based on this, a game model of

demand response decision for small users is established,

which contains three typical elements of the game:

decision-maker, decision space, and utility function.
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1) Decision makers.

There are J small users in the ADN, belonging to m

communities.

2) Decision space.

{dj,t

∣∣∣∣dj,t ∈ [0, 1], j � 1, 2, ..., J} (31)

where dj,t is the degree of demand response of user j at time slot t,

which is the proportion of the electricity of user’s demand

response to its load schedulable range.

Pj,t � Pj,t,min + dj,t(Pj,t,max − Pj,t,min)
� dj,tPj,t,max + (1 − dj,t)Pj,t,min (32)

where Pj,t,max and Pj,t,min are the upper and lower load limits of

the demand response of user j at time slot t as determined by the

load schedulable potential, respectively (Wu et al., 2021).

3) Utility function.

The utility of using electricity for each small user consists of

three components: cost of electricity, demand response subsidy,

and satisfaction with electricity consumption, namely:

Ij,t � −Cj,t + Ij,t,sub + Sj,t (33)

where Ij,t is the total electricity utility of user j at time slot t.Cj,t is

the cost of electricity for user j at time slot t. Ij,t,sub is the demand

response subsidy for user j at time slot t. Sj,t is the satisfaction of

electricity consumption for user j at time slot t.

Cj,t � cLA,tPj,t (34)
Ij,t,sub � csubdj,t(Pj,t,max − Pj,t,min) (35)

where cLA,t is the LA’s published electricity price to small

customers at time slot t. csub is the demand response subsidy

coefficient.

cLA,t � 1
PLA
load,t

(cLAfDP
buy,t PLAfDP

buy,t + cLAfDW
buy,t PLAfDW

buy,t + cLAfEbuy,t P
LAfE
buy,t

+ cLAfNbuy,t P
LAfN
buy,t )

(36)
From Eq. 36, the price of electricity sold by LA to small

customers is the weighted sum of the prices of electricity

purchased from other electricity selling entities.

Customer satisfaction with electricity consumption can be

represented by the following quadratic utility function (Yang and

Wang, 2016).

Sj,t �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ωPj,t − α

2
P2
j,t 0#Pj,t#

ω

α

ω2

2α
Pj,t >

ω

α

(37)

where ω and α are the satisfaction parameters, which reflects the

magnitude of user’s satisfaction with electricity consumption. It

can be seen that the higher the electricity consumption is, the

higher the satisfaction level is. However, there is an upper limit,

and after reaching the upper limit, the increase of electricity

consumption does not lead to the increase of satisfaction with

electricity consumption. A larger ω and a smaller α will increase

the upper limit of satisfaction (Samadi et al., 2012).

3.3 Information interaction and strategy
updates on social network

In this paper, we assume that there is complete information

and demand response strategy sharing between small users and

other small users with whom they are socially connected,

meaning that each small user has access to the actual level of

demand response and their total utility of the users directly

connected to them on their social network. Considering the

information transfer and mutual learning of users in social

networks, users will pursue their own interests by

continuously updating their own strategies. In this paper, an

optimal response learning algorithm is used to model this

dynamic process of policy adjustment. The basic principle is

that a single user gains from playing with other users in the social

network, and when the user updates his own strategy, he

compares his own gain with the gain of all users with whom

he is socially connected, and chooses the strategy with the highest

gain as his next game strategy, and converges through many

iterations. This process fully demonstrates the bounded

rationality of small users, namely, they learn to improve their

strategies through trial and error.

4 Distributed optimization algorithms
and trading mechanism

As can be seen from Eq. 23, the main part of the potential

function is the sum of the benefits of each agent. This to some

extent represents the total interests of all production and

consumption agents in the ADN, that is, the total social

welfare (Contereras-Ocaña et al., 2017). Besides, Eq. 1 shows

that the potential function and the individual’s utility function

have exactly the same trend and magnitude of change. This

means each decision-maker of the game maximizes its own

interests and simultaneously jointly promotes the social

welfare. Finally, both of the individual game and the potential

function can achieve the consistency of the equilibrium at the

same time (Yamamoto, 2015; Bahrami et al., 2018). Based on the

above analysis, a distributed optimization algorithm is designed

to solve the gamemodel, and the solution result can make both of

the social welfare and individuals’ utility reach the optimum.
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4.1 Optimize feasible domain settings

Since the prerequisite for a potential game to have a pure

strategy equilibrium solution is that both its decision-makers and

the number of decisions are finite (Monderer and Shapley, 1996),

the decision space needs to be discretized by partitioning the

decision variables of each game agent at equal intervals within its

upper and lower bound constraints to make it a discrete finite set

of strategies.

