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Inherent dynamic constraints of distributed generations (DGs) and the

correlation between injected variables bring great challenges to distribution

network operation. In order to improve the degree of coupling and

interconnection coordination between different energy devices, improve the

ability of the distribution network to cope with the uncertainty of DGs, achieve

low-carbon operation, and improve the environmental friendliness of

distribution network operation, this article proposes a robust optimization

approach involving risk assessment. The semi-invariant method and scene

clustering are used to deal with the uncertainty of DGs and load, thus

formulating a robust optimization model for distribution network distribution

based on risk indices. To address the time-varying constraints of energy storage

systems (ESSs) and gas turbines, a two-stage box-based decomposition model

is established. Dynamic constraints are included in the first stage to constrain

the operating state and operating domain of the unit and ESSs. In the second

stage, the multi-timescale optimization problem is transformed into multiple

single-timescale optimization problems, which are solved by the column and

constraint generation (C&CG) algorithm to improve the solution efficiency. The

feasibility of the comprehensive optimization model based on dynamic

reconfiguration and distributed robust optimization (DRO) is demonstrated

with the PG&E 69 bus system.
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1 Introduction

With the convening of the world climate conference, low-carbon development has

gradually become the mainstream of energy development. Distributed generations (DGs),

including photovoltaics (PVs), wind turbine (WT), gas turbines, and so on, characterizing

low-carbon operation have received much attention. DGs applied in the distribution

system can effectively relieve the pressure on the power supply of thermal power units and

reduce the proportion of thermal power generation in the distribution network energy

structure, which effectively reduces the carbon dioxide emissions of distribution network
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operation. DGs have essential importance in the distribution

system operations (Wang et al., 2020). Meanwhile, the operation

of the distribution network is restricted by the imbalance between

the flexibility of the system and the uncertainties and volatility of

DGs (Kalantar-Neyestanaki and Cherkaoui, 2021). The current

approaches to deal with the uncertainties of DGs include

stochastic optimization (Golmohamadi and Keypour, 2018),

robust optimization (Zhang et al., 2018; Babaei et al., 2020;

Shahbazi et al., 2021), and distributed robust optimization

(DRO) (Liu et al., 2020). In comparison, DRO can more

accurately and effectively deal with the imbalance problem.

Norm-1 and norm-inf (Ji et al., 2022) are introduced in DRO

to constrain the confidence interval, which avoids non-

deterministic polynomial (NP) problems and improves

efficiency. DRO has been applied in practice on uncertain

issues including optimal scheduling of AC-DC distribution

networks (Gao et al., 2020), integrated energy system

scheduling (Zhang et al., 2021a), and energy storage

configuration (Zhang et al., 2021b).

The uncertainties of distributed power sources bring great

difficulties for the coordinated scheduling of the system and limit

the grid-connected capacity of DGs. Therefore, research studies

on solving the uncertainty of DGs are important for improving

distribution system stability, expanding the scale of grid

connection of DGs, reducing carbon dioxide emissions of

distribution networks operations, and realizing low-carbon

operation. To address these challenges, by combining norm-1

and norm-inf, a data-driven robust optimization model is

proposed in Zhang et al., 2021b, which effectively constrains

the spatiotemporal correlation of wind power. In Khasanov et al.,

2021, a meta-heuristic rider optimization algorithm (ROA) is

proposed to achieve optimal allocation of distributed power

sources, coping with the challenges brought about by the

uncertainties of distributed power sources and effectively

improving the computational efficiency. At the same time, the

optimal size and installation location of DGs are obtained based

on the ROA calculation, which effectively improves the

computational efficiency. The comprehensive optimization of

the distribution network, which combines the dispatching of the

energy storage systems (ESSs) and controllable DGs with

distribution network reconfiguration (DNR), has significant

potential to improve the system flexibility (Nunna et al., 2020;

Baghbanzadeh et al., 2021). To improve the degree of source-

grid-load coupling, flexible loads are introduced into the

distribution network. A multiple time scale optimization

model is proposed in Zhou et al., 2021 to address the

uncertainties of flexible load and renewable energy sources

(RESs). In Mokaramian et al., 2022, an energy hub (EH)

system containing DGs is proposed to enhance system

coupling and optimize demand supply, system reliability, and

energy management. Meanwhile, the uncertainty model is

constructed based on the stochastic optimization method,

improving the system reliability. In Song et al., 2021,

considering voltage stability constraints, an optimized

scheduling framework with multiple timescales is proposed,

which achieves the network loss minimization objective and

effectively copes with load and RES uncertainties. However,

the temporal series coupling constraints between ESSs and

DGs easily lead to the model falling into local optimization,

which has not been fully solved and has vital research

significance.

Optimal distributed generation allocation (ODGA) and

network reconfiguration (NR) play a vital role in improving

the economy and reliability of the distribution system. The

change of distribution network topology can achieve the effect

of optimized distribution network operation power flow, which

optimizes the system operation mode, reduces distribution

network loss, and improves the distribution network operation

economy. At the same time, the cost of purchasing electricity

from the upper grid is reduced, thus reducing the operating

output of thermal power units, which reduces carbon dioxide

emissions and improves the environmental friendliness of system

operation. In Uniyal and Sarangi, 2021, the optimization of the

distribution system is realized by NR and distributed generation

control, combined with probabilistic power flow and the adaptive

whale optimization algorithm. In Shaheen et al., 2021, to address

the challenges of distribution network reconfiguration and

cooperative optimization of DGs, a distribution network

optimization deployment method based on cyclic strategy and

the balanced optimization algorithm is proposed, which

effectively improves the quality and reliability of the system

power supply. Meanwhile, it reduces power loss of the

distribution network and improves economy and

environmental friendliness. A DNR method based on the

market theory is proposed. Considering the marginal price of

DG buses, the optimal configuration with the network with

minimum power loss is calculated by the solution method

combining the fireworks algorithm and iterative game

algorithm, which improves the power quality and the

economy and environmental friendliness of distribution

network operation (Azad-Farsani et al., 2021). In Alam and

Arefifar, 2021, the uncertainty of PV and WT is described by

probability theory to improve data accuracy. Considering the

optimal operating cost of the system, a heuristic-based particle

swarm optimization algorithm is used to calculate the optimal

configuration of ESSs and optimal distribution network topology,

improving distribution system operation stability and

environmental friendliness.

Research studies of risk assessment of the system are

important in response to the key issues caused by DGs.

