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In the era of globalization, industries of critical metals are organized through the

global supply chain. However, the global supply chains have been disrupted

since 2020 by the outbreak of COVID-19 and a series of geopolitical crises. To

better address the supply chain challenges of critical metals, a review is needed

about the sources, propagation, and responses of the supply chain risks. Firstly,

this review provides an overview about the research progress in identifying the

risk sources and assessing the risks and then proposes a new supply chain

framework, categorizing relevant risk factors into upstream risks, middle-

stream risks, downstream risks, and general risks, for risk analysis of critical

metals. Secondly, this review offers a comprehensive understanding about how

the risks propagate horizontally and vertically. Finally, responses such as supply

diversification, stockpiling, material substitution, recycling and circular

economy strategy, price volatility hedging, and supply chain traceability are

reviewed. This survey features the supply chain perspective, overviews on

network-based studies, and affirms the urgency and need for further studies

on supply chain risks and resilience, which may contribute to a smooth clean

energy transition.
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Introduction

Critical metals usually refer to rare metals, rare disperse elements, and rare earth

elements that play irreplaceable and significant roles in new energy industries—from solar

photovoltaic and wind turbines to electric vehicles and battery storage (Zhai et al., 2019;

IEA, 2021a). Gallium, tungsten, rare earths, bismuth, antimony, magnesium, germanium,

vanadium, molybdenum, indium, tin, silver, lithium, niobium, beryllium, nickel, cobalt,

chromium, platinum, and copper are recognized as the critical metals for low-carbon

technologies (Wang et al., 2021a; Zuo et al., 2021). With the massive and increasing

deployment of low-carbon technologies for a net zero emission society, demands for these

metals have been increasing significantly and the world is moving from fuel-intensive

systems to more material-intensive systems (IEA, 2021b). Against this background, it is

important to review the research progress related to these metals.

Nowadays mining, refining, manufacturing, use, and waste management of critical

metals are sliced and located across the world, forming various global supply chains of
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critical metals, as shown in Figure 1. In the supply chain

environment, productions are interconnected, and the effective

operation of one production stage depends increasingly on the

normal operation of the other stages which may be located

differently (Ponomarov and Holcomb, 2009). Under this

circumstance, disruptions of any stage can be propagated

either upstream or downstream. A resilient supply chain of

critical metals is therefore of high importance to the global

energy transition, which, however, experiences more and more

unexpected disruptions.

Since 2020, the global pandemic has pushed governments to

adopt various lockdown policies, which seriously affect the

operations of global supply chains (Guan et al., 2020), which

include those of critical metals. It has been reported that South

Africa’s lockdown disrupted 75% of the global output of

platinum, and Peru’s copper-mining activities ground to a halt

due to its anti-pandemic policy (IEA, 2020). Besides the

pandemic crisis, the global supply chains of critical metals

were hit unexpectedly by the Russia–Ukraine event in 2022.

Russia is responsible for 10.69% of global production of nickel

and 4.4% of global production of cobalt (USGS, 2021), this

geopolitical crisis made the market worry about the supply

availability from Russia, and prices of nickel and cobalt have

undergone high volatilities accordingly. Crises that occurred in

the mining stage of the supply chain have disturbed downstream

significantly. It is reported that prices of power lithium-ion

batteries and electric vehicles have spiked (IEA, 2022). The

pandemic crisis and frequent geopolitical events highlight that

maintaining resilient supply chains of critical metals is an urgent

issue to be addressed, and its related studies have become the

global frontiers and hot topics (Ibn-Mohammed et al., 2021).

This review aims to provide an overview on the research progress

achieved in identifying and assessing supply chain risks, analyses

of the propagation of risks, and responses to supply chain risks of

critical metals.

Many reviews have been carried out on critical metals.

Achzet and Helbig (2013) and Schrijvers et al. (2020)

reviewed the methods to determine raw material criticality.

Watari et al. (2020) emphasized the research progresses on

the long-term outlook and sustainability of 48 metals. Wang

et al. (2021a) did a review on the nexus between low-carbon

energy and critical metals. Swain and Mishra (2019) summarized

the various processes developed for the separation of rare earths

and transition metals from secondary resources. Miao et al.

