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Various studies have been conducted on the topic of predicting the thermal

conductivity of nanofluids. Here, the thermal conductivity of nanofluids is

determined using artificial neural networks since this approach is rapid and

accurate, as well as cost-effective. To forecast the thermal conductivity of

magnetohydrodynamic Williamson nanofluids flow through a vertical sheet, a

feed-forward neural network with various numbers of neurons has been

evaluated, and the best network based on the performance is selected. The

fluid model incorporates the effects of Joule heating, heat generation

absorption, thermal radiation, and a chemical reaction (MHD-WNF-HGA). A

combination of heat radiation and reactive species improves the energy and

solute profiles. The magnetic Reynolds number is assumed to be so small;

therefore, the generated magnetic field has no effect. A postulate of similarity

variables is used to convert the physical model in the form of nonlinear partial

differential equations to an ordinary differential equation system. A supervised

Levenberg–Marquardt backpropagation algorithm possesses a multilayer

perceptron that is used for training the network, which is one of the top

algorithms in machine learning. The bvp4c numerical technique is adopted

to build the datasets for the construction of continuous neural network

mapping. Flow, energy, and concentration profiles of the fluidic flow are

constructed by adjusting several physical quantities such as the Williamson

parameter, thermal radiation parameter, magnetic parameter, Eckert number,

Darcy number, Brownian motion, and thermophoresis parameter. Analytical

techniques such as error histogram graphs and regression-based statistical

graphs are used to examine the accuracy of a suggested method. It has been

found that the Levenberg–Marquardt backpropagation neural network
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mappings’ derivation, convergence, authentication, and consistency have been

proven. Furthermore, thermal radiation assists the energy distribution to

increase smoothly. Fluid velocity drops with the Williamson parameter,

whereas thermophoresis impact enhances the strength of the nanofluid

density.

KEYWORDS

nanofluid, Williamson fluid, stretched surface, Levenberg–Marquardt technique,
backpropagation neural networks, artificial intelligence

1 Introduction

Energy is a crucial physical property that must be transferred

for any system to perform work. Work and heat may be used for

energy transmission (Incropera et al., 1996). It is feasible for heat

to transfer from one system to another when their temperatures

vary (Cengel and Boles, 2015). Heat transfer is a subfield of

physics concerned with the transmission of thermal (heat)

energy. Heat transfer applications are encountered on a daily

basis in the form of the human body’s constant heat output and

its usage of clothing to adjust its internal temperature in reaction

to external conditions (Cengel and Heat, 2003). In addition, heat

transmission is used to regulate the temperature in our buildings

and is necessary for cooking and drying. It is also used to control

the temperature of car radiators and electrical equipment (Zhao

et al., 2016). Heat transfer is used by solar thermal collectors

(González et al., 2021) and thermal control components

(Okonkwo et al., 2021) to convert solar energy into heat and

power. Several of these components must quickly distribute heat

in order for the system to work at its maximum effectiveness and

efficiency (Okonkwo et al., 2018). Low gate size necessitates

enhanced heat control. Generally, the smaller the gadget must

be, the higher is the demand for efficient cooling technologies.

Therefore, the improvement of heat transfer is a key priority in

the area of thermal engineering. Different strategies are arising

aim to enhance the heat transfer coefficient among working

fluids and their contact surfaces (Das et al., 2006; Meseguer et al.,

2012). The research development of heat transfer fluids has

resulted from the enhancement of the thermal characteristics

of these fluids by the inclusion of nanoscale particles. The

dispersion of these solid particles in the host fluid improves

the fluid’s energy transmission, resulting in enhanced thermal

conductivity and heat transfer qualities. First of all, microscaled

particles have been suspended in a fluid for more than a century

by Maxwell (Choi et al., 1995). Research into fluid dispersion has

been hampered by erosion and clogging caused by microparticles

that settle quickly in the liquid. Colloidal dispersion in fids may

now be studied in more detail due to the advent of nanoparticles.

Later, the term “nanofluid” was coined in 1995 by Choi and

Eastman (Maxwell, 1881). By incorporating a modest volumetric

quantity of ultrafine nanomaterials into fluids, researchers have

come up with many ideas for enhancing thermal efficiency and

convective heat transfer. The thermal characteristics of fluids are

improved when nanoparticles are scattered in them.

Additionally, there are many features involved in the stability

of nanofluids such as, Brownian motion, host fluid layer,

particle’s nanolayers, and lower pumping power relative to

pure liquids. The effect of different nanoparticles made of

conducting materials on the improvement of thermal transfer

is investigated in the research studies by Sheikholeslami et al.

