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False data injection (FDI) attacks commonly target smart grids. Using the tools

that are now available for detecting incorrect data, it is not possible to identify

FDI attacks. One way that can be used to identify FDI attacks is machine

learning. The purpose of this study is to analyse each of the six supervised

learning (SVM-FS) hybrid techniques using the six different boosting and feature

selection (FS) methodologies. A dataset from the smart grid is utilised in the

process of determining the applicability of various technologies. Comparisons

of detection strategies aremade based on how accurately each one can identify

different kinds of threats. The performance of classification algorithms that are

used to detect FDI assaults is improved by the application of supervised learning

and hybrid methods in a simulated exercise.
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1 Introduction

Powerful Smart Grid solutions are on the verge of disrupting the current

industries with their ability to improve the efficiency of traditional electric

networks. A digital communications-based energy supply grid is known as the

“Smart Grid” (Mollah et al., 2021), (Aziz et al., 2017). Increased demand has led to

problems such as blackouts, overheating, and voltage drops. Additionally, the

existing electrical network has seen an increase in carbon emissions that is

critical to mitigating the cyber-attack (Sakhnini et al., 2019). Up to 40% of the

country’s CO2 emissions are absorbed by the United States, which is bad for the

environment (Case et al., 2021). The Smart Grid will incorporate cutting-edge

communication and calculation capabilities, all of which are projected to

enhance the system’s efficiency, reliability, and availability (Ruan et al., 2017).
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A second advantage of a Smart Grid is its capacity to converse

with itself (Majeed Butt et al., 2021), (Sami et al., 2022). The

Smart Grid’s history includes natural gas, coal, fossil fuels and

renewable energy sources including wind turbines and solar

panels (Wang et al., 2020). The Smart Grid’s efficient power

distribution and use can benefit a wide range of smart devices,

transformers, and machinery. It accomplishes these goals by

using two-way communication instead of the typical grid

system’s one-way communication. Faster and better services

for customers can be achieved through the Smart Grid,

allowing for a quick implementation of the energy problem

(Wu et al., 2021).

However, Smart Grid technology has weaknesses and

obstacles, the most notable of which is the inability to

preserve the most vital asset, data. The Smart Grid will need

to share data on a regular basis since sensitive information may

be stored there (Moghadam et al., 2020). The Smart Grid Many

gadgets, both commercial and domestic, will be linked via a

variety of networks in order to communicate and provide

security to the networks utilising various techniques to cyber

security. Smart Grid cyber security is critical. An evaluation and

analysis of various security measures will be done in order to find

a solution to these complex concerns (Aziz et al., 2022), (Chehri

et al., 2021). A “smart grid” is a system that employs

communication and information technologies to generate,

distribute, and consume electric power. New functionalities

such as real-time control and operational efficiency as well as

increased grid resilience as well as the integration of renewable

technologies to reduce carbon footprint (Ma et al., 2020) are

achieved through the use of two-way information flow. There are,

however, some drawbacks to using a smart grid.

If a power loss happens, the stability of the smart grid could

be compromised, and the socioeconomic consequences could be

considerable (Murthy et al., 2022). As a result of theft or

manipulation of important data exchanged across smart grid

systems, users’ privacy may potentially be violated. Since these

problems have been discovered, the smart grid has gained the

interest of both government agencies and private sector

companies. An increasing number of attacks against smart

grids are being carried out using a technique known as False

Data Injection (FDI) (Hu et al., 2021).

It’s impossible to catch sly FDI attacks using today’s poor

data detection methods (Akram et al., 2021). Machine learning

has been proposed as an alternative to FDI detection. The first

time the term “false data injection attack” (FDIA) surfaced was in

relation to the smart grid (Tan et al., 2017). There are several

ways an attacker can tamper with sensor readings to introduce

unnoticed errors into state variables and values despite the term’s

resemblance to “tampering.”Using an injection attack, malicious

input can be injected into a web application and compelled to do

specific commands. An injection attack has the potential to

compromise a web server as a whole and cause a denial of

service attack (Ye and Lin, 2010; Abu Hussein et al., 2014;

Tarafdar Hagh et al., 2015; Li et al., 2021).

A machine learning approach is being developed to detect

and safeguard the smart grid from fraudulent data injection in

this study. A combined machine learning and feature selection

strategy is being proposed. The primary goals of this

investigation are:

1) To propose hybrid models for the protection and detection of

cyber-attacks in smart grid stations.