(2022) provided an overview on the critical metal recycling

associated with global power lithium-ion batteries. Using

CiteSpace, an increasingly applied tool for scientometrics

reviews, Zuo et al. (2021) and Wang et al. (2019) analyzed the

research clusters, cooperation networks, and burstiness for

strategic mineral resource security and resource recycling

industry. Nevertheless, we currently lack a picture of the

progress on the supply chain risks of critical metals. The

absence of such review impedes our comprehensive

understanding of supply chain resilience of critical metals,

which in turn could possibly mislead the policy-decision

makings for clean energy transitions. This review is related to

the review by An and Li (2022) who emphasized various

interactions in the industrial chains at the macro and micro

levels. This review, different from theirs, focuses on the supply

chain risk sources, propagation of the risks, and responses to the

risks and thus makes a contribution to building a resilient supply

chain of critical metals.

The remainder of this review is organized as follows:

Section 2 introduces risks identification and assessment;

Section 3 presents the propagation of risks in the global

supply chain networks of critical metals; Section 4 discusses

FIGURE 1
Overview of the supply chain of metals. This figure is based on the studies of Muller et al. (2014), Chen et al. (2019), Sun et al. (2019), and Di et al.
(2022).
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responses to the supply chain risks, followed by the last section

of conclusion.

2 Identifying risk sources and
assessing risks

2.1 Supply risks in criticality assessment

In the field of criticality assessments of metals, supply risk is a

key component, as shown in Eq. 1 (Graedel et al., 2012; Graedel

et al., 2015). Identifying and assessing the supply risks thus

become the starting points to assess the criticality (Achzet and

Helbig, 2013).

Rawmaterial criticality � supply risk × vulnerability

× environmental risk (1)

In an overview of the raw material supply risks, Achzet and

Helbig (2013) summarized that there are 20 indicators to

evaluate the supply risks, namely, country concentration,

country risk (social and political factors), depletion time, by-

product dependency, company concentration in mining

corporations, demand growth, recycling potential,

substitutability, import dependence, commodity prices,

exploration degree, production costs in extraction, stock

keeping, market balance, mine/refinery capacity, future market

capacity, investment in mining, climate change vulnerability,

temporary scarcity, risk of strategic use, and abundance in the

Earth’s crust. Besides these conventional risks, trade risk, natural

disasters, logistic restrictions, resource competition, and ore

concentration are newly added indicators (Klimek et al., 2015;

Hao et al., 2018; Schrijvers et al., 2020; Althaf and Babbitt, 2021).

Some scholars also propose the thermodynamic rarity dimension

of raw materials. That is, if a material is obtained in energy-

intensive ways and is scarce in nature, it is thermodynamically

rare (Calvo et al., 2018). Relevant studies using these indicators

are listed in Supplementary Table S1.

Due to the various economic structures and resource

endowments, different economies have adopted differentiated

methods to assess supply risks. For example, in the European

Commission (EC)’s supply risk assessment, the supply risk is

measured as a product of supply concentration, import reliance,

governance performance, trade adjusted parameter, and

substitution index (European Commission, 2017; Blengini

et al., 2020), as expressed by Eq. 2:

SR � [(HHIWGI,t)GS ·
IR

2
+ (HHIWGI,t)EUsourcing · (1 −

IR

2
)]

· (1 − ρ) · SI
(2)

where SR denotes the supply risk, HHI is the

Herfindahl–Hirschman Index to proxy for country

concentration, WGI is the scaled World Governance Index to

proxy for country governance, t is the trade adjusted parameter,

GS is the global supplier countries mix, EUsourcing is the actual

sourcing of the supply to the European Union, IR is the import

reliance, ρ is the recycling rate, and SI is the substitution index

related to supply risk.

In the supply risk evaluation framework of the United States,

the National Research Council identified five supply risk sources,

namely, demand growth, thin markets, production

concentration, by-product production, and recycling. Based on

this research, the United States Department of Energy (DOE)

developed a weighted index for evaluating supply risk, in which

40% is given to basic availability of metals, 20% to political, social,

and regulatory factors, 20% to producer diversity, 10% to

competing technology demand, and 10% to codependence to

other markets. The United States framework was later developed

by Graedel et al. (2012), which differs medium-term risks from

long-term risks.

