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The sustainability and economic development is intertwined with the energy

consumption and conversion processes. To suffice the ever-increasing demand

of energy consumption amid environmental concerns, energy conservation and

recovery along with the harnessing of renewable energy has beenmandated by the

policy regulators. In any energy conversion process, heat exchangers are vital

operation component and has been part of any energy conversion process since

the Nineteenth century. However, due to the increased energy demand,

requirement of high efficiency and space and material constraints, the need for

miniaturized light-weight heat exchangers with adequate heat transfer

characteristics persists. Traditional heat exchangers are outdated because of its

large space requirements and comparatively less heat removal rate. Theminiaturized

micro channel heat sink (MCHS) with tubes of about less than 1mm have a

tremendous potential to further enhance the heat transfer performance.

However, its simple design doesn’t cope with the modern requirements of heat

removal. Therefore, many researchers have tried to improve its performance using

different techniques. The present study reviews some of the most important

techniques applied to MCHS. These techniques include, coolant types used in

MCHS, MCHS shapes, flow conditions, numerical methods used for this research,

andmaterials used tomanufactureMCHS. Moreover, some recommendations have

been given to provide opportunities to researchers for future aspects.
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Highlights

• Microchannel heat sink is one of the promising candidate

for removing high heat flux in a small area.

• Various methods of heat transfer improvements in

microchannel heat sink are discussed.

• Flow and heat transfer characteristics in microchannel heat

sink are reviewed.

• Future recommendations are given for the ease of new

researchers in the field of microchannel heat sink.

Introduction

Micro Channel Heat sinks (MCHS) have been the preferred

choice for thermal management control experts for decades due

to their performance in electronic cooling applications.

Improving MCHS performance to counteract the rapid rise in

the rate of heat produced by current electronic circuits is a

promising area for future study. The microelectronic

mechanical systems (MEMS) are one of the most practical

MCHS applications. MCHS is made up of numerous

connected microchannels with a covering plate composed of a

low thermal conductivity material (adiabatic) such as glass to

keep the coolant flowing. The coolant eliminates the heat created

by the electronic chip as it passes through the microchannel.

Tuckerman and Pease (1981) was the first to employ a

microchannel heat sink for electronic cooling. This paved the

way for further research on the subject. Since then, tremendous

work has gone into enhancing microchannel heat sinks’ ability to

remove the heat created by electronic chips. To maximize the

surface available for heat transmission, several microchannel

geometries such as circular, rectangular, triangular, and

trapezoidal designs (Figure 1) have been used in the creation

of microchannel heatsinks (Liu et al., 2022; Zhang et al., 2022).

They also employed high-thermal-conductivity materials

including copper, aluminum, and silicon to build the

microchannel heatsinks (Figure 2) (Japar et al., 2018; Jennings

and Smith, 2020; Shamsuddin et al., 2021). A mixture of two

materials was also examined in order to overcome the attachment

flaws with electronic chips.