Stochastic power flow is an important approach for the risk

assessment of distribution systems. It is calculated based on an

analytical approach (Chen et al., 2021) and simulation approach

(Gallego et al., 2021). The simulation approach performs a large

number of power flows on the basis of enough sampling statistics,

and the number of samplings is a critical factor affecting the error
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of the calculation result. The process of the simulation approach

is too complicated to inefficient (Xiong et al., 2019). The

analytical approach focuses on estimating the moments and

probability density functions of the output variables, which

effectively improve the operational efficiency of the

distribution system, but the adjustment of parameters during

analytical approach calculation is more difficult. In addition, the

analytical approach cannot take into account the correlation of

the DGs, and the accuracy of the risk assessment results is low

(Da Silva and de Castro, 2018). In You et al., 2021, to eliminate

the impact brought by wind power volatility and unexpected

scenarios on the system, a wind power uncertainty set

considering network accident scenarios is formulated, and

then an emergency constrained optimal power flow model

considering system risk is established. In Gruosso et al., 2019,

a simulation framework relying on the generalized polynomial

chaos algorithm is established, which evaluates the sensitivity of

variables to potential changes in power demand. In Yang et al.,

2020, combining a flexibility analysis framework and sample

weighted averages, the risks from expected operating costs and

uncertainty are treated approximately by conditional value-at-

risk. In Xiao et al., 2021, a risk assessment model and risk

aversion approach based on point estimation are proposed to

address the uncertainty of RES, which effectively improves the

calculation efficiency and enhances risk control capabilities.

However, the impacts of the correlation between the injected

variables on the operation of the system are not considered.

In this article, a comprehensive optimization model based on

a box decomposition algorithm and system risk indicators is

developed. The typical scenarios are obtained considering the

correlation between input variables. For the most extreme

scenarios, the probability distribution is determined by

combining the scenario analysis method and robust

optimization. In the absence of probability distribution in

extreme scenarios, norm-1 and norm-inf constraints are

introduced to constrain scene probability distribution within

confidence intervals, and a two-stage distribution robust

optimization model based on a box decomposition algorithm

is established that transforms the dynamic coupling constraints

into single-period optimization constraints, improving the

efficiency of handling dynamic constraints. Considering the

correlation between DGs and load, a dynamic reconfiguration

model based on the risk indicators is proposed, which is solved

using the particle swarm optimization (PSO) algorithm based on

heuristic rules, and the column and constraint generation

(C&CG) algorithm is applied to solve the distribution robust

optimization model. The robustness and feasibility of the model

are verified by the PG&E 69 system.

Based on the historical research studies, the main

contribution of this work is summarized below.

1) An improved scenario analysis method is proposed to deal

with the DG uncertainty problem. An improved K-means

clustering algorithm, considering the correlation between

data, obtains typical scenes. Both norm-1 and norm-inf are

introduced to constrain probability confidence intervals of the

scenario distribution and search the probability distribution

of extreme scenarios, therein improving the robustness of the

obtained typical scenarios.

2) The box decomposition algorithm is applied to solve the

distribution robust optimization problem, and the model is

transformed into a two-stage optimization model to

effectively handle the dynamic constraints, that is,. ESSs

and gas turbines, while decomposing the multi-timescale

problem into multiple single-timescale problems to

significantly improve the solution efficiency.

3) An improved risk assessment method is proposed combining

an improved semi-invariant method and clustering method.

The risk indicators of the system are obtained, which consider

the correlation between DGs and load. High volatility power

sources, that is, wind power, are treated separately, resulting

in a significant improvement in the accuracy and reliability of

calculation.

The rest of this article is organized as follows: Section 2

introduces the risk indicators calculation method based on the

improved semi-invariant method and clustering techniques.

Section 3 gives the mathematical model. Section 4 presents

the solution ideas of the model. Section 5 develops the

feasibility analysis and verification of the research content of

this article by means of numerical examples. The conclusions are

drawn in Section 6.

2 Risk indicators calculation method

2.1 Scenario analysis

2.1.1 Sampling
The sampling process in the scenario analysis method plays

an important role in describing uncertainty problems.

Considering the correlation between sample data, the Latin

hypercube sampling (LHS) method is used to obtain samples

with specific correlation coefficients. The LHS method covers the

sample points evenly and comprehensively across the

distribution through stratified sampling. The specific steps are

as follows.

a) Randomly generate a matrix A, which has the same

dimension as the original data matrix X obtained by

sampling. Both A and X are matrices with N rows and M

columns. The rows and columns represent the number of

input variables and the number of samples of each variable,

respectively.

b) Get the correlation coefficient matrix RA between the vectors

in each row of A, and the Cholesky decomposition is carried
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out to obtain the non-singular triangular matrix Q. Then, we
can get D � Q−1A.

c) Let Rset be the correlation matrix of the input variables, and

the Cholesky decomposition is performed to obtain the lower

triangular matrix Qset ; then Dset� QsetD.
d) The elements of each row ofA are rearranged according to the

size of the elements of the corresponding row ofDset , which is

named Aset , and X is reorganized according to Aset ,

obtaining Xset .

2.1.2 Clustering
After obtaining the sample data of the input variables by the

LHS, the typical scenarios are obtained by the improved K-means

clustering method. However, the number of clusters affects the

performance of the system, that is, the larger the number of

clusters, the closer the obtained scenarios will be to the

probability distribution of the input variables. However, the

efficiency of robust optimization also decreases. Therefore, the

optimal number of clusters is determined through the elbow

method (Jiang et al., 2021).

The elbow method uses the ratio of average distance nCE

within a class to the average distance wCE between classes as an

indicator to describe clustering error (CE). The sample

segmentation accuracy is positively correlated with the

number of clusters. The model can be expressed as

CE � nCE

wCE
(1)

nCE �∑k
i�1
⎛⎝ ∑

ks∈δi

|ks −mi|2/kn⎞⎠/k (2)

wCE �∑k
i�1
∑k
j�i+1

∣∣∣∣mi −mj

∣∣∣∣2/(kp(k − 1)/2) (3)

After the optimal number of clusters is determined by the

elbow method, the improved K-means algorithm (Wu and Wu,

2020) is used for clustering.