Low-carbon technologies have been massively deployed in

China, and some of them have the largest market size in the

world (e.g., electric vehicles). To develop a criticality assessment

for the Chinese context, Yan et al. (2021) analyzed three types of

supply risks, i.e., sustainability risk, reliance risk, and tolerance

risk, in identifying the critical metals for China, as given in Eq. 3:

SR � SI · IR · (1 − ρ) ·HHIWGI (3)

The illustrated cases show that not all these indicators are

utilized in each assessment of the supply risks. The selection of

indicators depends on the goal and scope of the relevant research;

accordingly, there is no unified assessment of supply risks and the

lists on critical metals are varying (Helbig et al., 2021). It is

noteworthy, however, that among the 26 used indicators for

supply risks, country/company concentration, country risk,

depletion time, by-product dependency, and demand growth

are the most frequently chosen indicators for evaluating supply

risks (Achzet and Helbig, 2013; Schrijvers et al., 2020). It has been

pointed out by Watari et al. (2020) that demand-related risks,

social and environmental risks induced by the growing demand

for metals, spatial divergence, and circular economy strategies

should be further studied. They also held that life cycle

assessment and the input–output model are the potential tools

that better monitor the supply risks, which is closely related to the

supply chain concept. Therefore, it has been suggested that a

supply chain perspective be adopted for analyzing the supply

risks in later criticality assessments.

2.2 From supply risks of single stage to
supply chain risks

From the perspective of a supply chain, the supply risks can

be categorized into four groups, namely, upstream risks,
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middle-stream risks, downstream risks, and general risks, as

shown in Figure 2. The general risks are the disruptions that

could occur at any stage of the supply chain. This perspective

could provide a more holistic view about the supply chain risks

of critical metals and a better understanding of the existing

supply risk studies. Most existing studies on the supply risks of

critical metals focus on the upstream risks, and only a few

analyze the potential bottlenecks in middle-stream,

downstream (Schrijvers et al., 2020), and the whole supply

chain.

Shocks in the middle-stream and downstream, however,

should be fully acknowledged. For the shocks to the middle-

stream, the supply chain of metals is seriously affected due to

China’s processing role in the global production network (Dente

and Hashimoto, 2020). Disruption to the downstream could be

positive or negative. For example, the end-use structure change

could significantly affect the supply–demand balance of materials

and cause supply risks in the upstream (Zeng and Li, 2015).

Recycling from the end-of-life products also deserves attention

(Fu et al., 2019; Rasmussen et al., 2019). In addition, evidence

shows that there are a few countries that participate in the whole

chain and own global influences (Shi et al., 2022). Ignoring the

potential disruptions in the key countries impedes the effective

management of supply chain risks. Acknowledging these

shortcomings, the European Commission exercised a double-

stage supply risk assessment for the first time (Blengini et al.,

2020), and van den Brink et al. (2020) examined the supply chain

risks for cobalt. Yan et al. (2020) developed a supply resilience

assessment framework that includes upstream and downstream

factors for the Chinese lithium-ion battery industry.

There are four theoretical tools to analyze the supply chain

risks. The first is the material flow analysis (MFA), which is

widely used in analyzing the material cycles of metals in the

anthroposphere (Muller et al., 2014). Since MFA can trace the

flow volume along the whole supply chain of metals, the derived

results can be used as parameter inputs (especially the trade-

related factors) to the supply risk analysis and better monitor

the risks. Nuss and Blengini (2018) developed a model

combining criticality assessment and MFA for the European

Union. Sun et al. (2020) discussed the supply chain risks for

manganese. The second is the multiregional input–output

(MRIO) model, which can reveal indirect risks through the

input–output linkages between sectors across the world. In this

context, Nansai et al. (2015) proposed a global mining risk

FIGURE 2
Framework for the supply chain risk assessment.
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footprint of critical metals, and Nansai et al. (2017) highlighted

the role of primary processing in the supply risks of critical

metals. The third one is system dynamics proposed and

developed by Forrester (1994) and has been adopted for the

rare earth supply chain disturbance (Sprecher et al., 2015) and

tantalum supply chain risk (Mancheri et al., 2018). The last tool

is complex network analysis, which is an effective and widely

used tool for analyzing the interactions between the actors and

structures of the resultant complex systems (Barabasi and

Albert, 1999; Newman, 2003). Klimek et al. (2015) developed

network-based indicators for trade risks. Based on the global

copper trade network, Li et al. (2021) innovatively introduced

betweenness, an indicator for reflecting the position and

resource control capability of one country in the trade

network, into the supply chain risk analysis.