The rise in the amount of heat created by more powerful

electronics that continued to shrink in size compelled designers

to look for alternate coolants that could remove heat more

effectively than air. Liquid coolants were one option (Rehman

and Seong, 2018). Because of their comparatively strong heat

removal capabilities, and because some gases like N2, He, NH3,

etc. have certain disadvantages like flammability, Toxicity,

Corrosiveness, Reactivity, and high Cost. Conversely, liquid

coolants, such as water, have been employed in electronics

cooling. However, using water as a coolant can increase the

risk of leakage and high power demand. Moreover, recent

advancements in nanoparticle production technologies have

prompted an upsurge in nano fluid research in an effort to

create viable alternative coolants with improved heat removal

capabilities. However, the disadvantages associated with

nanofluids include particle sedimentation, passage clogging,

and high-power demands Recently, impressive work on

microscale heat transfer devices to disperse heat flux more

than 1 kW/cm2 has been described (Faulkner and Shekarriz,

2003; Zhang et al., 2015; Bazkhane and Zahmatkesh, 2020; Hu

et al., 2022). Adding parallel type micro-channels, on the other

hand, will not be enough to fulfil the needs of modern multicore

processors (Dewan and Srivastava, 2015). Choi and Eastman

(1995) showed that high thermal conductive fluids with highly

distributed nano size metallic or oxide in the base fluid improved

heat transmission. The use of nano fluid in microscale devices

resulted in significant thermal increase at a high cost of pressure

loss, resulting in inferior performance. Furthermore, the topic of

nanofluids’ stability and dependability is hotly debated

(Keblinski et al., 2005; Das et al., 2006). Due to integration

challenges in two-phase flow, a large number of research on

microchannels by Kandlikar (2005), Han et al. (2016) have

highlighted the need for unique microscale devices for

enhanced heat dissipation. Because we are in the golden era

of microfabrication, an innovation in microchannel heat sink

FIGURE 1
MCHS geometries.
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design (Goodling and Knight, 1994) or a hybrid approach is

needed to take the microchannels’ existing cooling performance

to the next level.

However, it is important to emphasize that the usefulness of

revolutionary microchannel technologies is not limited to

cooling data centers, workstation computers, nozzle cooling

for 3D printers, super capacitor thermal management, and

artificial organ cooling. As a result, the need for a new sink

design to improve current cooling is compelling for a variety of

reasons, and it may bring fresh insight into a variety of

multidisciplinary domains. Designing unique microscale

devices for electronic cooling, microscale hybrid cooling

devices (involves a mix of two or more cooling technologies),

design improvements in existing microchannels, and so on may

all be used to meet the aforementioned criteria.

There have only been a few review studies accessible in the

open literature linked with microchannel heatsink performance

since Goodling and Knight (1994). These studies only looked at a

few factors. For instance, Morini (2004) published a review paper

focused on experimental investigations, while Mohammed et al.

(2011a) published a review article focused on experimental and

theoretical studies employing nano fluids. The many

methodologies used to study and optimize overall

performance as well as the geometrical characteristics of

microchannel heat sinks with non-circular forms are included

in this paper’s systematic review of the literature (Table 1).

Table 1 may also be used as a reference to identify the

coolant and materials utilized, as well as the flow types,

optimization technique, and study results. A comparison

research is also reviewed, which emphasized the disparities

between the various parts of prior investigations as well as

their results. There are also suggestions for further research.

Literature review

Microchannel heat sinks and coolant types

Microchannel heat sinks having non-circular cross

sections, especially rectangular microchannel heatsinks, have

been widely explored (Jia et al., 2018; Kose et al., 2022).

Different researchers have used different approaches, such

as experimental (Peng et al., 1994), numerical (Choquette

et al., 1996), and analytical (Zhimin and Fah, 1997), as well

as models such as fin (Zhao and Lu, 2002; Hameed et al., 2020;

Hussein et al., 2022) porous medium (Kim, 2004), and thermal

resistance (Liu and Garimella, 2005), to analyze and optimize

the geometrical parameter combinations that have resulted in

the best performance for microchannel heatsinks. To increase

the heat removal capacities of microchannel heatsinks,

different coolants, materials, flow conditions, and

microchannel geometries were explored. These research’

FIGURE 2
Thermal conductivity of commercial materials.
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TABLE 1 Comparative study of MCHS.

Authors Nature of
the work

Materials Channel
geometry

Analysis
methods

Flow
condition

Coolant types Optimization
schemes

Peng et al.
(1994)

Experimental Stainless steel Rectangular — Laminar
turbulent

Water methanol —

Harley et al.
(1995)

Experimental
analytical

Silicon Rectangular
trapezoidal

Laminar Nitrogen helium argon —

Peng and
Peterson
(1996)

Experimental Stainless steel Rectangular — Laminar
turbulent

Water —

Choquette
et al. (1996)

Numerical
analytical

Aluminum Rectangular Thermal resistance Laminar
turbulent

Water Numerical

Zhimin
and Fah

Analytical Silicon Rectangular Thermal resistance Laminar
turbulent

Water Self-developing
software

Hetsroni et al.
(2005a)

Analytical — Rectangular Mathematical model Laminar Water —

Perret et al.
1998

Analytical Silicon Rectangular
hexagonal diamond

Thermal resistance Laminar Water —

Tso and
Mahulikar
(1998)

Analytical — Rectangular — Laminar
turbulent

Water —

Harms et al.
(1999)