2) To implement hybrid techniques using generic supervised

machine learning models.

3) To evaluate and compare the proposed model on the basis of

accuracy precision, recall and F1 score.

Sections have been numbered from one to five in this work.

The study’s introductory section can be found in Section 1. The

related work is shown in Section 2, and themethodology and data

collection are shown in Section 3. Section 4 details the current

study’s implementation and results, while Section 5 concludes the

investigation.

2 Related work

False Data Injection (FDI) attacks are a common sort of

cyber-attack on smart grids (Sargolzaei et al., 2020). It’s

impossible to catch FDI attacks that use shoddy data

detection technologies nowadays. In the past, it has been

argued that machine learning may be used to detect attacks

on foreign investment (FDI). This study (Sakhnini et al., 2019),

which focuses on three different supervised learning techniques,

examines each of the three different feature selection (FS)

methodologies. IEEE 14-, 57-, and 118-bus systems are used

to test the applicability of these techniques. Detection methods

are compared based on how accurate they are in detecting

specific threats. When supervised learning and heuristic FS

techniques (Al-Sahaf et al., 2019) are combined in a

simulation, FDI attack detection systems perform better.

Stacked Auto Encoders (SAEs) can be used to construct

machine-learned characteristics against transmission SCADA

attacks as a supplement to more high-quality features,

according to Wilson et al. (2018). Compared to current ML

detection systems, this framework exploits the automaticity of

unsupervised feature learning to reduce the dependency on

system models and human knowledge in complex security

scenarios. SCADA intrusions in power transmission systems

can be detected using machine-learned characteristics, as

demonstrated by simulations from a high-fidelity smart grid

test bed. A typical SCADA-based theoretical and applied research

on false data injection assaults protection system is shown in the

figure below.
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As ICT is integrated into the old grid, electric grids are getting

smarter. In addition, cyber-attacks on the electrical system may

result (Yang et al., 2020). The False Data Injection Attack is one

of the most common and damaging threats to the smart grid

(FDIA). FDIAs in the grid can be detected using machine

learning methods, according to a recent study (Majeed Butt

et al., 2021). Several feature selection strategies are put to the

test in search of the most accurate features. A variety of machine

learning methods are being tested to find the best way to identify

such assaults (Irshad et al., 2021). Class distribution in the dataset

is skewed, and experiments address this issue. All experiments

must be evaluated on their ability to respond quickly in a

smart grid.

Attempts to tamper with smart grid power transmission

systems by introducing false data are called “false data

injection attacks” (Qu et al., 2021). Data-driven machine

learning is used in this work (Ashrafuzzaman et al., 2020) to

combat state estimation assaults. An ensemble of classifiers is

used, and the results are further categorized (Ge et al., 2020). In

this strategy, both unsupervised and supervised classifiers are

used (Lee et al., 2018). IEEE 14-bus data simulation is utilized to

evaluate the algorithm (Boudreaux and Boudreaux, 2018). The

outcomes of supervised individual models can be compared to

the results of ensemble models. Unsupervised models showed

that ensembles outperformed individual classifiers.

Through the use of supervised learning, it is possible to detect

malicious communications and estimate their security risks. The

term “Internet of Things” refers to the concept of linking billions

of physical and technical objects over the internet (Triantafyllou

et al., 2018; Long et al., 2022). It is becoming increasingly usual

for DoS and spoofing attacks to occur as IoT systems become

more popular. This study by Khrishnan et al. (Fu et al., 2020;

Sundar et al., 2021) employs three classification algorithms and

many supervised feature selection techniques to analyze IoT

network data. They are able to accurately predict whether or

not IoT devices would be affected by network traffic that is not

necessary. It was determined which feature selection algorithms

were most effective at predicting network intrusions.

Because of the deterioration of the electrical system, the

concept of “smart grids” has become more outmoded. The

present smart grid security solutions can detect and stopping

known assaults. Their failure to fulfil the most advanced cyber-

security standards is disappointing. To combat cyber dangers,

you’ll need a wide range of tools and strategies. When it comes to

spotting unknown risks, a more versatile strategy is needed. With

the help of big data analytics, techniques like deep learning,

machine learning, and artificial intelligence (AI) may accomplish

this. Unknown assaults can be detected by machine learning

algorithms that adapt to the baseline behavior of a subject.