(2019a); Sheikholeslami et al. (2019b); Goodarzi et al. (2019);

Sajid and Ali (2019); Alhowaity et al. (2022a); Alsallami et al.

(2022); Elattar et al. (2022). Aluminum oxide nanoparticles in

base fluid nanofluids past a sensor surface is studied by Mahdi

et al. (2019). Three-dimensional magnetohydrodynamic

squeezing flow of aluminum nanoparticle base in water type

nanofluid is shown in the study by Khan et al. (2020). The

rheological model through hybrid nanofluid flow is proposed in

the study by Al-Mubaddel et al. (2022). Freezing temperature is

studied in aluminum oxide nanofluid magnetic flow with a

radiative effect in the study by AdnanKhan and Ahmed

(2022). Nanofluids flow with a variety of forces and

characteristics, which have been studied for the rate of heat

transfer are in the research studies by Khan et al. (2019a); Shah

et al. (2019); Ahmed et al. (2020); Khan et al. (2021a); Ashraf et al.

(2022); Alhowaity et al. (2022b).

Non-Newtonian fluid models have been the subject of many

experiments and theoretical studies cause of the wide variety of

biological and industrial processes where they are applicable.

Many industrial applications, such as emulsification, lubrication,

nuclear fuel slurries, biofluids in cells and polymerization, and

therapeutic fluid is in consideration of non-Newtonian fluids

rather than Newtonian fluid theory. Many rheological models

have been developed based on non-Newtonian fluids’ varied

rheological characteristics such as power law model, Jeffery fluid

model, Carreau model, Ellis–Sisko–Williamson model, cross-

model, and other fluid models are the existing models.

Among all, the Williamson fluid model is a basic model that

may replicate the viscoelastic shear-thinning features of non-

Newtonian fluids. Williamson (1929) established this idea in

1929, and he provided the experimental data. It is expected that

the functional viscosity in the Williamson fluid model would

decrease endlessly as the shear rate increases, which is nothing

more than an infinite viscosity at rest (zero fluid motion) and

zero-valued viscosity as the shear rate approaches infinity. In

terms of fluid properties, Williamson nanofluid may be classified
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as visco-inelastic. When it came to investigating the issue of

boundary layer flow over a flat surface, Blasius (1950), Sakiadis

(1961), and others first looked into the theoretical aspects of

approximation and precise methods. Few recent Williamson

fluid research studies have been published in the study by

Acharya et al. (2019); Khan et al. (2019b); Hamid and Khan

(2019); Ibrahim and Gamachu (2019); Rasool et al. (2019);

Zaman and Gul (2019); Pandya et al. (2020); Subbarayudu

et al. (2020). Thermal radiation is the process through which

the heat of a material induces the emission of electromagnetic

waves (variation of its internal energy). It is one of the three ways

different kinds of organisms may trade their own energy storage.

The kind of radiation emitted might vary from ultraviolet to far-

field infrared depending on the temperature of the substance.

Every component of the body emits and absorbs thermal

radiation continuously, and the absorbed radiation may have

originated from a vast distance away. Each of these components

transmits and receives heat in a manner that is directly influenced

by their molecular structure. Connected to a body’s capability to

transfer and store heat is its ability to radiate heat from its surface

(specific temperatures). The two most important characteristics

of thermal energy storage systems are heat transport

performance and energy storage density. Nanotechnology may

be effective for speeding both the melting and solidification of

phase transition materials. Copper/water nanofluid is taken in a

flat tube and numerically investigated for thermal transportation

(She and Fan, 2018). Flow and energy transportation of metal

oxide host water nanofluid is presented in the study by Ahmed

et al. (2021) which is used in the PV/T system. For cooling

purpose, the fluid is analyzed in the review of heat transfer

science (Yang and Liu, 2018). MWCNT/water and Fe3O4/water-

type hybrid nanofluids are studied to analyze the convective heat

transfer and pumping power through perpendicular rib

tabulators (Irandoost Shahrestani et al., 2021). Three-

dimensional magnetic hybrid nanofluid along with chemical

reaction and thermal radiation is passed an inclined rotating

sheet is presented in the study by Umar et al. (2020). Numerical

approach Lobatto IIIA is used to analyze heat transport of

nanofluid in three-dimensional magnetic flow in the study by

Ayub et al. (2021a). Similarly, the energy transport of magnetic

Carreau nanofluid has been studied by Ayub et al. (2022) using

the infinite rate of share viscosity condition. The nanofluid

magnetic dipole flow is studied by Shah et al. (2022) under

the effect of binary reaction and heat transportation through a

cylindrical channel. The cubic autocatalytic chemical reaction

has been studied for the unsteady cross nanofluid through a

melting sheet in the study by Shah et al. (2021a). All the literature

focused on enhancing thermal transportation using nanofluid in

different circumstances and forces which is indeed the great

demand of the advanced industry. Nanofluid with thermal

radiation specification has been studied by Ayub et al.