Experimental Silicon Rectangular — Laminar
turbulent

Deionized water —

Kim and Kim
(1999)

Analytical Silicon Rectangular Porous medium Laminar Water Numerical

Rahman
(2000)

Experimental Silicon Rectangular — Laminar
turbulent

Water —

Fedorov and
Viskanta
(2000)

Numerical Silicon Rectangular 3D Numerical Laminar Water Numerical

Choi and Cho
(2001)

Experimental Copper silicon Rectangular — Laminar
turbulent

Paraffin water —

Tunc and
Bayazitoglu,
(2002)

Numerical — Rectangular Numerical Laminar
turbulent

— —

Qu and
Mudawar,
(2002)

Numerical
experimental

Oxygen free
copper

Rectangular 3D numerical Laminar Deionized water Numerical

Ryu et al.
(2002)

Numerical Silicon Rectangular 2D numerical 3D
nmerical

Laminar Water Numerical

Zhao and Lu,
(2002)

Analytical
numerical

Copper silicon Rectangular Porous medium Fin
model

Laminar Water Numerical

Toh et al.
(2002)

Numerical Silicon Rectangular 3D numerical Laminar Water Numerical

Wu annd
Cheng (2003)

Experimental Silicon Trapezoidal — Laminar Deionized water —

Tiselj et al.
(2004)

Numerical
experimental

Silicon Triangular Numerical Laminar Water Numerical

Kim (2004) Numerical
analytical

— Rectangular Fin model Porous
medium Numerical

Laminar — —

Gamrat et al.
(2005)

Numerical Bronze Rectangular 3D numerical 2D
numerical

Laminar Water Numerical

Liu and
Garimella
(2005)

Numerical Silicon Rectangular Thermal resistance
Fin model Porous
medium Fin–fluid
coupled Numerical

Laminar Water —

Lee et al.
(2005)

Experimental Copper silicon Rectangular Numerical Laminar
turbulent

Deionized water —

Experimental Copper silicon — Water Deionized water —

(Continued on following page)
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TABLE 1 (Continued) Comparative study of MCHS.

Authors Nature of
the work

Materials Channel
geometry

Analysis
methods

Flow
condition

Coolant types Optimization
schemes

Hetsroni et al.
(2005b)

Rectangular
trapezoidal
triangular

Laminar
turbulent

Kim and Kim
(2006)

Analytical
numerical

— Rectangular Averaging model Laminar — Numerical

Li and
Peterson
(2006)

Numerical Silicon Rectangular 3D numerical model Laminar Water Numerical

Wang et al.
(2006)

Numerical Silicon Rectangular
(treeshape)

3D numerical Laminar Water SIMPLE Algorithm

Iyengar and
Garimella
(2006)

Analytical Copper Rectangular Thermal resistance
model

Laminar Water Air —

Khan et al.
(2006)

Analytical Silicon Rectangular Entropy generation
minimization

Laminar Air Numerical

Li et al. (2007) Numerical Copper silicon
stainless steel

Rectangular 3D Numerical Laminar Water SAMPLER
Algorithm

Chen (2007) Numerical
analytical

— Rectangular Porous medium
model

Laminar — Finite difference
method

Tsai and Chein
(2007)

Analytical Silicon Rectangular Porous medium
model

Laminar Cu–water CNT–water Numerical

Kou et al.
(2008)

Numerical Silicon Rectangular Simulated annealing
model

Laminar Water Numerical

Chen et al.
(2008)

Numerical Silicon Rectangular Simulated annealing
model

Laminar Water 3D Numerical

Husain and
Kim (2009)

Numerical Silicon Rectangular Surrogate analysis
methods

Laminar Water Evolutionary
algorithm Plot

Husain and
Kim (2008)

Numerical Silicon Rectangular Surrogate analysis
method

Laminar Water Hybrid evolutionary
algorithm

Ighalo et al.
(2009)

Numerical Silicon Rectangular 3D Numerical Laminar Water DYNAMIC-Q
algorithm

Xie et al.
(2009)

Numerical Copper Rectangular 3D Numerical Laminar Water Numerical

Hu and Xu
(2009)