Machine intelligence and predictive analytics will revolutionize

the security business in the future. This study attempts to shed

light on some of the issues surrounding the protection of big data

and artificial intelligence-based infrastructures. They describe in

detail how themodern electrical grid was shaped by technological

advances in Chehri and colleagues (Chehri et al., 2021).

Qualitative risk evaluation there is a lot of discussion over the

dependability, safety, and effectiveness of the network. The

author reveals levels when recommending security

measures.—e.g. There is also discussion of ways to monitor

and collect data.

The traditional electrical grid was transformed into the

“smart grid” after a period of transition. Improved reliability,

visibility, efficiency, and control can be achieved using the smart

grid. It can exchange both energy and information.

Communications inside the smart grid are crucial. Smart

devices and networks comprise the smart grid. On these

networks, DDoS, MITM, and replay attacks are all

conceivable. Smart grid fraud has been a growing target for

hackers. There are security and vulnerability concerns with the

smart grid, according to this study (Rajendran et al., 2019; Fu,

2022). In the closing paragraphs, the attacks are addressed, and

answers are offered. The security of the smart grid

communication system is discussed in detail in this research.

This study help readers comprehend the security challenges

connected with smart grid communication systems, networks,

and devices.

These attacks, which can cause both bodily and economic

devastation, are on the rise. FDIAs on power grid monitoring

systems are among them. To influence the estimated condition of

the power system, adversaries can carry out FDIAs or modify the

system data via compromising sensors. The ability of the energy

management system to estimate unknown status factors is critical

to its success. Sensor failure detection methods are incorporated

into the SE algorithms in order to remove inaccurate data from

the gathered measurements. Because BDD modules can not

recognize hazardous data vectors introduced by FDIAs in

some measures, the SE process’s outputs can be affected.

Machine learning techniques have increasingly replaced

residual based BDD in the detection of unlawful sensor data

modification. Comparisons of FDIA detection methods using

machine learning and power system SE are made in this article

(Sayghe et al., 2020).

Although smart grids use cutting-edge ICT technologies to

improve efficiency and resilience, adversaries may exploit new

security holes to conduct cyber assaults, resulting in widespread

blackouts and infrastructure damage. To better detect attacks on

smart grids, supervised learning is widely used, which

incorporates training on both regular and malicious events.

There must be instances of a variety of attack types in the

training dataset for supervised learning to be successful. In

order to detect cyber threats in smart grids, this study (Qi

et al., 2021) makes use of PMU data. Detection algorithms

that can identify previously unknown assaults are trained

using just normal events. The author investigated several

semi-supervised anomaly detection systems using publically

available datasets on power system cyber-attacks. According to
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a performance comparison, semi-supervised algorithms

outperformed supervised algorithms in recognizing attack

events. Semi-supervised anomaly detection systems may

benefit from deeper representation learning as well. The

authors in (Ruan et al., 2022) propose a data recovery scheme

to recover measurements and states contaminated by FDIAs.

Table 1 shows the comparative analysis of previous state of

the art research in tabular form:

3 Methodology

Machine learning based Smart Grid Cyber Attack research is

still in its infancy due to communication protocols. It’s clear that

further research is needed in this area. We proposed a Smart Grid

cyber-attack security system and solution based on hybrid

algorithms. The Logitboosted method’s performance features are

highlighted for a smart grid system.

The study’s major contributions can be broken down into

four groups:

1) The present state-of-the-art novel hybrid algorithms for cyber-

attack protection and detection system for smart grid on smart

grid datasets is to be investigated in this study

2) It’s possible to detect attacks in smart grid communication

with the use of Hybrid Models.

3) Hybrid models based on cyber-attack detection system

models were tested to evaluate how numerical and

categorical factors affected their performance.

The current study’s planned flow is shown in the diagram

below:

3.1 Dataset

False Data Injection (FDI) assaults on the smart grid

communication system are all too common. Open source data

has been used in this research. Independent and dependent

variables can be found in this equation. The features are listed

in the following table:

As a user-server approach, the smart grid data interface was

developed to make it easier to communicate amongst the various

smart grids. The interface accepts crucial data in XML format. On

the provider side, this file will also be used as a Hybrid Model

parameter.

3.1.1 Data collection and pre-processing
Smart Grid Dataset was used to obtain the raw data. As a

result, numerous ways have been used to clean up the data,

including deleting duplicates and null entries and so on.