2.2 Risk indicators

2.2.1 Improved probabilistic power flow
algorithm
1) Probabilistic power flow

The distribution functions of injected power are assumed to

be independent of each other. In stochastic power flow

calculation, random variables are represented as

S � S0 + ΔS (4)
X � X0 + ΔX (5)
S � f(X) (6)

Given S0 � f(X0), the nodal power is expanded in the Taylor
series. Ignoring the higher-order terms, we can get the linearized

power equation

ΔX � J−10 ΔS (7)

The probability distribution of state increment ΔX can be

obtained by calculating the distribution of node power increment

ΔS and sensitivity matrix J0.

2) Semi-invariant method

Semi-invariance is an important numerical characteristic of

random variables, which can be obtained by numerical

transformation of the characteristic function of the

distribution function. However, the process of calculating

semi-invariance by definition is extremely complex. Therefore,

we use the absolute moment and the central moment to get the

semi-invariance. The semi-invariance of the state variables X and

S can be expressed as⎧⎪⎪⎪⎨⎪⎪⎪⎩
kX1 � J−10 kS1 +Xs0

kX2 � (J−10 )2kS2
/

kXr � (J−10 )rkSr (8)

Xs0 � X0 − J−10 S0 (9)

3) Improved probabilistic power flow

Typical scenarios can reflect the correlation between input

variables, but due to the fluctuation of the output power of

new energy generation devices, that is, wind power generation,

it is necessary to determine the appropriate number of typical

scenarios according to the fluctuation of input variables that

ensure that the typical scenarios accurately reflect the

correlation between input variables and improve the

calculation efficiency.

The input variables are divided into a group with higher

volatility and a group with lower volatility, which are

clustered separately. The clustering results of the two

groups are recombined to form combined scenarios. Based

on LHS and the probability distribution of the combined

scenarios, a more accurate representation of

the power correlation can be obtained (Zhang et al.,

2020a). Then the cumulative distribution function can be

obtained.

H(x) � ∑k1pk2
i�1

pk
i h(xi) (10)

2.2.2 Risk indicator
1) System over-limit probability
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The over-limit probability of node voltage and branch power

can be calculated from their corresponding cumulative

distribution functions.

{Pu(Uup
i ) � 1 −H(Umax), Pu(Udown

i ) � H(Umin)
Pp(Pl) � 1 −H(Pmax

l ) (11)

2) Severity of over-limit

When Uup >Umax, 1 − F(Uup)< 0.001% or Udown >Umin,

and F(Udown)< 0.001%, the corresponding risk degree can be

expressed as ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Sev(Uup

i ) � Um
i − Umax

Umax

Sev(Udown
i ) � Umin − Um

i

Umin

(12)

When the branch’s active flow exceeds the branch’s capacity

upper limit and the probability of exceeding the limit is lower

than 0.001%, the risk degree of exceeding the limit of the active

power can be expressed as

Sev(Pl) � Pm
l − Pmax

l

Pmax
l

(13)

The voltage and active power risk indicators of loss of load

are respectively expressed as

{Rv
i � max{Pu(Uup

i )pPload(Uup
i ), Pu(Udown

i )pPload(Udown
i )}

Rs
l � Pp(Pl)pPload(Pl)

(14)
The system risk indicator is defined as

RVS � Rv + Rs (15)

3Comprehensive optimizationmodel
of active distribution networks

To achieve distribution network operation optimization and

improve the flexibility of active distribution networks, ESSs and

controllable DGs are widely used in active distribution networks.

However, inherent dynamic constraints of ESSs and DGs with

time coupling increase the complexity of the optimization model,

resulting in a lower efficiency of the model solution. Therefore,

the box decomposition algorithm (Cho et al., 2019) has been

developed.

To deal with the dynamic constraints, variables are

decomposed into two categories. Then, a two-level model is

established: the continuous variables, that is, power output of

DGs, micro gas turbines, energy storage, and other components,

are the first category of variables. The discrete variables related to

network topology are the second category of variables. Based on

the box decomposition algorithm, the first class of variables is

solved in two stages: in the first stage, dynamic constraints are

incorporated to constrain the operating domains of micro gas

turbines and ESSs at each period; then the operating states and

operating domains of the units at each period and the single-

period operating domains of ESSs are obtained. In the second

stage, the multi-period dynamic optimization problem is

decomposed into multiple single-period optimization

problems to obtain the first class of variables. Then, dynamic

reconfiguration based on the PSO algorithm is carried out to

obtain the second class of variables.

3.1 Distributional robust optimization
model

The distribution robust optimization model describes the

probability distribution with the set of distributions and searches

for the optimal solution that can meet the requirements of worst

probability distribution in all cases of the required distribution.

The distributional robust optimization model is

min
y
(aTy +max

P∈ψ
EP[I(z,ws)]) (16)

s.t.

⎧⎪⎪⎨⎪⎪⎩ Ay + Bz + Cws ≤D
Ey + Fz + Gws � H
min
ws∈ψ

Pr(g1(y, z,ws)≤ 0)≥ 1 − θ
(17)

where I(z,ws) and g1(y, z,ws) represent functions of the

variables.

The difficulties of the distributional robust optimization

method in model transformation and solution are obvious,

which are aggravated by considering dynamic constraints

with temporal coupling, so the box decomposition

algorithm is introduced to improve the efficiency of the

model solution.

3.2 Distributional robust optimization
model based on the box decomposition
algorithm

3.2.1 First stage
The objective function is

min⎛⎝∑T
t�1
∑
j∈ΩG

vGj,tS
G
j,t +∑T

t�1
∑
j∈ΩG

uG
j,tc

G
j
⎞⎠ (18)

SGj,t � αGj + βGj⎛⎝1 − exp⎛⎝TG,of
j,t−1
τGj
⎞⎠⎞⎠ ∀t,∀j ∈ ΩG (19)

In Equation 18, the first term represents the start-up cost of

gas turbines. The second term represents the constant term of the

operating cost.