(2021b), Kumar et al. (2021), Raja et al. (2022), Khan et al.

(2018), Raja et al. (2021), and Khan et al. (2021b). Artificial

neural networks (ANNs) are computer networks that replicate

the central nervous system by stimulating nerve cells or

neurons. These have a self-organizing characteristic that aids

them in solving a variety of issues, making them very

convenient to use in computing and algorithmic kinds.

Complex challenges, particularly nonanalytical, nonlinear,

and nonstationary, may be solved with ANNs because of

their ability to ease high-level programming in their crude

mimicry of a biological network, which can be used to

handle a wide range of problems. The experimental study is

carried out using artificial neural networks strategies, to

simulate energy and exergy of the evacuated solar-tubes is

performed in the study by Sadeghi et al. (2020), thermal

conductivity model nanofluid-based study is carried out in

the study by Pare and Ghosh (2021), non-Newtonian hybrid

nanofluid is taken to predict the dynamic viscosity (Toghraie

et al., 2020), and statistical tools applied for thermos-physical

properties of nanofluid (Esfe et al., 2022). The third-grade

nanofluidic model along with convective conditions has been

taken through a stretchable surface which is further solved by

neural technique in the study by Shoaib et al. (2021).

Furthermore, ANNs are important to forecast the findings of

theoretical and numerical approximation studies of nanofluidic

models (Sheikholeslami et al., 2019c; Sabir et al., 2022; Zuhra

et al., 2022). Levenberg–Marquardt backpropagation neural

network has been applied for the computational purpose of

the nanofluid model (Vakili et al., 2016; Shah et al., 2021b;

Shoaib et al., 2021; Umar et al., 2021; Botmart et al., 2022).

There have been several studies on the thermophysical

characteristics of nanofluids, as mentioned earlier. ANNs, on

the other hand, have been widely used in nanofluid-based

thermal systems because of their ability to solve complicated

problems at a lower cost and time. This research focuses on the

ANN technique named Levenberg–Marquardt algorithm-based

backpropagation to predict the physical parameters of

Williamson nanofluids flow under the effects of Joule heating

and thermal radiation.

Procedural study is highlighted as follows,

➢Williamson nanofluid is occupied in two-dimensional,

magnetic flow stream that passes past a stretching

surface in a porous medium.

➢Thermal radiation force, mass diffusion, energy transfer,

heat generation/absorption, and Joule heat are imposed in a

fluid.

➢Self-similar transformation is adopted to convert the

physical model into a nonlinear differential system that

has physical nondimensional variations to be computed.

➢The Bvp4c technique is used to find the numerical solutions

in the form of a dataset. Which is further furnished through

the neural network process for analysis.

➢In the NN process, the fitness functions are taken, that is,

multiple responses are converted to a single response.
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➢Designed backpropagation based neural networks by

providing training and testing datasets.

Levenberg–Marquardt algorithm is adapted to speed up

the training.

➢The significance of the LMB-NN technique is illustrated

through statistical tools such as mean square error, error

histograms, correlation, and regression fitting graphs.

➢The analysis of variations that are Williamson parameter,

Brownian motion, Prandtl number, thermophoresis, heat

generation, Darcy number, Eckert number, and chemical

reaction parameter velocity and temperature field are

illustrated in the graphic structure.

In the remaining, a physical description of the flow model is

presented in Section 2. Section 3 discusses the

Levenberg–Marquardt strategy and step-by-step procedure in

detail. Section 4 presents the findings of the proposed model via

graphs and tables and discussion on each one. At last, a brief

summary of the model via the ANN technique is presented.

2 Flow model and its mathematical
construction

Let us consider a mathematical model for incompressible

two-dimensional Williamson nanofluid past a stretched

surface. Figure 1 depicts the design of the problem with

Cartesian coordinates (x, y) followed by velocity

components (u, v) with fluid flow arrangement. To observe

mass diffusion and heat transfer, the interface of the applied

magnetization field with dynamic viscosity and a porous

medium are used. The transfer of heat is augmented by

supposing the thermophysical characteristics of heat

generation/absorption and Joule heating with a velocity of

~Uw(x) � ~Bx with ~B is the extending parameter. The basic

equations of the law of conservation of mass, momentum,

heat, and nanoparticles concentration associated with the

abovementioned stated assumptions are as follows (Bouslimi

et al., 2021).