3.1.2 Feature engineering
Data from one domain is utilized to develop functions for

learning machines using Feature Engineering. Extracting the most

significant properties from raw data, it turns it into machine-

learning formats. This study makes use of a correlation matrix to

figure out how different variables are related to one another. Based

on theMAC address of themobile device, themodel for categorizing

mobile devices was established. DHCP servers (Dynamic Host

Configuration Protocol) might alter their IP addresses over time,

making it difficult to effectively filter traffic to a particular device. A

total of 41 mobile devices are monitored for each of their traffic

characteristics at the flow level. Packets with comparable source and

destination addresses, communication ports and protocols (such as

TCP orUDP) are grouped together when it comes to classifying data

traffic... Since the packet header provides an aggregated (statistical)

view of traffic flow, the source and destination are depicted best.

Packet-level traffic analysis necessitates more processing power and

storage space. Data packets sent by Google Chrome cast (the device

under study) throughout the course of a 24-h period are tied to

traffic flow patterns.

3.1.3 Calculation of index feature
As a result of investigations into smart grid communication

activities, a phenomenon of predictability in behavior has

emerged. The index (Cu) approaches zero, the more

predictable it becomes and the less it deviates from the

TABLE 1 Comparative of analysis of previous studies.

References Technique Dataset Accuracy
(%)

Outcome

Sakhnini et al. (Sakhnini et al., 2019) Supervised machine learning model and Heuristic
feature selection

Smart grid cyber-attack
dataset

89.5 Detection of cyber
attacks

Wilson et al. (Wilson et al., 2018) Deep learning models Power Transmission
Systems

91.8 Detection of cyber
attacks

L et al. (Mohammadi Rouzbahani et al.,
2022)

Multi-Layer Defense Algorithm Intrusion detection dataset 85.6 Detection of cyber
attacks

Sengan et al. (Sengan et al., 2021) Deep learning Smart grid cyber-attack
dataset

87.01 Detection of cyber
attacks
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amount of data delivered and received. An index feature can be

calculated:

Cu � Cvaru

���������������
1

N−1∑N
i�1(xi − xip)2

√
1
N∑N

i�1xi

(1)

3.1.4 Data pre-processing
The process of translating raw data into usable information is

a crucial part of data mining. In many cases, the information we

have is inaccurate, inadequate, or just missing. We must fill this

void. Based on the Cu index value, the coefficients of variation

FIGURE 1
Hybrid classifier (SVM-GBC classification) model.

FIGURE 2
Hybrid classifier (SVM-ABC classification) model.
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classification method categorized the device types. The data is

assumed to have a normal distribution. To make it easier to

compare data, the distribution of the obtained values (Cu index)

was changed. It was possible to discover the best data

transformation function for this study by using the Ladder of

Powers approach.

3.1.5 Data normalization
For machine learning, normalization is a standard practice.

First, normalize your data to a standard scale without distorting

the range of values or sacrificing any data in the process.

3.1.6 Data balancing
Imbalanced classifications stand in the way of precise

predictive modelling. The same number of examples are used

for each class in machine learning algorithms. The models are

inaccurate when it comes to the experiences of people of color.

Because the minority group has more influence and is more

susceptible to classification errors than the majority, this

situation is problematic. As a result, we were able to eliminate

the sample’s outliers and recalculate the data. New resampling

methods have emerged because of this investigation. To save

information, we can, for example, sample most class data using

sampling and extract records from each cluster. There is no need

to replicate minority class data perfectly while sampling synthetic

samples; we can make tiny adjustments during the sampling

procedure to get more diverse samples. A well-balanced and

homogeneous dataset is necessary for data mining research. A

dataset may contain “outliers,” or data that deviates from the

norm. Among a dataset, outliers are those values that deviate

significantly from the rest. To deal with an unbalanced dataset,

SMOTE was used to normalize the method.

Human mistake, malfunctioning technology, or incorrect

data interpretation can all produce outliers. The relevant data

must be excluded before any analysis or statistical testing may

be performed. Inaccurate or partial results can skew the results

of any outliner’s analysis and subsequent processing. By using

the IQR approach, outliers are removed from data boxplots

that fall beyond the method’s predefined range. The gap is

caused by the difference in IQRs between the upper and lower

quartiles. IQR, Z-Scores, and Data Smoothing are some of the

statistical approaches used to identify outliers in the data

collection. The IQR is calculated by taking the 25th and 75th

percentiles from a data set and summing them together.