3 Propagation of risks in global supply
chain networks of critical metals

There are several terminologies for the propagation of

risks in the academic literature, which include risk diffusion

(Basole and Bellamy, 2014), cascading failures, ripple/domino

effect (Dolgui et al., 2018), supply chain disruption

propagation (Scheibe and Blackhurst, 2018), and risk

contagion (Paltalidis et al., 2015). These terms may be

applied in different fields. For example, risk diffusion is

closely related to the epidemiological models (Zhao et al.,

2018); cascading failures and ripple/domino effects are often

used by scholars in complex network studies (Ash and Newth,

2007; Xia et al., 2010); and risk contagion is a widely used term

related to the systemic risk studies in the financial literature

(Gai and Kapadia, 2010; Elliott et al., 2014; Jackson and

Pernoud, 2021). Nonetheless, the essence of these

terminologies is the same, i.e., referring to the propagation

of both endogenous and exogenous risks from one node to the

other nodes (Basole and Bellamy, 2014) and generating an

amplified impact in the system (Ojha et al., 2018). Failure

nodes, propagation links, and amplified impact are three core

elements for the definition of the propagation of risks. The

risk/shock propagation, therefore, can be defined as the

process that failure nodes amplify their impact through

various channels. Trade links, input–output linkages/

supply–customer relations, and price correlations are the

most common propagation channels.

The global supply chains of critical metals are complex

systems that contain various economic and financial

connections. These connections provide various channels for

shock/disruption of one node to propagate to its directly

connected nodes, which then propagate their crises to the

other connected nodes. This process continues until the

disruption effects are absorbed totally by the chain or all the

nodes in the supply chain are jeopardized. The propagation

process in the global supply chain of critical metals is

essentially the same as the virus-spreading phenomenon,

which has been widely analyzed by network-based models

(Newman, 2002; Pastor-Satorras et al., 2015). Due to trade

links and price correlations being the most studied channels,

this review mainly summarizes the current status of these two

fields.

3.1 Propagation of shocks in single-layer
trade network

Systemic trade-related risks have been widely

acknowledged (Klimek et al., 2015). The resource trade

network consists of nodes and links (An et al., 2014; Zhong

et al., 2014). In the context of international trade, for example, if

country A imports cobalt minerals from country B, then there is

a link between A and B. The trade links thus provide a channel

for crisis contagion (Lee et al., 2011). By constructing a trade

network of critical metals and applying the network metrics,

Wang et al. (2018) and Sun et al. (2022) firstly identified the

systemic importance of economies for the graphite trade

network and cobalt trade network, respectively. Then they

established cascading failure models and analyzed the

propagation processes caused by the failures of systemic

importance economies. It is found that GDP and export

volume affect the scope of the influence (Wang et al., 2018),

and indirect links play a key role in the propagation process

(Sun et al., 2022). The main contribution of these studies is that

they provide a model framework to identify the propagation

paths and understand the systemic impacts of epicenter

economies. There are many cases where more than two

materials are required to produce one good. For example,

cobalt, lithium, and nickel are the necessary materials to

produce lithium-ion battery and are called joint

consumption products (Shammugam et al., 2019). To

analyze the shock of technology progress affecting the trade

of joint consumption products, Shao et al. (2022) constructed a

cobalt–lithium trade network and simulated the structural

changes under trade weight preference and trade country

preference scenarios.

Besides the disruptions that happened in the upstream, Wu

et al. (2021) designed a non-dominated sorting genetic (NSGA-

II) algorithm to identify the key countries and trade relations in

the stability of the lithium carbonate trade network, which

enriches the understanding of potential supply risk

propagation paths in the trade network of middle-stream

products. As for the risk propagations in the downstream of

the supply chain, disruptions spreading caused by node failure

and link interruption in the lithium-ion battery trade network

(Hu et al., 2021) and pandemic-related disruption contagion in

the solar panel trade network (Wang et al., 2021b) have been

studied and both are based on single-layer networks. All these
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studies only focus on the geographic disruption propagations,

ignoring the propagation along the whole global supply chain.