The constraints in the first stage are expressed as follows.
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1) Units’ output power constraints

uG
j,tP

G,min
j,t ≤PG ≤ �P

G
j,t ≤ u

G
j,tP

G,max
j,t ∀t,∀j ∈ ΩG (20)

2) Units’ ramp rate constraints

�P
G
j,t − PG

j,t−1 ≤ΔPG+
j,t pΔt,∀t,∀j ∈ ΩG (21)

�P
G
j,t−1 − PG

j,t ≤ΔPG−
j,t pΔt,∀t,∀j ∈ ΩG (22)

3) Units’ minimum continuous operating time constraints

0≤ t(uG
j,t − uG

j,t−1) + ∑min{t−1+TGon
j ,T}

γ�t+1
uG
j,γ ≤min{t − 1

+ TG,on
j , T}, ∀t,∀j ∈ ΩG (23)

0≤ t(uG
j,t−1 − uG

j,t) + ∑min{t−1+TGon
j ,T}

γ�t+1
(1 − uG

j,γ)≤min{t − 1

+ TG,off
j , T},∀t,∀j ∈ ΩG (24)

4) ESS charging and discharging state constraints

yE,ch
j,t + yE,dis

j,t ≤ 1,∀t,∀j ∈ ΩE (25)

5) ESS operation domain boundary constraints

0≤PE,ch
j,t ≤ �P

E,ch
j,t ≤yE,ch

j,t Pch,max
j ,∀t,∀j ∈ ΩE (26)

0≤PE,dis
j,t ≤ �P

E,dis
j,t ≤yE,dis

j,t Pdis,max
j ,∀t,∀j ∈ ΩE (27)

6) ESS capacity constraints

0≤∑t
v�1
(1 − ζEj )t−v(ηE,chj PE,ch

j,v − (ηE,disj )−1 �PE,dis
j,v )

+ EE0
j (1 − ζEj )t,∀t,∀j ∈ ΩE (28)

∑t
v�1
(1 − ζEj )t−v(ηE,chj

�P
E,ch
j,] − (ηE,disj )−1PE,dis

j,v )
+ EE0

j (1 − ζEj )t ≤EE,max
j ,∀t,∀j ∈ ΩE (29)

3.2.2 Second stage
The objective function includes gas turbine operating cost,

ESS degradation cost, power loss cost, wind and solar

abandonment cost, and power purchase cost from the main grid.

min∑T
t�1
∑
j∈ΩG

(aGj (PG
j,t)2 + bGj P

G
j,t) + CD∑T

t�1
⎛⎜⎝ ∑

j∈ΩS

(PS,max
j,t − PS

j,t) + ∑
j∈ΩWind

(PW,max
j,t − PW

j,t)⎞⎟⎠+
CL∑T

t�1
∑
ij∈ΩL

(rij~Iij,t) +∑T
t�1
CZ

t ∑
j∈Ωsub

(Psub
j,t ) +∑T

t�1
∑
j∈ΩE

gdge
j (PE,ch

j,t + PE,dis
j,t )

(30)

gdge
j � CE

j

2BE
j (QE

j )EE,max
j QE

j

,∀t,∀j ∈ ΩE (31)

~Iij,t � I2ij,t,∀t,∀ij ∈ ΩL (32)

Equation 30 includes five parts: gas turbine operation cost,

energy storage aging cost, network loss cost, cost of wind and

light abandonment, and power purchase cost of the main

network.

The relevant constraints are as follows.

(1) System operating constraints

Pj,t � ∑
r∈φ(j)

Pjr,t − ∑
i∈ϕ(j)

(Pij,t − rij~Iij,t) ∀t, j ∈ ΩN (33)

Qj,t � ∑
r∈φ(j)

Qjr,t − ∑
i∈ϕ(j)

(Qij,t − xij
~Iij,t) ∀(i, j) ∈ ΩN (34)

~Uj,t � U2
j,t,∀t, j ∈ ΩN (35)

~Uj,t � ~Ui,t − 2(Pijrij + Qijxij) + ~Iij,t(r2ij + x2
ij) ∀ij ∈ ΩL (36)������������ 2Pij,t

2Qij,t
~Iij,t − ~Ui,t

�����������
2

≤ ~Iij,t + ~Ui,t,∀ij ∈ ΩL (37)

Pj,t � PS
j,t + PW

j,t + PG
j,t + PEdis

j,t − PEch
j,t + Psub

j,t − PD
j,t (38)

Qj,t � Qw
j,t + QG

j,t + QC
j,t + Qsub

j,t − QD
j,t (39)(Iupij,t)2 ≤ ~Iij,t ≤ (Idownij,t )2,∀t,∀ij ∈ ΩL (40)(Uup

j,t)2 ≤ ~Uj,t ≤ (Udown
j,t )2,∀t, j ∈ ΩN (41)

Psub
j,t ≤ �P

sub
j,t ,∀t,∀j ∈ Ωsub (42)

Qsub
j,t ≤ �Q

sub
j,t ,∀t,∀j ∈ Ωsub (43)

2) DG operating constraints

0≤PS
j,t ≤PS,max

j,t ,∀t,∀j ∈ ΩS (44)
0≤PW

j,t ≤P
W,max
j,t ,∀t,∀j ∈ ΩW (45)

QW
j,t � PW

j,t tan ς ∀t,∀j ∈ Ωw (46)

3)Gas turbine operating and ESS operating constraints

PG
j,t ≤P

G
j,t ≤ �P

G
j,t,∀t,∀j ∈ ΩG (47)

QG
j,t ≤Q

G
j,t ≤ �Q

G
j,t,∀t,∀j ∈ ΩG (48)

PE,ch
j,t ≤PE,ch

j,t ≤ �P
E,ch
j,t ,∀t,∀j ∈ ΩG (49)

PE,dis
j,t ≤PE,dis

j,t ≤ �P
E,dis
j,t ,∀t,∀j ∈ ΩE (50)

Qc
j,t ≤Q

C
j,t ≤ �Q

C
j,t,∀t,∀j ∈ ΩC (51)

The compact form of the optimization model is

min
y,zs∈Zs

⎛⎝aTy +∑Ns

s�1
ps(zTs Λzs + bTzs)⎞⎠ (52)

Cy ≤ f (53)
Xy +Hzs � q (54)����Qy + o

����2 ≤ cTy + d (55)
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Dzs ≤ g (56)

Equation 53 represents all the constraints related to the

variables in the first stage; (54) represents the constraints,

which couple the first-stage variables and second-stage

variables; (55) represents the second-order cone relaxation

constraints; (56) represents the related constraints of the

second-stage variables.