IQR � Q3 −Q1 (2)

3.1.7 Hybrid classification algorithms
Limited in the number of ways it can be used to categories

things. Using a single procedure, the categorization result is

based on solving a variety of problems. Data Injection can be

categorized based on how much data is sent between the

sender and receiver. The explanations for each model are

listed below.

3.1.7.1 SVM-XGB

Both the XGBoost Classifier model and the Support Vector

Classifier model were improved by combining them. The

FIGURE 3
Classification Model.Hybrid classifier (SVM-CBC classification) model.
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mathematical model of the SVM-XGB Classification model is as

follows:

y � ∑n
k�1

f(x) (3)

The support vectors will then be calculated to characterize

FDI assaults as follows in the dataset:

w.y + b � 1 . . . (vector 1) (4)
w.y + b � −1 . . . (vector 2) (5)

Here w is the hyper plane, y is the output of XGB, and b is the

marginal distance. ∑n
k�1f(x) XGB Classifier’s boosting function

is demonstrated here. When XGB receives y’s output, it passes it

on to the support vector classifier’s probability function for

classification. An example of an SVM-XGB Classification

Model hybrid is shown in Figure 1.

The Gradient Boosting Classifier model and the Support Vector

Classifier model were combined to produce this new model to

increase their accuracy. SVM-GBC classification model’s

mathematical formula is used as follows to classify objects:

FIGURE 4
Hybrid classifier (SVM-LGBM classification) model.

FIGURE 5
Hybrid classifier (SVM-HGBC classification) model.
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y � yi � yi + αp
z∑(yi − yp

i )2
zyi

p

(6)

Then we will calculate the support vectors to classify FDI

attacks in dataset as:

w.y + b � 1 . . . (vector 1) (7)
w.y + b � −1 . . . (vector 2) (8)

Support Vector Classifier probability function P, and GBC

classification model output yi are shown here.
z∑ (yi−yp

i )2
zyi

p

Residual in trees and GBC’s learning rate are seen in this

graph. A Support Vector Classifier probability function will be

used for classification if GBC receives the output of y. The SVM-

GBC Classification Model hybrid is shown in Figure 1:

The Support Vector Classifier model was combined with the

AdaBoost Classifier model in order to increase the accuracy of

both models. The SVM-ABC Classification model’s

mathematical model is as follows:

y � significance∑T

t�1αtht(x) . . . (a) (9)

In order to classify FDI attacks in a dataset, we shall first

calculate support vectors:

w.y + b � 1 . . . (vector 1) (10)
w.y + b � −1 . . . (vector 2) (11)

The support vector classifier’s probability function is P, and the

ABC classificationmodel’s output is y.∑T
t�1αtht(x) It takes (x) hours

to go to (t) in trees, it shows the sum of residuals. A Support Vector

Classifier probability function is used to classify ABC’s output of y.

Figure 2 shows the SVM-ABC Classification Model hybrid model:

The Support Vector Classifier and CatBoost Classifier models

were combined to improve the accuracy of bothmodels, resulting

in this model. SVM-CBC uses the following mathematical model

to categories data:

The model will be initialized in the first stage,

Fo(x) � argminγ∑n
i�1
L(y, γ) (12)

TABLE 2 Features description.

Feature Value Description Variable type

Meter ID Integer Number User and Consumer IDs Input Variable

EMS Integer Number Monitoring System Protocol Input Variable

MMS Integer Number Manufacturing Message Protocol Input Variable

Data Flow Packets Integer Number Number Packets during a flow of message Input Variable

Source Packets Integer Number Packets from source Input Variable

Destination packets Integer Number Packets towards destination Input Variable

IEDs Integer Number Intelligent electronic devices ID numbers Input Variable

Attack 0 or 1 0 No attack occurs Output variable

1 FDI occurs

FIGURE 6
Classification model performance.the confusion matrix of
SVM-XGB

FIGURE 7
Classification Model.SVM-GBC classification model
performance.
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For m = 1 to M, we will compute the residuals.