The governing equations of the flow model are as follows.

2.1 Continuity equation

The law of conservation of mass for continuity equation in

vectorial form can be written as follows:

~∇ . �q � 0, (1)
where �q is denoted as the flow velocity vector, and ~∇ is known as

the differential operator.

2.2 Momentum equation

According to Navier–Stokes’ equation, for the equilibrium of

linear-momentum,

ρf[ z q̂→z~t + ( q̂→. ~∇ ) q̂→] + μ

K
q̂
→ � Fe

�→+ ~∇ .~S. (2)

2.3 Energy equation

The constitutive equation provides the following energy

efficiency for heat conduction without the impact of viscous

dissipation.

(ρcp)f⎡⎢⎢⎢⎣z �T

z~t
+ ( �q. ~∇) �T⎤⎥⎥⎥⎦ + ~∇ qr

→ � (ρcp)p[ ~D ~T

~T∞
( ~∇ ~T. ~∇ ~T) + ~DB( ~∇ ~C. ~∇ ~T)] + ~∇ .(k ~∇ ~T) +Q(~T − ~T∞) + Jh .

�������������������������������������������������������������������������������������������→
(3)

2.4 Conservation equation of the
nanoparticle concentration

The nanoparticle concentration volume fraction equation in

the occurrence of a homogeneous chemical reaction becomes

z �C

z~t
+ ( �q. ~∇) �C + Rp(~C − ~C∞) � ~D ~T

~T∞
~∇
2 ~T + ~DB

~∇
2 ~C. (4)

The Cauchy stress tensor (~S) for the Williamson nanofluid is

defined as (Alhowaity et al., 2022b)

~S � �τ − ~P�I, (5)

�τ � ⎛⎝μ0 − μ∞
1 − Γγ•

+ μ∞⎞⎠ �A1, (6)

FIGURE 1
Geometry of the problem.
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where (μ0, μ∞) → limiting viscosity at zero and at an infinite

shear rate, respectively, �τ → extra stress tensor, �I → unit tensor,

(Γ> 0) → time constant, �A1 → first Rivlin–Erickson tensor, ~P →
pressure, and γ

• → is defined as:

π � trace( �A1)2, γ• � ��
π

2

√
. (7)

Here, it is considered the case for Γγ• < 1 and μ∞ � 0; thus, Eq.

6 can be transformed into the following form:

�τ � ⎛⎝ μ0

1 − Γγ•
⎞⎠ �A1 � μ0(1 + Γγ•) �A1. (8)

According to Eq. 8, the binomial expressionmay be used. The

two-dimensional boundary layer equations for the flow may be

stated as follows:

z~u

zx
+ z~v

zy
� 0, (9)

z~u

zx
~u + z~u

zy
~v + ]

K
~u + σ

�
B
�2

0

ρ
� ~u � ]

z2~u

zy2
+ �

2
√

]Γ z
2~u

zy2

z~u

zy
, (10)

z~T

zx
~u + z~T

zy
~v + 1(~ρ~cp)f z �qr

zy
� α

z2 ~T

zy2 +
(~ρcp)p(~ρcp)f ⎡⎣ ~D ~T

~T∞
(z~T
zy

)2

+ ~DB(z~C
zy

z~T

zy
)⎤⎦ + Q(~ρ~cp)f (~T − ~T∞) + ~σ ~B

2

0(~t)(~ρ~cp)f ~u2, (11)

z~C

zx
~u + z~C

zy
~v + Rp(~C − ~C∞) � ~D ~T

~T∞

z2 ~T

zy2
+ ~DB

z2 ~C

zy2
. (12)

Also, the following nomenclature is used: (~u, ~v) → velocity

components, α → thermal diffusivity, ~ρ → density of the fluid,

] → kinematic viscosity of the fluid, ~B0 → uniform magnetic

field, (~T, ~T∞) → fluid and ambient fluid temperature,

respectively, ~DB → coefficient of Brownian diffusion, ~D ~T →
thermophoretic diffusivity, ~σ → electrical-conductivity, ~cp →
specific thermal at fixed pressure, Rp → reaction rate of

constructive/destructive, (~C) → concentration nanoparticles,

and , ~C∞ is ambient nanoparticle concentration.