Due to the uncertainty of DG output and the imperfection

of historical data, the scenario probability distribution is

biased, so a robust optimization approach is introduced to

constrain the scenario probability distribution. K original

scenarios are obtained by LHS; then Ns typical scenes are

obtained by the improved K-means clustering algorithm.

norm-1 and norm-inf are combined to limit confidence

interval of fluctuation interval of the probability

distribution of the scenes. The objective function is

expressed as

min
y

max{ps}∈ψ min
zs∈Zs

⎛⎝aTy +∑Ns

s�1
ps(zTs Λzs + bTzs)⎞⎠ (57)

where ψ is the confidence interval constrained by norm-1 and

norm-inf, expressed as

ψ � ⎧⎨⎩{ps} ∈ RNs+

∣∣∣∣∣∣∣∣∣∑Ns

s�1
ps

� 1,∑Ns

s�1

∣∣∣∣ps − p0
s

∣∣∣∣≤ θ1, max
1≤s≤Ns

∣∣∣∣ps − p0
s

∣∣∣∣≤ θ∞
⎫⎬⎭ (58)

where θ1, θ∞ represent the upper limit of probability distribution

deviation, calculated by Eqs 59, 60

θ1 � Ns

2N
ln

2Ns

1 − α1
(59)

θ∞ � 1
2N

ln
2Ns

1 − α∞
(60)

3.3 Dynamic reconfiguration model

Due to the constraints of the actual grid operation, it is

difficult for dynamic reconfiguration to achieve the goal of the

economic optimality and the minimum number of network

topology reconfigurations simultaneously. By means of an

improved hierarchical clustering algorithm with the

temporal constraints, the operation states of the

distribution network throughout the day are clustered into

several states. Based on the information obtained from

clustering, the dynamic reconfiguration problem is

transformed into multiple single-period static

reconfiguration problems.

3.3.1 Improved hierarchical clustering with
temporal constraints

The improved hierarchical clustering with temporal

constraints is based on the coalescing hierarchical clustering

method, considering both temporal constraints and

distribution network reconstruction number constraints,

specifying that only two adjacent time periods can be

coalesced, and based on the number of reconfigurations

allowed under given conditions enumerating to obtain the

best time-sharing scheme (Zhang et al., 2020b). The clustering

model is

minF(E, G) �∑E
e�1
∑G
g�1

!!!!!!!!!!!!!∑n
k�1
(xg

e,k − xavi
e,k)2

√√
, Emin ≤E≤Emax, G≥Gmin

(61)

3.3.2 Reconfiguration model
Based on risk indicators, the objective function of

distribution network dynamic reconfiguration is

M2 � CL∑T
t�1
∑
ij∈L
(rij~Iij,t) +∑T

t�1
CZ

t ∑
j∈Ωsub

(Psub
j,t ) + rvsRvs (62)

The power balance, node voltage, branch power flow

constraints, and radial structural constraints on the

distribution network should be satisfied.

Pj,t � PL
j,t + Uj,t∑N

p�1
Up,t(Gjp cos θjp,t + Bjp sin θjp,t) (63)

Qj,t � QL
j,t + Uj,t∑N

p�1
Up,t(Gjp sin θjp,t − Bjp cos θjp,t) (64)

Udown
j,t ≤ ~Uj,t ≤Uup

j,t (65)
Sl ≤ Smax

l (66)
e ∈ Ed (67)

Comprehensive optimization of the distribution network is

realized by solving the aforementioned distribution robust

optimization model and dynamic reconfiguration model.

4 Solution methodology

The comprehensive optimization model proposed in this

article is a multi-layer, multi-stage model, including a dynamic

robust optimization and a dynamic reconfiguration. The

dynamic reconfiguration model is solved using the PSO

algorithm. The dynamic robust optimization model is

decomposed into a master problem and a subproblem and

solved iteratively using the C&CG algorithm. The two-layer

model is solved iteratively over time periods until the system
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optimal economy is met; then the final optimization results are

obtained.

4.1 Main problem

Based on the known probability distribution p of each scenario,

the main problem aims to find the optimal solution which has the

minimum operation cost, which can be expressed as

L � min
y,λ,zs∈ZS

(aTy + λ) (68)

λ≥ ∑Ns

s�1
pwp
s ((zws )TΛzws + bTzws ), w � 1, ...,W (69)

The variable y* and the lower bound LM of the objective

function are obtained by solving the main problem.

4.2 Subproblem

The subproblem is the double-layer structure of max-min,

which can be expressed as

max{ps}∈ψ min
zs∈Zs

∑Ns

s�1
ps(zTs Λzs + bTzs) (70)

Under the condition that the variable zs can be flexibly

adjusted with the change of the scenario, when the result yp

of the main problem solution is known, the probability

distribution of the worst scenarios in the confidence interval

is found, and then the upper bound ΓM of (57) is obtained. Since

the constraint range of the outer and inner problems is not

related, (70) can be solved in two steps; that is, the inner

minimization problem is solved first, and then the optimum

of the outer maximization problem is found.

κs � min
zs∈Zs

(zTs Λzs + bTzs) (71)

Γ � max
ps∈ψ

∑Ns

s�1
psκs (72)

κs can be obtained according to the solution of the main problem.

As the absolute value constraint in (58) is nonlinear, it needs to be

linearized as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
∑Ns

s�1
p+
s + p−

s ≤ θ1

p+
s + p−

s ≤ θ∞,∀s
σ+s + σ−s ≤ 1,∀s
0≤p+

s ≤ σ+s θ1,∀s
0≤p−

s ≤ σ−s θ1,∀s
ps � p0

s + p+
s + p−

s ,∀s

(73)

In conclusion, (Eq. 57) is transformed into a mixed integer

linear programming problem. After probability p*
s is obtained, it

is substituted into the main problem for the next iteration to

obtain the upper limit ΓM of the model.

4.3 Model solution steps

In order to efficiently, accurately, and reliably solve the

model, PSO and C&CG are combined to achieve the results.

The solution flowchart is shown in Figure 1. We solve for typical

scenario N and scenario probability distribution p0 and input

initial data which include system parameters and initial network

topology e(0). At first, the first layer distribution robust model is

solved. Themaster problem is solved to obtain the lower bound of

the master problem, and the subproblem is solved based on the

solution of the master problem to obtain the upper bound of the

sub-problem. When satisfying convergence of the master-

subproblem, optimal variables are output, which will be the

initial data of the second layer, and the second layer of

dynamic reconstruction model solving is entered. When

dynamic reconstruction convergence is satisfied, the end

solution is obtained, and the completion of multi-layer

problem solving is marked. Otherwise, we go back to the first

layer and perform the next round of solving until the multi-layer

model converges.

5 Case studies

The PG&E 69 system is used to test the validity of the

proposed model. The rated voltage of the system is 12.66 kV,

and the base power is set to 10 MW. The parameters of DGs and

gas turbine cost are given in Table 1 and Table 2, respectively.