γim � −[zL[y, F(xi)]
zFxi

]
F(x)�FM−1(x)

(13)

In order to compute the pseudo residuals, we will first fit the

base leaner:

γim � argminγ∑n
xi

L(y, FM−1(x)) (14)

Updated Model will be:

y � Fm(x) � FM−1(x) + α∑n
i�1
γim (15)

Classifying FDI attacks in a dataset will therefore require us

to generate support vectors:

w.y + b � 1 . . . (vector 1) (16)
w.y + b � −1 . . . (vector 2) (17)

The Support Vector Classifier’s probability function is P,

and the CBC classification model’s output is y. In other words,

[zL[y,F(xi)]zFxi
]F(x)�FM−1(x) the Mathematical expression: In the

form of a tree, this function displays the total residual

value. A Support Vector Classifier (SVC) probability

function will be used to classify the CBC output of y when

it is interpreted as a function of y and

argminγ∑n
xiL(y, FM−1(x)). Figure 3 depicts the SVM-CBC

Classification Model hybrid model:

The Support Vector Classifier model was combined with the

Light-Gradient Boosting Model Classifier to improve the

accuracy of both models. The following is the mathematical

model for the SVM-LGBM Classification Model:

FIGURE 8
SVM-ABC classification model performance.

FIGURE 9
Confusion matrix of SVM-ABC Classification Model.

FIGURE 10
Classification Model.SVM-CBC

FIGURE 11
The confusion matrix of SVM-CBC
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y � α ∑T
tiϵTree

ηipleaf(ti) (18)

In order to classify FDI attacks in a dataset, we shall first

calculate support vectors:

w.y + b � 1 . . . (vector 1) (19)
w.y + b � −1 . . . (vector 2) (20)

Support Vector Classifier probability function P, and

LGBM classification model’s output y are shown below.∑T
tiϵTreeη

ipleaf(ti) Learning rate is shown as a residual

sum in the leaves. Support Vector Classifier is used to

classify the output of LGBM when it receives the output of

y. Figure 4 depicts the SVM-LGBM Classification Model

hybrid:

SVG and HGBC have been merged to improve the accuracy

of both models using support vector machines. Model of the

SVM-HGBC Classification:

y � sum of residuals

sum of each(1 − p)for each sample in the leaf
(21)

In order to classify FDI attacks in a dataset, we shall first

calculate support vectors:

w.y + b � 1 . . . (vector 1) (22)
w.y + b � −1 . . . (vector 2) (23)

Support Vector Classifier probability function P and

HGBC classification model’s output y are shown in this

equation. Every sample in the leaf is summed up to the

sum of the residuals sum of residuals
sum of each(1−p)for each sample in the leaf.

Calculates the total amount of waste in the form of a tree

FIGURE 12
SVM-LGB classification model performance.

FIGURE 13
Hybrid classifier (SVM-XGB classification) model.

FIGURE 14
SVM-HGBC Classification Model performance.

FIGURE 15
The confusion matrix of SVM-HGBC.
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diagram. When HGBC receives the value of y, it passes it on to

the support vector classifier’s probability function for

classification. As depicted in Figure 5 is a hybrid model of

the SVM-HGBC Classification Model:

3.1.8 Performance Parameters
The system’s accuracy has been evaluated using the F1 Score

and accuracy measurements. The classification and

misclassification clauses have been classed and misclassified,

according to the confusion matrix. Table 2 displays the

metrics that were used in this study.

4 Results

4.1 Hybrid model SVM-XGB

The XGBoost Classifier has been used to integrate these two

models in order to improve their accuracy even further. Data

from y will be fed into XGB’s logistic regression probability

function. The hybrid classifier improved accuracy from 89.5% to

95.5 percent in 69.5 percent of the time, according to an

independent analysis using Logistic Regression. Model

Performance of SVM-XGB Classification Models is shown in

Figure 6.

For the SVM-XGB Classification Model, the confusion

matrix is depicted in Figure 7 with a total of 19 True

Negative and 2 True Positive values.

4.2 Hybrid model SVM-GBC

Using a combination of logistic regression and gradient

boosting classifier approaches, this model was developed to

improve both models’ accuracy even further. After receiving

y’s output from the GBC. As can be seen in the graph below,

TABLE 3 Description of metrics.

Metric Description

Accuracy Accuracy � TP
(TP+TN)*100

True-Positive (TP): the feature result is 1 and sample is present in this data file

True-Negative (TN): the feature result is 0 and sample is absent in data file

Confusion Matrix

TABLE 4 Comparative Analysis for the detection of FDI.