3.2 Propagation of disruptions in multiplex
trade network

From the perspective of a multiplex network, mining,

refining, manufacturing, consumption of end-use products,

and waste management of the supply chain are different

layers (Shi et al., 2022), as illustrated in Figure 3. In each

layer, countries exchange goods through international trade,

forming a single-layer network. Single-layer networks connect

via global input–output linkages, forming an interdependent

multiplex network. In this interdependent multiplex network,

the failure of nodes in the mining stage leads to failure of the

dependent nodes in middle-stream or downstream layers, which

in turn may cause further damage to the first network, leading to

cascading failures and possibly catastrophic consequences (Gao

et al., 2014). To design resilient supply chains of critical metals,

we should understand how vulnerability is affected by such

interdependences.

Through investigating the interdependencies between the

copper raw materials–trading network and its waste-trading

network, Hu et al. (2020) analyzed the direct and indirect

impacts of China’s restrictive scrap imports on the global

copper multiplex network. It should be noted that their

multiplex shocks model only contains two stages of the supply

chain and implies research gaps for future studies. With the

development of lithium-ion batteries containing high nickel

elements, more attention is being paid to the supply chain of

nickel. Wang et al. (2022) developed a multilayer network crisis

propagation model to simulate the disruption spreading in the

global nickel industry chain.

3.3 Price volatility spillover/transmission

Price volatility is also recognized as an important risk, which

significantly affects the supply–demand balance, trade

dependence structure (Zhao et al., 2022), investment

decisions, and other sectors of the economic system (Sun

et al., 2018; Sun et al., 2019). Understanding the price

volatility spillovers is helpful in hedging the price risks. From

the perspective of a single-layer network, price volatility

spillovers are transmitted horizontally and occur at different

levels, from firms, commodities, markets, sectors, countries, to

time, which have been studied intensively. Guo et al. (2019)

examined simultaneously the price transmissions across

countries and cross products in the middle-stream of the steel

industrial chain. An et al. (2020) constructed a network model

and analyzed the dynamic volatility spillovers among bulk

mineral commodities, such as cobalt, nickel, and copper. Li

et al. (2021) analyzed the dynamic joint impacts of gold and

oil prices on the copper price. These studies feature the

combination of econometric modeling and network analysis.

Using a firm’s high-frequency data, Zheng et al. (2021)

studied the asymmetric connectedness and dynamic spillovers

between renewable energy and rare earth markets in China. Zhou

et al. (2022) investigated the spillovers from China’s rare earths

stock prices to its trading partners. Considering the substitute

effect of clean energy, a series of studies have been conducted to

examine the spillover effects of fossil energy prices on clean

energy metal prices (Shao and Zhang, 2020; Hammoudeh et al.,

2021; Niu, 2021; Shao et al., 2021; Chen et al., 2022). There are

also studies examining the price volatility links between the rare

earth market and financial market (Reboredo and Ugolini, 2020;

Bouri et al., 2021; Song et al., 2021).

From the perspective of the supply chain, price volatility is

transmitted vertically. The vertical transmission can be further

categorized into forward vertical transmission, backward vertical

transmission, and bidirectional transmission. In a study on the

dynamic relationship between primary and scrap prices,

Xiarchos and Fletcher (2009) found that scrap prices do not

improve the long-run interpretation of primary prices of copper,

lead, and zinc, which, however, exist in the short run. In recent

years, network-based transmission models are developed to

reveal the sources, receptors, hubs, media, paths, and motifs

of price spillovers. Related studies have been examined in the

steel supply chain (Liu et al., 2019; Qi et al., 2020) and rare earth

supply chain (Jia et al., 2021).