Nonlinear thermal radiation and Joule heating are connected in

the energy equation. In the energy equation, the viscous dissipation

is expected to be very little that it may be ignored. Homogeneous

chemical processes have an effect on concentration equations.

The corresponding boundary conditions for the present

fluidic problem are given as follows:

Aty
� � 0: ~u � ~Uw(x), ~v � 0, ~T � ~Tw, ~DB

z~C

zy
+ ~D ~T

~T∞

z~T

zy
,} (13)

Asy
� → ∞ : ~u → 0, ~v → 0, ~T → ~T∞, ~C → ~C∞,} (14)

where ~Uw(x) � ~Bx → stretching surface velocity, (~B> 0) →
stretching rate, and ~qr → radiation heat flux and is defined as

follows:

~qr � −z~T
4

zy
�

4~σp

3kp
� −16~σ

p

3kp
~T
3z~T

zy
, (15)

∴
1(~ρ~cp)f z

zy
( �qr) � 1(~ρ~cp)f z

zy
( − z~T

4

zy

4~σp

3kp
)

� − 16~σp

3kp(~ρ~cp)f z

zy
(~T

3z~T

zy
). (16)

By substituting Eqs 15 and 16 in Eq. 11, we obtain

z~T

zx
~u + z~T

zy
~v � α

z2 ~T

zy2 +
(~ρcp)p(~ρcp)f ⎡⎣ ~D ~T

~T∞
(z~T
zy

)2

+ ~DB(z~C
zy

z~T

zy
)⎤⎦

+ 16~σp

3kp(~ρ~cp)f z

zy
(~T

3z~T

zy
) + Q(~ρ~cp)f (~T − ~T∞) + ~σ ~B

2

0(~t)(~ρ~cp)f ~u2. (17)

The nondimensional variables and similarity

transformations listed as follows are introduced as

η � y

������
~Uw(x)
]x

√
, ~u � ~Bxf′(η), ~v � −(~B])1 /2f(η),

θ(η) � ~T − ~T∞
~Tw

� − ~T∞
, ϕ(η) � ~C − ~C∞

~C∞
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ (18)

The equation of continuity is identically satisfied by using Eq.

18 and Eqs 10, 12, 17, coupled with Eqs 13, 14; assume the form

of ordinary differential equations shown as follows:

f″′(η)(1 + λf″(η)) + f″(η)f(η) − f′(η)(f′(η) −M −Da)
� 0,

(19)
θ″(η) + (M+Ecf(η) +Nbϕ(η) +Ntθ′(η))θ′(η)
+Pr(R((1 + (θw − 1)θ(η))3)θ′(η))′
+Ec+M(f(η))2 + Sθ(η) � 0, (20)

ϕ″(η) + (Nt/Nb)θ″(η) + Le(f(η)ϕ′(η) − γϕ(η)) � 0, (21)

where the boundary conditions (13–14) after transforming into

nondimensional form are given as

f(0) � 0, f′(0) � 1, Ntθ′(0) +Nbϕ′(0) � 0, θ(0) � 1, (22)
f′(∞ ) → 0, θ(∞ ) → 0, ϕ(∞ ) → 0. (23)

With the nondimensional parameters given as (M � ~σ ~B
2
0

(~ρ~cp)f) →
magnetic field parameter, (R � 16~σ

p ~T
3
∞

3kkp ) → nonlinear thermal

radiation parameter, (Pr � μ
α) → Prandtl number, (Nb �

(~ρcp)p ~DB
~C∞

(~ρcp)f] ) → Brownian motion parameter, (Nt �
(~ρcp)p ~DT( ~Tw−~T∞)

(~ρcp)f] ~T∞
) → thermophoresis parameter, (S � Q

(~ρ~cp)f
~B) →

heat generation (S> 0) or absorption parameter (S< 0), (Le �
]
~DB
) → Lewis number, (Da � ~μ

~ρ
~BK) → Darcy number, (Ec �

~U
2
w(x)

~cp( ~Tw− ~T∞)) → Eckert number, (λ � Γx
�����
2B3/]√

) → non-

Newtonian Williamson parameter, and (γ � Rp

~B
) → chemical

reaction parameter. Also, expressions for Ν~ux and Cfx are
shown as follows:
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Ν~ux � x �qw
~kf

(~Τw − ~Τ∞), (24)

Cfx � τw

~ρ ~U
2

w(x)
. (25)