Model Accuracy (%)

SVM-XGB 95.50

SVM-GBC 90.80

SVM-ABC 89.33

SVM-CBC 99.80

SVM-LGBM 91.37

Logi HGBC 91.37

FIGURE 16
False data injection protection system.
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the SVM-GBC Classification Model hybrid model performed

quite well, with an accuracy rate of 90.8%.

On the confusion matrix shown in Figure 8, there are 18 True

Negative values, two False Positive values, nine False Negative

values and seven True Positive values.

4.3 Hybrid model SVM-ABC

The logistic regression model’s accuracy was improved by

combining AdaBoost Classifier with it. It’s subjected to a logistic

regression to see how likely it is. Figure 9 shows the hybrid SVM-

ABC Classification Model Performance model with an accuracy

rate of 89.33 percent.

As shown in Figure 10, there are 19 True Negative values in

the SVM-ABC Classification Model (SVM-ABC Classification

Model) and 8 True Positive values.

4.4 Hybrid model SVM- CBC

With the use of the CatBoost Classifier and a logistic

regression model, both models were improved in accuracy. If

it is received from the CBC in the form of L (y, F (M-1) (x)), it will

be supplied to the logistic regression’s probability function for

classification. As of this writing, SVM-CBC was the most

accurate, with a 99.80% success rate. The SVM-CBC

Classification Model is shown in Figure 11 as a hybrid model.

It is shown in Figure 12 that the SVM-CBC Classification

Model has a confusion matrix with a total of 19 True Negative

and 2 True Positive values.

4.5 Hybrid model SVM- LGB

It’s possible to improve on both models by mixing them. The

probability function of logistic regression will then be used by the

LGBM to classify the attacks. As shown in Figure 13, the hybrid

SVM-LGBM Classification Model is 91.37% accurate:

False Positive, False Negative, and True Positive values are

shown in the confusion matrix of the SVM-LGB Classification

Model in Figure 14.

4.6 Hybrid model SVM- HBC

With the help of the Histogram Gradient Boosting

Classifier and the logistic regression model, it was created.

The probability function of logistic regression will be analyzed

as soon as it is received by HGBC to see if a class has been

reclassified. Figure 15 shows the accuracy of the hybrid model

at 91.37 percent:

Figure 20 depicts the SVM-HGBC Classification Model’s

confusion matrix, which includes 19 True Negative, 2 False

Positive, 9 False Negative, and 3 True Positive values.

4.7 Comparative analysis

The accuracy percentages for several models are shown in the

table below. SVM-XGB had a 95.5 percent accuracy rating,

whereas SVM-GBC had a 90.8 percent accuracy rating. SVM-

ABC, on the other hand, achieved an accuracy rate of

89.33 percent. SVM-CBC has the highest Accuracy of 99.80%.

With a combined accuracy of 91.37 percent, the SVM-LGBM and

the SVM-HGBC were used to test this hypothesis. When

compared to other Logitboosted Algorithms used in previous

FIGURE 17
Proposed Workflow.
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studies on the given dataset, our proposed SVM-CBC has the

highest accuracy. Table 3 shows a comparison of the proposed

models: (Table 4).

5 Conclusion

The most common sort of cyber-attack against smart grids

is False Data Injection (FDI). Because of the limitations of

current bad data detection methods, it is currently impossible

to detect covert FDI attacks. FDI (foreign direct investment)

dangers can be detected using a variety of methods, including

machine learning. An SVM-boosting algorithm-based study

analyses six distinct supervised learning hybrid strategies that

can be employed with six different boosted and feature

selection (FS) approaches. Using a smart grid dataset,

different solutions are evaluated. For each detection

FIGURE 18
The confusion matrix of SVM-LBC Classification Model.

FIGURE 19
Hybrid Model SVM-XGB. SVM-XGB Classification Model
Performance is shown in Figure 10.

FIGURE 20
The confusion matrix of SVM-GBC Classification Model.
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approach, the classification accuracy is employed as a primary

measure of performance. Using supervised learning and

hybrid methodologies, it was discovered that the

classification algorithms for FDI attack detection improved.

The real-time smart grid datasets that can be used to execute

these strategies make them interesting for future work in

optimization and feature selection (Figure 16, Figure 17,

Figure 18, Figure 19, Figure 20).
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