4.2 Strategy update mode

The agents in the ADN are update their strategies in order of

priority. Due to the low-carbon and clean characteristics of

DPGA and DWGA, the DPGA is set as the first priority and

the DWGA as the second priority in consideration of promoting

the consumption of new energy. In addition, in order to ensure

the electricity demand of small customers, LA is set as the third

priority. LUs are given the fourth priority. The ESO is set as the

FIGURE 2
Flow diagram of distributed iterative solution and flow chart of proposed algorithm.
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fifth priority. TheMG is the last priority. The strategies are updated

sequentially in a cycle according to the above priority order.

4.3 Distributed iterative optimal solution
process

The distributed iterative optimization solution process

designed in this paper is described as follows.

Step 1: Set the model parameters (load forecast results,

renewable energy output forecast results, etc.,) and determine the

initial decision variables. The initial value of all penalty factors is 1.

Step 2: Iterate by DPGA and update its own strategy by

traversing the decision space to select the electricity and tariff

decision results that maximize its own benefits according to the

latest decision results of other agents at this moment (Max FDPGA,t

using the method of exhaustion, s.t. Eq. 6 and broadcast the

decisions to other stakeholders. Other stakeholders perform the

similar operation in turn according to the priority order previously

analyzed in Section 4.2, until all agents’ decisions are updated.

Specially, the strategy update of LA needs to input the tariff

decisions of other agents into the evolutionary game model to

get the demand response results before solving.

Step 3: If the tariff and electricity decision variables are agreed

between all stakeholders, that is, the price and power are balanced

(ci,ksell,t � ci,kbuy,t, pi,k
sell,t � pi,k

buy,t, PLUfDP
buy,t + PLUfDW

buy,t + PLUfE
buy,t +

PLUfN
buy,t � PLU

load,t and PLAfDP
buy,t + PLAfDW

buy,t + PLAfE
buy,t + PLAfN

buy,t �
PLA
load,t), then go to the next step. As long as there are still

variables that are not mutually agreed upon, the penalty factor

of the corresponding penalty function needs to be doubled and

go back to step 2 (e.g., If ci,ksell,t ≠ ci,kbuy,t, the corresponding penalty

coefficient αi,k3 will be multiplied by 2 according to Eq. 23.

Step 4: The iteration of the time slot is finished, and it goes to

the next time slot for solving and back to step 2. If all the time

slots are solved (t = T), the solution is finished.

A schematic diagram of the specific solving process and the

algorithm flow chart can be seen in Figure 2.

4.4 Corresponding trading mechanism

In the actual market transaction process, each agent

determines the optimal price and electricity decisions

separately and broadcasts them to other agents in the ADN

during each trading cycle. The process is carried out

sequentially according to the prescribed priority order.

Whenever a trading cycle ends, each agent confirms whether

there is consensus on the volume and price of the transaction. If

a consensus is reached among all agents, the transaction

proceeds to the next time slot.

Since in the distributed transaction, the subjects in the ADN

do not know the information about each other’s decision space

and payoff function. They can only optimize their own payoffs

based on the decision information of other subjects in the current

trading round. This limitation of information guarantees each

subject to improve the total social welfare while optimizing its

FIGURE 3
Day-ahead power forecast for DPGA, DWGA, LA, and LU.

TABLE 1 Lithium Battery Parameters.

Parameters Value

ηch 0.95

ηdis 0.96

SOCmin 0.2

SOCmax 0.9
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own benefits, according to the property of EPG (Monderer and

Shapley, 1996; Bahrami et al., 2018).