Numerical
analytical

Silicon Rectangular Thermal resistance Laminar Water Sequential quadratic

Biswal et al.
(2009)

Analytical Cu Al Si Rectangular Thermal resistance Laminar Water —

Wang et al.
(2009)

Experimental
Numerical

Silicon Pyrex glass Trapezoidal 3D numerical Laminar Water —

Hong and
Cheng (2009)

Numerical Silicon Rectangular (Offset
strip–fin)

3D numerical Laminar Water FLUENT

Husain and
Kim (2010)

Numerical Silicon Rectangular Improved surrogate
analysis

Laminar Water Evolutionary
algorithm

Deng et al.
(2010)

Analytical Silicon Rectangular Improved porous
medium

Laminar Water —

Koşar (2010) Numerical Cu Al Si steel
silica glass quartz
polyimide

Rectangular 3D numerical Laminar Water —

Mohammed
et al. (2011a)

Numerical Aluminum Rectangular Numerical Laminar Alumina–water Finite volume

Cho et al.
(2010)

Experimental Silicon Rectangular
trapezoidal

— — R-123 —

McHale and
Garimella
(2010)

Numerical Silicon Trapezoidal 3D numerical Laminar — Finite volume

Experimental Polycarbonate-Al Square — Water —

(Continued on following page)
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final results were presented in a variety of ways, including

graphical representations (Lee et al., 2005), quantitative data

(Hetsroni et al., 2005b), and empirical correlations (Peng et al.,

1994).

To offer a basic overview of the development phases for

microchannel heat sinks, the different components of past

research were grouped in a comparison study, or table form,

in the following section. The tabular format makes it easy to

retrieve the data supplied by these investigations. Selected

publications covering various experimental, analytical, and

numerical research were chosen for this part in order to

highlight the various development stages and approaches used

TABLE 1 (Continued) Comparative study of MCHS.

Authors Nature of
the work

Materials Channel
geometry

Analysis
methods

Flow
condition

Coolant types Optimization
schemes

Betz and
Attinger
(2010)

Laminar
(segmented
flow)

Zade et al.
(2011)

Numerical — Rectangular 3D numerical Slip Air —

Chiu et al.
(2011)

Experimental
Numerical

— Rectangular 3D numerical (CFD) Laminar Water —

Chen and
Ding, (2011)

Analytical Copper Rectangular Porous medium Laminar Water Alumina–water —

Moharana
et al. (2011)

Experimental
Numerical

Copper Rectangular 3D numerical (CFD) Laminar Deionized water —

Escher et al.
(2011)

Experimental
Analytical

Silicon Rectangular Thermal resistance
model

Laminar SiO2–water —

Ijam and
Saidur (2012)

Analytical Copper Rectangular Thermal resistance
model

Turbulent SiC–water TiO2–water —

Mohammed
et al. (2011d)

Numerical Copper
aluminum steel
titanium

Trapezoidal 3D numerical Laminar Diamond–water
Diamond–EG
Diamond–oil
Diamond–glycerin

Finite volume

Lelea (2011) Numerical Copper Rectangular 3D numerical Laminar Alumina–water Finite volume

Xia et al.
(2011)

Numerical Silicon Rectangular
(triangular cavities)

3D numerical Laminar Water FLUENT

Saenen and
Baelmans
(2012)

Numerical Silicon Rectangular 3D numerical Laminar Air SIMPLE algorithm

Ijam et al.
(2012)

Analytical Copper Rectangular Thermal resistance
model

Laminar Al2O3–water
TiO2–water

—

Adham et al.
(2012)

Analytical Aluminum Rectangular Thermal resistance
model

Laminar Ammonia gas NSGA-II

Sharma et al.
(2013)

Numerical Copper Rectangular 3D numerical Turbulent
(manifolds)

Hot water Ansys. CFX

Ahmad et al.
(2019)

Numerical Copper Rectangular 3D numerical Laminar Water Ansys. Fluent

Rehman et al.
(2020b)

Numerical Copper Rectangular Entropy generation
minimization

Laminar Water Fluent

Ali et al.
(2021b)

Numerical Copper Rectangular Thermal
enhancement factor

Laminar Water Ansys

Rehman et al.
(2020a)