Taking the cost of network loss, wind curtailment, and light

curtailment as 50$/MWh, the ESS charge–discharge aging cost is

0.6$/MW.

Figure 2 describes the curves of predicted power including

residential load, industrial load, commercial load, and distributed

power sources.

5.1 Analysis of the improved probabilistic
power flow algorithm

Table 3 reveals the correlation coefficient between DGs

and load.

This section compares the proposed probability power flow

algorithm with the Monte Carlo method (MC) and traditional

semi-invariant algorithm and intends to carry out a comparative

analysis from aspects of calculation error and calculation

efficiency to illustrate the superiority of this proposed power

flow algorithm. Based on the elbowmethod, it can be determined

that the ideal number of clusters is 8. Based on LHS, 6000 clusters
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of correlated data z1 and 6000 clusters of uncorrelated data z2 are

obtained. Probabilistic power flow is calculated in four scenarios.

Scenario I: Calculate probability flow for data z2 based on the

MC method.

Scenario II: Calculate probability flow for data z1 based on

the MC method.

Scenario III: The traditional semi-invariant algorithm is used

to calculate probability power flow.

Scenario IV: The improved semi-invariant algorithm is used

to calculate probabilistic power flow.

As described in Figure 3, the probability curves of the four

scenarios intersect at a voltage of 0.96 p.u., which is the expected

FIGURE 1
Flow chart of the integrated optimization model.

TABLE 1 Parameters of DGs.

Category Active power limit/MW Reactive power limit/MW Installation node Upper climbing limit/MW

PV Unit [0,0.6] — 13/47 —

WT [0,0.7] [−0.2,0.1] 26/67 —

1 Gas Turbine [0.05,0.25] [−0.05,0.15] 53 0.03

2 Gas Turbine [0.1,0.3] [−0.1,0.2] 38 0.05

TABLE 2 Gas turbine cost parameters.

Category αg/$ βg/$ τg cg/$ bg ($/MW) ag ($/MW2)

Team 1 0.3 0.3 6 0.0028547 21.388 9.26

Team 1 0.4 0.4 8 0.0051826 46.00 5.18
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voltage of node 47. In Figure 4, the expected value of the active

power of line 12 is about 0.42 p.u. It can be concluded if the

correlation between DGs and load has a significant influence on

the MC simulation results. Since the traditional semi-invariant

method cannot take into account the correlation between

variables, the calculation result has a large error compared

with the MC method. In addition, in the case of large

fluctuations in the variables, the error caused by linearization

is also obvious. It can be observed that the results of the improved

semi-invariant method are basically consistent with that of the

MC method considering correlation, indicating that the error

caused by large fluctuation of variables can be reduced by the

improved semi-invariant method.

As shown in Table 4, due to the large number of samples, the

computational efficiency of the MC method is the lowest. The

traditional semi-invariant algorithm has the shortest running

time because it only calculates power flow once. The execution

time of the improved semi-invariant algorithm is longer than that

of the traditional semi-invariant algorithm because it performs

the multi-scenario calculation, but it is still much lower than the

MC method. It can be seen that the improved semi-invariant

algorithm significantly improves the computational efficiency

while ensuring high computational accuracy.

5.2 Risk indicators analysis

To analyze the impact of load and DG uncertainty on

distribution system operation security, the risk indicators

under different scenarios are calculated separately. The upper

and lower limits of bus voltage are set to 1.05 and 0.95 p.u.,

respectively. At t = 14 s, electric vehicles (EVs), PV power

stations, WT, micro gas turbines, and ESSs are added to the

distribution network in sequence. The output powers of ESSs and

gas turbines are at their expected values. The results are indicated

in Table 5.

It can be known by analyzing the data in Table 5 that

connecting EV to the system will reduce the node voltage,

which will increase the risk of loss of load caused by the

voltage exceeding the limit. DGs increase the bus voltage level,

resulting in a significant drop in the risk indicators caused by

FIGURE 2
Predicted output curve.

TABLE 3 Correlation coefficient between DGs and load.

Device LI WS EV RL CL IL

LI 1 −0.262 −0.2 −0.197 0.1 0.1

WS −0.262 1 0.2 0.233 −0.1 −0.1

EV −0.2 0.2 1 0.2 −0.1 −0.1

RL −0.197 0.233 0.2 1 −0.2 −0.2

CL 0.1 −0.1 −0.1 −0.2 1 0.2

IL 0.1 −0.1 −0.1 −0.2 0.2 1

LI, light intensity; WS, wind speed; RL, residential load; CL, commercial load; IL,

industrial load.

FIGURE 3
Cumulative probability of node 47 voltage.

FIGURE 4
Active power cumulative probability of line 12.
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voltage over-limit. For uncertain factors with small

fluctuations such as EV and PV, their impact on RV can be

ignored. DGs such as WT characterized by large fluctuations

will increase the probability of exceeding the limit of branch

power and increase the risk indicator RS. Integration of

ESS can effectively alleviate the impact of wind power

fluctuations.

5.3 Optimization results

1) Influence of ESS and micro gas turbines.

Three different cases are studied.

Case 1: Only wind power and PVs are integrated.

Case 2: On the basis of Case 1, ESSs are integrated.

Case 3: On the basis of Case 2, micro gas turbines are integrated.

TABLE 4 Efficiency and accuracy comparison.

Algorithm Monte Carlo Traditional semi-invariant Improved semi-invariant

Execution time/s 209.51 0.81 21.20

Precision highest low higher

TABLE 5 Risk indicator.

Operating status Original state Add EV Add PV Add WT Add gas
turbine

Add ESS

RV 0.4690 0.6038 0.1665 0.0340 0.0134 0

RS 0.0212 0.0212 0.0213 0.1912 0.1912 0.1057

FIGURE 5
Cost curves in different cases.

FIGURE 6
Output power of different devices.

FIGURE 7
Carbon dioxide emission optimization.
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The optimization results in each case are described in

Figure 5. It is known that after ESSs are integrated, the cost of

wind and light abandonment is effectively reduced.

Moreover, ESSs can also reduce the network loss cost and the

cost of purchasing electricity from the main grid. Compared with

Case 2, the cost of abandoning wind and light in Case 3 is

basically the same when micro gas turbines are integrated.

Nevertheless, the network loss and the cost of purchasing

electricity from the main grid are reduced to a large extent,

which improves the economy of the system. The output powers

of ESSs and micro gas turbines in Case 3 are described in

Figure 6.