The Sherwood number Shx, which represents a

nondimensional mass flow, is currently zero. Here, �qw
indicates heat flux, and τw denotes shear stress of the wall

along a stretching surface, respectively, and their mathematical

expressions are given as follows:

�qw⎛⎝ � −α(z~T
zy

)
y�0

+ ( �qr)
y

⎞⎠, (26)

~τw⎛⎝ � ~μf(1 + Γ
2
z~u

zy
)z~u
zyy

��0⎞⎠. (27)

The dimensionless formulation of Eqs 24 and 25 after

substituting Eqs 26 and 27 are as follows:

Νux���
Rex

√ � −(1 + Rθ3w)θ′(0), (28)

Cfx

���
Rex

√ � (1 + λ

2
f″(0))f″(0), (29)

where
���
Rex

√
is the Reynolds number relative to the stretching

velocity ~Uw(x).

3 Design methodology/neural
network modeling

Machine learning algorithms (MLAs) have been created to

handle real-world problems arising in various fields of science,

engineering, and mathematics. Depending on the training

approach, these MLAs can be divided into three categories.

• Reinforcement learning algorithms (RLAs)

• Unsupervised learning algorithms (ULAs)

• Supervised learning algorithms (SLAs)

The supervised learning algorithm (SLA) is quite similar to

how a human learns, by considering the fact that humans solve

exercise problems or datasets to obtain new knowledge. The

current study employs SLA in which adjustments of weights are

constructed based on the comparison and correlation with

some target output. For weight adjustment, a teaching signal

is fed into the neural networks (NNs) which are called a

training sample or training dataset. In SLA, the correct

output is what the model is alleged to provide for the given

input. Errors are backpropagated through the scheme, allowing

the scheme to adjust the weights that supervise the neural

networks (NNs).

The brief deliberation of the results for the propose

Levenberg–Marquardt learning algorithm for backpropagated

neural networks (LMLA-BPNNs) subjected to the Joule’s

heating effect of MHD Williamson nanofluid flow through a

porous medium in the rheology of nonlinear thermal radiation

and chemical reaction with variable heat generation/absorption

(MHD-WNF-HGA) has been evaluated in this part. The partial

differential equations (PDEs) prescribing MHD-WNF-HGA are

converted to set ordinary differential equations (ODEs) by

employing appropriate transformation. The set of differential

Eqs 19–21 contains a detailed mathematical strategy for

reproducing results employing a numerical scheme, and the

fluidic problem MHD-WNF-HGA is tackled down with the

help of “bvp4c” built-in function by MATLAB software for

nine variants where higher order nondimensional system of

ODEs are transformed to first-order ODEs.

f″′(η) � ((f′(η) −M −Da)f′(η) − f(η)f″(η))(1 + λf″(η)) , (30)

θ″(η) � −
Pr( 3R(θw − 1)(1 + (θw − 1)θ(η))2(θ′(η))2 + Sθ(η) +Nbθ′(η)ϕ(η)+

f(η)θ′(η) +Nt(θ″(η))2 +M+Ec(f(η))2 )
(1 + Pr+R(1 + (θw − 1)θ(η))3) ,

(31)

ϕ″(η) � −((Nt/Nb)θ″(η) + Le(f(η)ϕ′(η) − γϕ(η))), (32)
f(η) � Χ1,

f′(η) � Χ2,

f″(η) � Χ3 ,

Χ′3 � ((Χ2 −M −Da)Χ2 − Χ1Χ3)(1 + λf″Χ3) ,

θ(η) � Χ4,

θ′(η) � Χ5,

Χ′5 � −
Pr⎛⎝ 3R(θw − 1)(1 + (θw − 1)Χ4)2(Χ5)2 + SΧ4 +NbΧ4Χ6 + Χ1Χ5+

Nt(Χ5)2 +M+Ec(Χ1)2
⎞⎠

(1 + Pr+R(1 + (θw − 1)Χ4)3) ,

ϕ(η) � Χ6,

ϕ′(η) � Χ7,

Χ′7 � −((Nt/Nb)Χ′5 + Le(Χ1Χ7 − γΧ6)). (33)

With the boundary conditions,

Χa(1) � 0,Χa(2) � 1,Χa(4) � 1, NtΧa(5) +NbΧa(7) � 0,
Χb(2) � 0,Χb(4) � 0,Χb(6) � 0.