5 Case study

5.1 Data

In this paper, an ADN containing one DPGA, one DWGA, one

ESO, one LU, and one LA is used to analyze the game situation of

each interested party in the electricity trading process. The day-

ahead power forecasts of DPGA, DWGA, LA, and LU are shown in

Figure 3. The electricity selling price range of DPGA is 0.3–1.1 RMB/

kWh. The electricity selling price range of DWGA is 0.3–1.0 RMB/

kWh. The electricity purchase price range of ESO is 0.3–0.95 RMB/

kWh and the electricity selling price range is 0.3–1.05RMB/kWh

The electricity purchase price for LU ranges from RMB 0.3 to RMB

1.5/kWh, and the electricity purchase price for LA ranges fromRMB

0.3 to RMB 0.95/kWh. The subsidy coefficients for DPGA and

DWGA are RMB 0.2/kWh and RMB 0.15/kWh, respectively. In this

FIGURE 4
Social network topology (Different colors represent belonging to different communities, nodes correspond to different users, the number on
the node is the number of small users, and the nodes are connected to indicate the existence of social connections between users).

FIGURE 5
Electricity transaction convergence results of DPGA and DWGA.
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paper, the ESO uses lithium batteries, and its parameters are shown

in Table 1. The storage capacity of ESO is 400 kW. The satisfaction

parameter of small usersω and α are set to 2.4 and 0.48, respectively.

5.2 Generation of social networks

In this paper, we consider an ADN containing 160 small

users divided into 8 communities and unified by the LA. Its social

network is established by a scale-free community network

(Santos and Pacheco, 2005). The relevant parameters are set

as: initial number of small users J0 � 8 , number of new users

t0 � 152, number of internal connections m � 3, number of

external connections n � 1, and external connection probability

p � 0.2. Based on the above data, the topology and social

relationships of the generated social network are shown in Figure 4.

6 Results

The simulations were performed on the Matlab 2020b

platform based on Windows 10, Intel Core i7-10700 CPU,

2.90 GHz, and 16 GB RAM environment.

The final game convergence results are shown in Figures 5–9

after several iterations of the optimization search. In the figure, to

ESO, to LA, to LU, from ESO, from DPGA, from DWGA and

from N denote the electricity sold to ESO, the electricity sold to

LA, the electricity sold to LU, the electricity purchased from ESO,

the electricity purchased from DPGA, the electricity purchased

from DWGA and the electricity purchased from the superior

grid, respectively. Firstly, the electricity output of DPGA is

analyzed, which is the first priority agent, as shown in Figure 5A.

It can be seen from Figure 5A that DPGA, as a distributed

renewable energy aggregator, still has some abandonment cases,

but total most of the PV electricity has been effectively consumed.

The reason why some of the PV is not consumed is that during

the peak period of PV electricity generation, the electricity

generated is too much whereas there is not enough load to

absorb it. Of the electricity sold, it was mainly traded to small

customer aggregators and large customers to meet load demand

through direct sales. During the peak PV generation period, a

small amount of electricity is sold to ESO to increase their own

utility in order to reduce the abandonment of light.

Figure 5B shows the final electricity trading convergence

results of DWGA, from which it can be seen that the total

consumption of wind power is good, and it is almost completely

FIGURE 6
La power trading convergence results.
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consumed within the predicted maximum generation. Similar to

the DPGA, most of the wind power generation was sold to both

large and small users, reflecting the priority of new energy

generation in meeting load demand. Compared to PV, wind

power generation has a smoother total power generation curve,

and thus is able to meet the different demands of loads at

different time slots of the day, thus having a higher level of

consumption.

Figure 6 illustrates the composition of the electricity sources

of the LA after the convergence of the optimization iteration.

Since there are many small users within the ADN, their load

demand is large, however, the distributed generation capacity

within the ADN is relatively small, so they need to purchase a

large amount of electricity from the MG to meet their own

electricity demand. In the game process, if the cost of purchasing

electricity from the rest of the agents is low, LA will purchase

electricity from distributed renewable energy aggregators or ESO

to reduce their own electricity consumption costs as much as

possible. As can be seen from Figure 6, apart from purchasing

electricity from the MG, most of LA’s electricity demand is met

by wind power generation. From 8:00 to 18:00, when DPGA is

generating electricity, the LA also purchases electricity from

DPGA, and intermittently purchases electricity from ESO

throughout the time slot. In addition, guided by the external

tariff, small users within LA play an evolutionary game on the

social network, and the final game results in the total electricity

demand as a result of the demand response. Compared with the

predicted value, the electricity demand in the low load period is

increased, while there is a small decrease in the peak load period,

indicating that participating in the market game of ADN with

small customer aggregators can effectively reduce the peak-to-

valley difference and guide small customers to use energy

rationally. In addition, more importantly, it reflects that the

bounded rationality of small users is more in accordance with

the actual demand response compared to the situation without

considering the bounded rationality (day-ahead forecast results).