4 Responses to supply chain risks

The responses to the supply chain risks are essential to

improve supply chain resilience, which is defined as “the

capacity to supply enough of a given material to satisfy the

demands of society, and to provide suitable alternatives if

FIGURE 3
Illustrated multiplex trade network of metals.
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insufficient supply is available” (Sprecher et al., 2015). On the

supply side, the diversity of supply and increasing stockpiling are

proposed to improve supply chain resilience of critical metals; on

the demand side, improving material efficiency and developing

material substitution are advocated (Sprecher et al., 2015;

Sprecher et al., 2017; Mancheri et al., 2018). Recycling and

circular economy strategies are also widely promoted (Hua

et al., 2020; Zeng and Li, 2021).

4.1 Responses on supply side

Supply diversification. More sources of raw materials are

helpful in reducing damages caused by disruptions. Using rare

earths as an illustrated case, with increasing alternative supplies

from Australia and the United States, the HHI of rare earths has

decreased from 0.68 in 2017 to 0.43 in 2019, which could

potentially decrease to 0.34 (Althaf and Babbitt, 2021). This

result highlights that diversifying supply could substantially

reduce the risks from supply concentration. Besides expanding

sources, increasing domestic mineral extraction could also

effectively alleviate the supply risk of raw materials (Yan

et al., 2020). Currently, the mostly advocated diversity of

supply is about the diversified ores supply. It should be

noted, however, that the availability of domestic mining and

extraction technologies is the prerequisite for domestic

production. In addition, supply diversification comes at the

cost of regulatory limits, high social and environmental risks,

high economic costs, etc. (Althaf and Babbitt, 2021).

Furthermore, from the supply chain perspective, the supply

diversification in the upstream is not enough. It is argued that

investment in all stages of the chain can realize true resilience,

which is unfortunately against the basic law of comparative

advantages that drives globalization.

Increasing stockpiling. Stockpiling is a short term and

effective tool to hedge supply disruption and price hikes (Sun

et al., 2022) and can be applied to any stage of the supply chain. A

critical issue of stockpiling is the feedback loop through the price

mechanism (Sprecher et al., 2015). When a supply disruption

occurs, emergency stockpiling by actual needs and speculation

activities will drive up the demand and price, which in turn lead

to pessimistic expectations about supply and more stockpiling.

On the contrary, releasing inventories will increase the supply

and ease the market, which in turn negatively influences the

price. How does this price mechanism interact with the

stockpiling behavior in the field of critical metals? There are

few studies in this regard to date.

Recycling and circular economy strategy. Supply

diversification and stockpiling cannot sufficiently mitigate

the supply chain’s risks. The supply chain is a closed loop,

and in the reverse supply chain/circular value chain, old scrap/

waste can be redesigned, reused, remanufactured, and recycled/

urban-mined, therefore, recycling and circular economy

strategy are treated as a sustainable solution to reduce the

supply chain risks (Zeng and Li, 2015; Hua et al., 2020;

Baars et al., 2021; Zeng and Li, 2021; Miao et al., 2022). It is

estimated that there are 0.21–0.52 million tons (Mt) of lithium,

0.10–0.52 Mt of cobalt, and 0.49–2.52 Mt of nickel contained in

the global end-of-life batteries (Xu et al., 2020). Using dynamic

material flow analysis, Wang and Ge (2020) estimated China’s

urban cobalt mines could reach 78,800–186,500 tons. At the city

level, the urban mines are estimated to be in the range of

300–500 kilotons from 2015 to 2050 in Hong Kong SAR of

China, and the economic potential will be 2 billion US dollar

each year (Kuong et al., 2019). Taking full advantage of these

recycling potentials requires clear recycling targets, public

education, a comprehensive recycling system at the national

scale, abundant treatment capacities, mature recycling

technologies, recycling-oriented design strategies, cost

competitiveness, and effective fiscal incentives (He et al.,

2020; Wang and Ge, 2020; Tang et al., 2021; Mao et al.,

2022; Shahjalal et al., 2022). However, these are still at a

very early stage in the context of the global battery industry

(Tang et al., 2021; Mao et al., 2022). Global efforts are called for

studying these aspects to promote the economic and sustainable

recycling strategies.