(34)
Taking both into account,

f″′(η) � Χ′3, θ″(η) � Χ′5, ϕ″(η) � Χ′7. (35)

The dataset formation in the form of a numerical solution by

employing “bvp4c” built-in function using MATLAB by

variation of magnetic field quantity (M), non-Newtonian

Williamson parameter (λ), nonlinear thermal radiation

parameter (R), Darcy number (Da), heat generation/

absorption parameter (S), ratio-temperature (θw),
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thermophoresis parameter (Nt), chemical reaction parameter

(γ), and Lewis number (Le). The transformed set of Eqs 19–21

which characterize the fluidic model representing MHD-WNF-

HGA, the suggested LMLA-BPNN solver is accomplished by

exerting neural network (NN) toolbox in MATLAB software by

operating “nftool”, a built-in function. LMLA-BPNN receives

knowledge via learning and stored that knowledge within

interneuron connections “strengths”, which is expressed in the

form of numerical values called “weights” which has a two-

layered structure (input layer, hidden layer, and output layer).

The output signal values for a newly testing input signal values

are computed using these weights.

The “input layer” presents a pattern to the network, which

then interconnects with one or more than one “hidden layer”

where the actual computing is carried out via a system of

weighted “connections”. The hidden layers then connect to

an “output layer,” where the result is displayed as output. The

artificial neural networks (ANNs) architecture is composed of

20 highly processing elements (neurons) interconnected in a

parallel way to solve the fluidic problem with a sigmoid

activation function. The sigmoid activation function is an

S-shaped nonlinearly smooth function having input values

ranging from +1 to 0, as illustrated in Figure 2. However,

Figure 3 shows the block architecture of the process flow.

The aim of determining the approximated solution of the

proposed LMLA-BPNN is the reference dataset for training,

validation, and testing purposes. The validity, reliability, and

convergence of the LMLA-BPNN based on a comprehensive

study of regression analysis, accuracy assessments, and

histogram analysis supervised for the MHD-WNF-HGA

fluidic model, which is sufficiently detailed graphically and

numerically in Table 1.

For flow, energy, and nanoparticle concentration distribution

of MHD-WNF-HGA, the reference dataset is built up that

comprises nine scenarios with cases of LMLA-BPNN. The

bvp4c built-in function technique is in collaboration with

LMLA-BPNN for η between 0 and 10 having equidistance of

0.01 s used in all processes of each case. The acquired datasets are

determined as reference outcomes in terms of (f′, θ, ϕ(η)).
Table 1 displays the numerical solutions of LMLA-BPNN for

variants of (f′, θ,ϕ(η)) for MHD-WNF-HGA in terms of MSE,

that is, training data (determine model parameters), validation

data (yardstick to overfitting), testing data (final scoring of the

model) and production (predict output), backpropagated

networks, time taken, and total iterations/epochs, for all the

scenarios connected with MHD-WNF-HGA.

4 Result interpretation

The designed LMLA-BPNN outcomes for the MHD-WNF-

HGA fluid model have been illustrated in Figures 4–13 for

various positions (scenarios) of I–IX. Figures 4A–13A is

interpreting convergence of training data, validation data,

and trying data progression through the epochs index for

finding the cases of M, Da, and λ for f′(η); the case of R,

S, and θw for θ(η); and finally, the cases of Nt, γ, and Le ϕ(η).
The magnificent validation performance attained at epochs

578, 239, 111, 141, 379, 401, 480, 110, and 218 with mean

squared error (MSE) almost 2.2485 × 10−10, 8.2744 × 10−9,
2.3708 × 10−9, 4.6156 × 10−9, 1.1175 × 10−9, 1.1155 × 10−8,
1.8823 × 10−9, 1.2153 × 10−9, and 3.2418 × 10−10 in times 12,

05, 02, 03, 06, 10, 09, 03 and 05 s, respectively. It is estimated

that the influence of all the obtained lines is smooth and leads

to the stability point, indicating that the performance is perfect

and ideal. According to the relative Table 1 and figures, the

performance approach will be better by lowering MSE values.