Comparing Figure 5 and Figure 6, it can be known that in 1–6 h,

the ESSs are in a charging state, and the absorbed power corresponds

to the discarded wind power. The bidirectional power flow

characteristics of the ESSs can effectively alleviate wind and light

abandonment. However, limited by the capacity of the ESS devices,

the charging power of ESS decreases gradually in 5–6 h, which leads

to the optimization effect of cost generated by abandoned wind and

light that is not obvious. Compared with Figure 2, when the load is

light and the cost of purchasing electricity from the main grid is low,

ESSs work in the charging state to absorb the excess power. During

the period of heavy load, the input power from the main grid is

relatively large, and ESSs are in the discharge state, which can

effectively reduce the network loss and purchase cost caused by

excessive load. It can also be observed that the output curve of the

micro gas turbines is consistent with the cost curve of purchasing

electricity from the main grid. When the system requires more

power, the output of the gas turbines increases accordingly, which

effectively reduces the cost of purchasing electricity and the power

loss of the network.

2) Influence of carbon dioxide emission

As proved in Figure 7, ESSs improve the ability of the system

to accommodate WT and PV, 0–5 h ESS storage surplus wind

power, and 6 and 8 h storage surplus PV. The ESS discharge

participates in system peaking during the peak periods of the

distribution system and reduces the supply pressure of thermal

power units, which can reduce 1.0352 tons of carbon dioxide

emissions. Gas turbines offer the advantages of low carbon

operation, which can meet load demand during distribution

TABLE 6 Impacts of reconfiguration.

Category Before reconfiguration After reconfiguration

Network loss cost/k$ 56.358 24.3824

Main net power purchase cost/k$ 116.7835 115.8633

Cost of abandoning scenery/k$ 6.3721 0

Total cost/k$ 210.3807 173.0978

RV 7.4894 1.1764

RS 4.4256 3.8537

TABLE 7 Comparison of economic parameters.

Model Time division Network loss cost/k$ Main grid power
purchase cost/k$

Total cost/k$

GA 1-9/10-18/19-24 29.5235 1330.0156 184.7378

Robust model for classical distribution 1-9/10-18/19-24 21.3734 114.3517 167.8219

Proposed model 1-9/10-18/19-24 24.3824 115.8633 173.0978

TABLE 8 Comparison of operating parameters.

Model Time division Risk indicators CPU time/s

GA 1-9/10-18/19-24 19.5267 4178.9286

Robust model for classical distribution 1-9/10-18/19-24 23.7235 7936.3455

Proposed model 1-9/10-18/19-24 5.0301 3456.5375
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network operation and reduce the proportion of thermal power

units in the power supply of the distribution network, which can

reduce 9.286 tons of carbon dioxide emissions in 24 h. The

decision results indicate that the synergistic operation of ESSs

and gas turbines can effectively solve the uncertainty of DREs

increasing operational flexibility, promote the accommodation of

WT and PV, increase grid-connected regulation, and improve

peaking capacity. At the same time, relying on gas turbines and

ESSs to inject power into the distribution network, it can

effectively reduce carbon dioxide emissions and improve the

environmental friendliness of distribution network operation.

3) Influence of network topology

Table 6 provides the cost and reliability index before and after

NR. After reconfiguration, the network loss has been significantly

reduced, and the problem of abandoning wind and light has been

effectively avoided. At the same time, the optimization of the

network topology can significantly reduce the risk indicators of

the system. Meanwhile, with the reduction in the cost of active

power purchase, it can be concluded that optimization of

distribution network topology can reduce relief of the upper grid

to distribution network load demand, so thermal power unit output

is reduced, which in turn reduces the system’s CO2 emissions and

promotes the development of low-carbon operation of the system.

4) Analysis of optimization results

To verify the feasibility and performance of the proposed model

and algorithm, the genetic algorithm (GA) and the classical

distribution robust model are selected for comparison. The

results are exhibited in Table 7 and Table 8. It can be seen that

the genetic algorithmhas high-risk indicators and low reliability, and

the result is not optimal. The economy of the classical distributional

robust optimizationmodel is optimal; however, since the upper limit

of branch power is ignored, the risk indicators increase, which can

lead to an increase in the probability of system failure.

Compared with a genetic algorithm, the proposed model

has obvious advantages in economy and reliability. Compared

with the classical distributed robust model, the proposed

model gives a slightly higher cost, but the reliability

advantage is obvious. In addition, the problem of solving

mixed variables is avoided, and the operation efficiency is

significantly improved.

6 Conclusion

According to the experimental results of the PG&E69 node

system, the following conclusions are drawn:

1) The improved probabilistic power flow algorithm can reflect the

correlation between DGs and load under regional and

environmental influences. At the same time, it can effectively

reduce the calculation error and greatly reduce the execution time.

2) The bilateral power flow of the ESSs has a positive effect on

improving the penetration of wind power and PV, and the

access of the micro gas turbines plays an important role in

reducing purchase costs from the main grid and network loss.

The optimization of system topology can effectively improve

the flexibility of the system and solve the problem of

abandoning wind and light, thereby effectively improving

the utilization rate of RES, and increasing the grid-connected

capacity of wind and PV. Then, carbon dioxide emissions

from distribution network operations are effectively reduced

and operational environmental friendliness is improved.

3) Compared with the genetic algorithm and robust

optimization method, the proposed model can improve the

economy of system operation and ensure the reliability of the

system. Furthermore, the multi-period dynamic optimization

problem is transformed into single-period static optimization

problems, and the discrete variables are separated, thereby

effectively reducing solution time.