Supply chain traceability. Social and environmental risks

draw more and more attention, for example, the artisanal mining

in the Democratic Republic of the Congo (Nkulu et al., 2018). To

reduce related risks, it is suggested to establish a supply chain

traceability system (Shi, 2022). Due to the advantages of

decentralized control, security, traceability, and auditable time-

stamped transactions (Shi and Sun, 2020; Omar et al., 2022),

blockchain is proposed as a tool for supply chain traceability in

the mineral industry and critical success factor for this type of

tracing system are discussed (Hastig and Sodhi, 2020). Despite

the benefit of high traceability, blockchain applications are

energy intensive, which is against the development trend of

sustainability (Jiang et al., 2021; Biswas et al., 2022). This

trade-off needs more studies in the future for promoting a

traceable supply chain for the metal industry.

4.2 Responses on demand side

Material substitution. Price hikes of critical metals have

determining influence on material substitution (Mancheri et al.,

2018). With the increasing prices of raw materials, many studies

have suggested developing alternative technologies as

substitutions to cope with the supply chain disruptions

(Olivetti et al., 2017; Alves Dias et al., 2018; IEA, 2021a). For

example, the nickel manganese cobalt (NMC) chemistry has

evolved from cobalt intensive to less cobalt intensive, and the

annual cobalt demand in the medium and low cobalt scenarios

are 21.46 and 54.15%, respectively, lower than that in the cobalt

intensive chemistry (Shi, 2022). This case shows that material
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substitution can reduce the supply chain risks to some extent.

However, the decrease of cobalt use accompanies the increase of

nickel, which in turn drives up nickel supply risks. In addition,

due to the expected massive deployment of low-carbon

technologies, supply strains are still there even with material

substitution (Gourley et al., 2020).

Hedging price volatility. Buyers and sellers can use long-

term contracts to negotiate a stable price for a specific period and

stabilize profits/costs (Mancheri et al., 2018). Besides the long-

term contracts, the market players are suggested to make full use

of modern financial tools, such as futures and options.

Establishing long-term cooperation between suppliers and

customers along the supply chains and adopting integrated

operation strategies are also effective ways to hedge price

volatility.

5 Conclusion

To better address the supply chain challenges of critical

metals in the era of frequent disturbance, this article reviews

the studies on the sources, propagation, and responses of supply

chain risks of critical metals. Based on the literature review on

these three aspects, the following issues are proposed to be

further studied in the future.

Firstly, to better identify and assess the risks in the criticality

assessment of metals, there are more studies to be conducted in a

new holistic framework of supply chain risks. This new

framework should not only focus on the specific risks in the

upstream, middle-stream, and downstream but also on general

risks along the whole supply chain. Besides this conceptual

framework, building a comprehensive database is required for

this type of risk assessment. As for the potential direction of

empirical studies, scholars could perform a holistic risk

assessment for a particular metal, cobalt, for example, or they

could carry out a holistic assessment for joint-metals,

cobalt–lithium–nickel, for instance, or do comparison studies

of risk assessments and thus better understand the criticality of

the corresponding metals. The material flow analysis,

multiregional input–output model, systemic dynamics, and

complex network theory are potential tools to address these

issues.

Secondly, the propagation of trade-related risks and price

volatility are intensively examined, and we have a

comprehensive understanding of how the risks propagate in

a single-layer network. Nonetheless, there is still a lack of

enough understanding about the supply chain vulnerability

caused by the interdependences between different stages of

the supply chain. In addition, the vertical transmissions of price

risk, which include forward vertical transmission, backward

transmission, and bidirectional transmission, should be further

explored. Multiplex network could be a useful tool for these

explorations. Interdisciplinary studies that combine the

multiplex network, econometric modeling, multiregional

analysis, etc., also deserve a try since they may provide

flexible and comprehensive solutions to these issues in the

future.

Thirdly, to respond effectively to the supply chain challenges,

there are short-term measures like stockpiling and price hedging

and long-term approaches like recycling and circular strategy. In

the future, more studies should be done to investigate supply

chain diversification rather than diversification of one stage. In

addition, more quantitative models those include the price factor,

recycling, and technological breakthrough are worthy of

attention due to rapid clean energy transition and the nature

of metal scarcity. As for the recycling of critical metals, studies on

the cost of recycling and its influencing factors are few but

deserve academic investigations. Supply chain traceability

supported by blockchain has also become an emerging

frontier topic. It should be noted that there are trade-offs in

every response approach, which deserves more studies in the

future.
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