Numerical Copper Rectangular 3D numerical Laminar Water Ansys. Fluent

Ahmad et al.
(2021)

Numerical Copper Rectangular Thermal resistance Laminar Water Ansys

Ahmad et al.
(2022)

Numerical Copper Rectangular,
circular, elliptical,
trapezoidal,
hexagonal, novel
(Plus shape)

Entropy generation
minimization,
thermal resistance

Laminar Water Ansys. Fluent

Ali et al.
(2021a)

Numerical Copper Rectangular Thermal
enhancement factor

Laminar Water Ansys
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for studying and optimizing the overall performance of

microchannel heatsinks.

Microchannel heat sinks shapes

Novel MCHS with triangular chambers and rectangular ribs

were studied by Li et al. (2016). Heat transfer and flow

properties were investigated, and it was discovered that heat

transfer was improved, and heat was evenly distributed at the

substrate owing to a combination of multiple interruptions and

flow disturbances caused by the new design. The width of the

rib is also related to the frictional factor and Nusselt number,

according to the research. Rectangular, triangular backward,

diamond, forward triangular, and ellipsoidal geometries were

examined by Chai et al. (2016). The mixing of cold and hot

water in the micro chamber, which leads in the expansion of the

thermal boundary layer in the MCHS area, is primarily

responsible for the improved heat transmission in this study.

This resulted in an increase in Re and Nux in the MCHS inlet,

which tends to decrease as the MCHS progresses. The

properties of fluid flow and heat transmission in MCHS with

rectangular ribs and sinusoidal cavity were investigated by

Ghani et al. (2017). The prototype with ribs and cavities

combined resulted in a lower pressure drop, according to

this research. The flow mixing is aided by the creation of a

transverse vortex in the cavity. The length and breadth of the

ribs are directly related to the Nusselt number and friction

factor. Zhou et al. (2016) investigated a novel MCHS prototype

with wavy channels. Re, wavelength, and wave amplitude are

among the characteristics being investigated. According to this

research, wavy channels perform 2.8 times better than standard

channels. In addition, shorter wavelength wavy channels have a

higher convective heat transfer coefficient. Wang et al. (2018)

investigated the effects of porous fins and double-layered

MCHS in combination.

The study and comparison of traditional as well as integrated

prototypes has been completed. Even though all systems have

identical Reynolds numbers ranging from 65 to 200, the

combined model shows a 45.3%–48.5% decrease in total

power for pumping. Coolant’s “slide effect” on the channel

wall is blamed for the loss in pumping power. The increased

MCHS with sectional oblique fin was experimentally confirmed

by Lee et al. (2015), who discovered that MCHS with a lower

oblique angle had superior heat transmission characteristics. It is

backed by the fact that when the oblique angle is less, flow

resistance is lower, resulting in a higher secondary flow rate. The

performance features of MCHS with wavy channel and Nano

fluids were investigated by Sakanova et al. (2015). Traditional

rectangular MCHS prototype offers superior performance

characteristics than wavy MCHS prototype. It is also been

discovered that when Re is greater in Wavy MCHS,

performance improves significantly. The impact of reduced

thermal and hydrodynamic boundary layer thickness improves

heat transfer properties.

Coolant types

Since the invention of MCHS at 1981, a lot of researcher have

used plenty of coolant types to see their effect on thermal and

hydraulic effect of MCHS. These coolant types include but not

limited to water (Tuckerman and Pease, 1981; Kim and Kim,

1999; Gamrat et al., 2005), Air (Khan et al.; Kleiner et al., 1995),

Nitrogen, Helium, Argon (Harley et al., 1995), Deionized water

(Harms et al., 1999; Qu and Mudawar, 2002; Moharana et al.,

2011), Paraffin water (Choi and Cho, 2001), Alumina-water

(Mohammed et al., 2010), R-123 (Cho et al., 2010),

SiO2–water (Escher et al., 2011), Diamond–water,

Diamond–EG, Diamond–oil, Diamond–glycerin (Mohammed

et al., 2011b), and aluminium oxide (Al2O3) nanofluids (Baig

et al., 2021).