In the future work, we will consider improving the model

solving method to optimize the problems with complex modeling

and a low efficiency so as to improve the efficiency of system

operation and decision-making.
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Nomenclature

Sets

ΩL/N Set of branches/nodes

ΩWind/S Set of nodes for installing WT/PV

Ωsub/C Set of nodes for installing substation/reactive power

compensation devices

ΩG/E Set of nodes with gas turbines/ESSs

φ(j) Set of end nodes of all branches with j as the head node

ϕ(j) Set of head nodes of all branches with j as the end node

Zs Set of variables zs

ψ Set interval of scene probability distribution

e Reconfigured topology of the network

Ed Set of connected radial topologies

Parameters

δi The ith cluster

ks Sample point

mi Cluster centroid

kn Number of elements in cluster δi

X0 Obtained by deterministic stochastic power flow calculation

J0 Sensitivity matrix

Δt Time interval

TG,on/off
j Continuous operation/outage time

ζEj Self discharge rate of ESSs

aGj /b
G
j Coefficients of quadratic/linear term of operating cost

gdge
j Degradation cost per unit charge and discharge energy

of ESSs

CE
j Replacement cost of ESSs

BE
j Logarithmic function of the number of energy storage cycles

with respect to depth of discharge

rij Resistance of branches

CL Cost of network loss

CD Punishment cost of abandoning wind and light

xij Reactance of branch (i, j)
ς Power factor angle of the WT

a Cost coefficient of the first-stage variable

b First-order cost coefficient of the first-stage variable

Λ Second-order cost coefficient of the first-stage variable

Ns Quantity of scene clusters

α1/α∞ Confidence degree of scene probability p based on norm-

1/norm-inf

F Middle distance of class

E Number of periods divided

G Number of hours in the eth period

n Number of features of each data point

Gmin Minimum time interval of reconfiguration

Emax /min Maximum/minimum number of reconfigurations

rvs Constant coefficients in the dynamic reconstruction model

p Optimal value

W Number of iterations

Variables

kXr Semi-invariants of order r of X

X State variable

S Node injection power

kSr Semi-invariants of order r of S

Umax /min Upper/lower limit of node voltages

Um
i The ith node with the largest deviation from the voltage

limit

Pm
l Maximum value of active power of branch l relative to the

upper power limit

Pmax Upper limit of the active power of the branch

SGj,t Start-up cost of gas turbines

vGj,t Binary variable gas turbines start-up

uGj,t Operating status of units

TG,off
j,t−1 Continuous offline time of units before time t

αGj / β
G
j Constant factors in gas turbine start-up costs

τGj Time constants

cGj Unit operating cost constant term factor

PG,min /max
j,t Minimum/maximum technical output of units

�PG
j,t/ Q

G
j,t Upper/lower limits of the output power of units

ΔPG+/G−
j,t Maximum ramp-up/ramp-down power of units

yE,ch/dis
j,t Charging/discharging state of ESSs

PE,ch
j,t /�PE,ch

j,t Lower/upper limits of charge power of ESSs

�PE,dis
j,t /PE,dis

j,t Upper/lower limits of discharge power of ESSs

PE,ch/dis
j,t Maximum charge/discharge power of ESSs

EE0
j Initial energy of ESSs

ηE,ch/disj Charge/discharge efficiency of ESSs

EE,max
j Maximum stored energy of ESS

PG
j,t Output power of units

QE
j Depth of discharge of ESSs

PW/S,max
j,t Predicted value of output power of WT/PV

PW/S
j,t Actual output of WT/PV

Psub
j,t Injected power of substations

Ii j,t Current of branch ij
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CZ
t Cost of purchasing electricity from the main grid

Uj,t Voltage of nodes

Pjr,t/ Qjr,t Active/reactive power of branches

Pij,t/ Qij,t Active/reactive power of branches

Pj,t/ Qj,t Active/reactive power injected into nodes

PS
j,t Active injection power of nodes by PV

PW
j,t/ Q

W
j,t Active/reactive injection power of nodes by WT

PG
j,t/ Q

G
j,t Active/reactive injection power of nodes by micro-

turbines

QC
j,t Reactive power of the reactive power compensation

device

PE,ch/dis
j,t Charging/discharging power of ESSs

Psub
j,t / Q

sub
j,t Active/reactive injection power of substationsActive/

reactive injection power of substations

Psub
j,t / Q

sub
j,t Active/reactive injection power of substationsActive/

reactive injection power of substations

�Psub
j,t / �Q

sub
j,t Upper limit of active/reactive power of substations

PD
j,t/ Q

D
j,t Active/reactive load power of nodes

Uup/down
j,t Upper/lower voltage limit of nodes

Iup/downij,t Upper/lower current limit of branches

QG
j,t/ �Q

G
j,t Lower/upper limit of reactive power of gas turbines

�Q
C
j,t/ Q

c
j,t Upper/lower limit of output reactive power of reactive

power compensation equipment

y First-stage variables

ps Probability of the sth scene occurring

zs Second-stage variables in the sth scene

ws Uncertain variable in the distribution robust optimization

model

xg
e,k Position of node k at the gth hour in the eth period

xavi
e,k Cluster center of node k in the eth time period

PL
j,t/Q

L
j,t Active/reactive power consumption of the load at nodes

Sl/ Smax
l Actual tide and capacity of branches

p+/−
s The positive/negative offset of the sth scene probability ps

relative to p0
s

σ+/−s 0-1 flags of ps

h(xi) Probability distribution of state variables in the ith scene

Pu(Uup/down
i ) Probability of node voltage exceeding maximum/

minimum values

Pp(Pl) Probability of power overload on branches

Pmax
l Maximum allowable active power of branches

Pload(Uup/down
i ) Loss of loads when the node voltage is over the

upper/down limit

Pload(Pl) Loss of loads corresponding to the risk of active power

Sev(Uup/down
i ) Risk degree of node voltage exceeding the upper/

lower limit

Sev(Pl) Risk degree of the active power of branches exceeding the
limit

Rv/s Risk indicator reflecting load loss caused by voltage/active

power exceeding the limit

A-H ,X, Q Matrix forms corresponding to variables in

distributional optimization model constraints

f,q,o,c,d,g Vector forms corresponding to variables in

distributional optimization model constraints

Frontiers in Energy Research frontiersin.org17

Zhang et al. 10.3389/fenrg.2022.963576

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.963576

	Robust optimization of the active distribution network involving risk assessment
	1 Introduction
	2 Risk indicators calculation method
	2.1 Scenario analysis
	2.1.1 Sampling
	2.1.2 Clustering

	2.2 Risk indicators
	2.2.1 Improved probabilistic power flow algorithm
	2.2.2 Risk indicator


	3 Comprehensive optimization model of active distribution networks
	3.1 Distributional robust optimization model
	3.2 Distributional robust optimization model based on the box decomposition algorithm
	3.2.1 First stage
	3.2.2 Second stage

	3.3 Dynamic reconfiguration model
	3.3.1 Improved hierarchical clustering with temporal constraints
	3.3.2 Reconfiguration model


	4 Solution methodology
	4.1 Main problem
	4.2 Subproblem
	4.3 Model solution steps

	5 Case studies
	5.1 Analysis of the improved probabilistic power flow algorithm
	5.2 Risk indicators analysis
	5.3 Optimization results

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Nomenclature
	Sets
	Variables