Figure 7 shows the convergence results of the ESO charge

state and the charging and discharging electricity of each time

slot. It can be seen that the energy storage device is roughly in the

alternating charging-discharging mode, which is consistent with

the operation mode of ESO to purchase and sell electricity to

obtain benefits. At the same time, the discharge electricity of the

energy storage device is significantly higher than the charging

electricity during the time slots of 12:00–13:00 and 19:00–24:00,

corresponding to the two peaks of the small user load in Figure 3.

And in the two time slots of 8:00–11:00 and 14:00–16:00, the

energy storage devices are charged earlier to cope with the load

peaks, which is also consistent with the profitable way of ESO to

buy at low prices and sell at high prices.

Figure 8 shows the final convergence results of the trading

tariff. It is obvious from the figure that the energy storage

operator adopts the strategy of alternating low and high prices

in order to earn revenue through alternate charging and

discharging, so that it can achieve the goal of charging at low

FIGURE 7
State-of-charge and charge-discharge power results of ESO energy storage devices.
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prices and selling at high prices to optimize its own utility, which

is also in perfect agreement with the results of Figure 7. In

addition, the price of electricity sold by DPGA is reduced during

the peak generation period, thus guiding each demand agent to

purchase electricity. Overall, the electricity prices are relatively

higher during the two peak load hours (12:00–13:00 and 19:

00–24:00). This is consistent with the demand elasticity principle

of the electricity market, that is, if demand increases, the price of

electricity increases, and if demand decreases, the price decreases.

Figure 9 shows the convergence process of the algorithm.

Due to the large number of convergence criteria of the algorithm

(Figure 2), only some of the convergence criteria at time slot 1 are

selected for the plot. It can be seen that the algorithm can reach

convergence after a relatively short number of iterations.

7 Discussion

The above analysis of the convergence results of optimization

fully proves the practicality and effectiveness of the ADN

potential game model established in this paper. Although the

model is relatively complicated, it still has an equilibrium and the

algorithm can reach convergence after a short number of

iterations. This indicates the advantages of modeling with

potential game model. Moreover, after considering the

bounded rationality of small users, the demand of small users

(the power demand of LA in Figure 6) reflects their responsive

behavior under different electricity prices. The results of

decisions within the upper and lower bounds of schedulable

potential show the effect of limited rationality on the overall

electricity consumption of small users. The optimization results

indicate that each stakeholder takes different decisions in the

game process in order to maximize their own interests. In

particular, the results of the ESO decision intuitively reflect

the game process between the multiple stakeholders. ESO

purchases electricity to replenish reserves when prices are low.

When prices are high, the ESO sells electricity to obtain the

maximum profit. At the same time, the use of social networks

makes the demand response results of small users more in line

with the actual process of updating electricity consumption

strategy. Small customers receive information from other

customers who are close to them through social networks.

FIGURE 8
Convergence result of transaction price (A&B means the final transaction tariff of A and B after convergence).
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Each customer can continuously adjust its own electricity

consumption strategy based on the information obtained. The

social network path in Figure 4 corresponds to the users’

information transfer path. In summary, the proposed active

distribution network potential game model considering small

users with bounded rationality and social networks can reach

convergence relatively quickly on the one hand, and simulate the

actual transaction and demand response situations well on the

other hand. The model is both convergent and effective. The

above analysis also illustrates the feasibility of the trading

mechanism established in Section 4.4.

8 Conclusion

In this paper, a potential game model of the ADN

considering the bounded rationality and the social attributes

of the small users is proposed to coordinate the energy

transactions among different stakeholders. A distributed

algorithm is designed based on the features of the proposed

model and corresponding optimization problem. Simulation

studies convey the following information:

1) The simulation results show that the potential game model

can well simulate the game process among 5 stakeholders in

the ADN and ensures the existence of equilibrium. The

proposed method can reflect the optimal response of

multiple stakeholders in the game process.

2) Small users’ decisions are influenced by other small users

through social network. They are individuals with bounded

rationality. Therefore, after considering the bounded

rationality of small users, the demand response process of

small users is more in line with the actual response situation.

Improving the discrete distributed optimization algorithm to

improve the operation efficiency of the program and considering

the uncertainty of distributed wind power and photovoltaic

power are the next research directions of this paper.
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