Xia et al. (2015) used experimental and analytical approaches

to evaluate the flow and heat transfer properties of a corrugated

MCHS prototype to a standard MCHS model. Rectangular

Microchannel Heat Sinks (RMCHS) have a lower pressure

drop than Corrugation Microchannel Heat Sinks (CMCHS).

The pressure decrease is caused by a vortex that forms in the

reentrant cavity, which periodically reduces and redevelops the

boundary layer. The thermal enhancement factor, which reaches

1.24 for the Reynolds number of 611, characterizes the

benchmarking performance. For chip cooling systems, the

CMCHS proved to be the most cost-effective option. Using

Al2O3 and TiO2 Nano Fluid, Xia et al. (2016) examined the

fluid flow and heat transmission properties in MCHS. The

volume percentage of the nano fluid is found to be directly

related to the thermal conductivity and dynamic viscosity of the

fluids in this study. In addition, the TiO2 nanofluid outperforms

the Al2O3 nanofluid. The heat transmission properties of Al2O3

with a volume fraction of 1.0% are improved. The combination of

Al2O3 and the new MCHS structure results in dramatic

performance improvements. The convective transfer

coefficient and pressure difference in a 25 mm cylindrical

MCHS containing Cu nanoparticle were examined by Azizi

et al. (2015). With a mass fraction of 0.3%, the nanofluid has

a higher heat transfer coefficient and a smaller pressure

difference.

For larger Re numbers, there is a reduction in heat transfer

co-efficient and thermal efficacy. Arshad and Ali (2017) looked at

the heat transmission and pressure drop characteristics of MCHS

with a 1 mm hydraulic diameter. For the power of 100, 125, and

150 W, the coolant utilized for analysis is distilled water and

TiO2. When distilled water is employed as a coolant, Nusselt

number has no connection with heating power, however TiO2

nanofluid has better performance at lower heating power. In

comparison to distilled water, TiO2 Nanofluid improves heat
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transmission by 12.75%. Heating power has been shown to be

inversely related to pressure differential over MCHS.

Duangthongsuk and Wongwises (2017) investigated heat

transmission and pressure decrease in numerous zigzag flow

channels using nanofluids. In comparison to Zigzag, the CCZ-HS

pattern exhibits a 2%–6% increase in heat transmission (CZ-HS).

Also established are relationships to characterize heat transfer

and pressure decrease. The influence of a magnetic field on the

nanofluid that flows through the MCHS was investigated by

Hosseini et al. (2018). The viscosity and heat transport are

calculated using the Koo-Kleinstreuer-Li (KKL) technique.

According to this research, when nanoparticle size reduces,

the temperature differential between the wall and the coolant

diminishes, increasing the Nusselt number. Furthermore,

introducing a magnetic field to MCHS causes nanoparticles to

gain velocity, increasing the Nusselt number.

Numerical methods employed

To establish a link between performance and other aspects

listed above, Xia et al. (2016) quantitatively evaluated numerous

parameters such as header shapes, MCHS shapes, entrance and

exit positions. The traditional design of a rectangular header

gives greater flow homogeneity, whereas the MCHS with offset

fan shaped reentrant cavities and triangular reentrant cavities has

superior heat transfer properties, according to this research.With

different fan-shaped ribs, Chai et al. (2016) investigated laminar

flow and heat transmission properties in MCHS. The width,

height, spacing, and alignment characteristics were investigated

in this study. According to their findings, aligned arrangements

had a greater heat transfer co-efficient for Re values ranging from

187 to 715.

Heat transfer correlation for the MCHS has also been

calculated using the suggested innovative methodologies, with

a mean absolute error of 2.5 percent for aligned fan-shaped ribs

(AFR) and 3.8% for offset fan-shaped ribs (OFR). Mohammed

et al. (2011c) used numerical simulation to investigate the impact

of the MCHS channel shape on thermal and fluid fluxes. The

zigzag, step, and curved profiles were investigated. The zigzag

channel has a higher heat transmission coefficient than the wavy

channel, while the curvy channel has superior heat transfer

properties than the wavy channel. Finally, it is discovered that

step geometry improves hydraulic performance while zigzag

MCHS improves thermal performance. Furthermore, the

pressure drop for all suggested channels is larger than for

traditional rectangular channels, according to the research.

The impacts of geometric characteristics such as sinusoidal

and zigzag MCHS and their connection with Nusselt number

were quantitatively explored by Toghraie et al. (2018). The

volume fraction of nanoparticles has been discovered to be

directly related to the Nusselt number. The zigzag prototype

performs better in terms of heat transfer and flow than its

counterpart. In order to examine the sectional properties of

rectangular, trapezoidal, and triangular cross section MCHS,

Wang et al. (2016) did numerical simulations in rectangular,

trapezoidal, and triangular cross section MCHS. When the

hydraulic diameter is in the region of 0.349 mm scale, the

Navier-Stokes equation remains true. The number of channels

has a significant impact on heat resistance and pressure

drop. Thermal resistance is inversely proportional to the

number of channels.

Materials

Copper (Kleiner et al., 1995), aluminum (Choquette et al.,

1996; Hameed and Khaleel, 2020), and silicon (Zhimin and Fah)

were used to study the influence of various structural materials

on total thermal performance. Other materials such as stainless

steel (Peng et al., 1994), glass (Koşar, 2010), and bronze (Gamrat

et al., 2005) were used in a few efforts. When channel heights

were bigger, the influence of various materials was more

noticeable, and when channel heights were less, it was less

noticeable. The vast number of microchannel heat sinks

produced using silicon instead of copper or aluminum when

the microchannel height is merely a fraction of a millimeter

attests to this. The use of silicon produces a lighter heat sink that

meets current criteria.

Future work

Because of the strong design of today’s tiny electronics, there

is now greater contact between hardware devices and their

environment, which was unthinkable decades before. The

combined work of making microfabrication economically

viable, developing materials that are compatible with the

system, and the most important boom is the software that

integrated these devices that allowed us to reach the level of

most sophisticated gadgets that we adore today is responsible for

this advancement. We are now on the threshold of the Internet of

Things (IoT) revolution, which will empower human civilization

with smart gadgets that may possibly interact with the

environment.

Most of our technologies will be wearable, flexible,

biocompatible, and transparent in this new race to the next

generation. We are now doing fundamental research into

exploiting the limitations, comprehending Multiphysics,

defining performance characteristics, and establishing

production and design standards. The work of Sitaraman

et al. (2017) in creating modelling and experimenting with

accelerated test settings for flexible electronics and wearable

devices is worth mentioning. Since a result, now is a better

time to start working on polymer-based microchannels with

improved heat conductivity utilizing nano-additives, as future
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devices will be primarily flexible and deeply manufactured by

additive manufacturing. For insights into polymer-based heat

exchangers, a course on the work of Glade et al. (2018) will be

useful.

Bioimplants have advanced to new levels in recent decades,

with sophisticated customized devices showing promise as a

solution for a variety of artificial organs. As a result, these

devices are designed to be multipurpose by including a

biomedical application that includes self-conditional health

monitoring of both the gadget and the human body. This

provided new prospects for a variety of bio devices, some of

which proved to be life-saving. This necessitates a high-end

gadget that is combined with materials that are compatible

with localized cooling systems. These devices are used in the

treatment of Focal Brain Cooling (Inoue et al., 2017) and

Cryosurgery, which uses microchannels to eliminate cancer

cells. As a result, future microchannel research is quite

promising, and it has the potential to affect our lives via a

variety of gadgets in the next years. There will undoubtedly be

operational challenges to overcome, but the results will be

impressive.

Conclusion

Tuckerman and Pease first introduced the forced convention

microchannel heat sink in 1981. Since then, a significant number

of theoretical and experimental investigation of MCHS has

ensued. The researchers examined different channel shapes,

study various coolants and material to optimize the

performance of the heat sink. The researchers also discussed

the analytical mythologies and proposed correlations to ascertain

the heat transfer characteristics of the system. The advancement

in microfabrication techniques has allowed researchers to

experiment with various shapes and materials. For the micro

channel systems, laminar flow is favored, the current domain of

research inMCHS is investigating the use of nano fluids for better

heat transfer properties. The increased interest, tremendous

potential, and an increasing number of research outputs for

the MCHSs has warranted the need for a thorough review of

the topic.
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