The smaller the MSE values, the more effective and precise the

performance of the given approach is likely to be. Figures

4B–13B reveals the authenticity that LMLA-BPNN is precise,

accurate, and efficiently convergent for solving the cases of M,

Da, and λ for f′(η); the case of R, S, and θw for θ(η); and
finally, the cases of Nt, γ, and Le ϕ(η). Figures 4B–13B

demonstrates the gradient and Mu values for all the

scenarios in the time duration for the training in

recognizing another vector. The process is updating

constantly during training. The training is terminated based

on the number of validations checks and on the magnitude of

the gradient. As the training approaches to a minimum level of

performance, gradient will become very small. The training

FIGURE. 2
Neural networks for MHD-WNF-HGA.
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will stop if the magnitude of the gradient become less than

1.0 × 10−5. Mu is the adaptive parameter of LMLA-BPNN,

which is directly influenced on error convergence. The

associated values of gradient are 9.9774 × 10−8,
1.9235 × 10−7, 7.0696 × 10−8, 9.875 × 10−8, 9.997 × 10−8,
9.9587 × 10−8, 9.9421 × 10−8, 4.7068 × 10−8, and

9.9582 × 10−8, while Mu is 1 × 10−9, 1 × 10−9, 1 × 10−9,
1 × 10−9, 1 × 10−9, 1 × 10−8, 1 × 10−8, 1 × 10−9, and 1 × 10−10

with epoch 578, 239, 111, 141, 379, 401, 480, 110, and 218,

respectively. Result interpretation shows that enhancing the

epoch can cause a reduction in Mu and gradient values.

Figures 4C–13C represent the fitness analysis graphs for the

proposed fluidic and the error occurred due to the variations of

targeted solutions and reference solutions. The graphical

representation indicates that the target result overlays the

reference outlines of the LMLA-BPNN solver for all four cases

with scenarios, indicating that the framework for the neural

network (NN) design validates the accuracy of the solution.

After neural network training, the error histogram analysis

plotted in Figures 4D–13D describes the distribution of error

calculated from the zero axes. The error analysis and error

values clarify the difference between the expected values and the

targeted values. For six different scenarios of the LMLA-BPNN

model, the average value of the error bin almost contrasts with

the zero-line error adjoining. The average error bin comparing

baseline line error which has surrounding errors for six

different circumstances of the MHD-WNF-HGA model is

−5.1 × 10−07, 6.39 × 10−06, 1.47 × 10−05, −1.1 × 10−05,

FIGURE 3
Flow architecture of the MHD-WNF-HGA model.

Frontiers in Energy Research frontiersin.org08

Ali et al. 10.3389/fenrg.2022.965603

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.965603


1.08 × 10−05, 8.17 × 10−06 1.85 × 10−05, 5.71 × 10−06, and

3.06 × 10−06. According to the error histogram analysis, the

maximum number of error values collapse over the zero-line,

indicating that LMLA-BPNN is an accurate algorithm for all the

cases of each scenario. The network is next validated by creating

a regression plot, which depicts the relationship between the

network, outputs, and the target values. The network outputs

and the target values would be exactly equal if the training is

perfect. The results are shown in Figures 5E–13E. The three

axes demonstrate the testing, validation, and training of the

data. The perfect result-output = targets is shown in each axis of

the dashed line. The solid line demonstrates the best fit linear

regression line between the output values and target values, and

the values of R indicate their relationship. During this

computation, the regression analysis R = 1 indicates an exact

linear relationship between the values of output and target

FIGURE 4
Pictorial illustration for the LMLA-BPNNbase on variants ofMvs f′(η) for MHD-WNF-HGA. (A)M-S-E demonstration, (B) transition state analysis,
(C) curve fitting, (D) error histogram, and (E) regression analysis.
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TABLE 1 LMLA-BPBB’s outcomes for scenario Ⅰ of MHD-WNF-HGA.

Scenario Training Validation Testing Performance Gradient Mu Epoch Time(s)

1 1 · 95310 × 10−10 2 · 24846 × 10−10 1 · 69148 × 10−10 1 · 95 × 10−10 9 · 98 × 10−8 1 · 00 × 10−9 578 12

2 5 · 54977 × 10−9 8 · 27443 × 10−9 7 · 44496 × 10−9 5 · 27 × 10−9 1 · 92 × 10−7 1 · 00 × 10−9 245 05

3 1 · 86162 × 10−9 2 · 37081 × 10−9 1 · 46306 × 10−9 1 · 86 × 10−9 7 · 07 × 10−8 1 · 00 × 10−9 111 02

4 4 · 53775 × 10−9 4 · 61556 × 10−9 4 · 45013 × 10−9 4 · 54 × 10−9 9 · 87 × 10−8 1 · 00 × 10−9 141 03

5 8 · 33608 × 10−10 1 · 11751 × 10−9 1 · 04017 × 10−9 8 · 34 × 10−10 1 · 00 × 10−7 1 · 00 × 10−9 379 06

6 9 · 43417 × 10−9 1 · 11549 × 10−8 1 · 10602 × 10−8 9 · 43 × 10−9 9 · 96 × 10−8 1 · 00 × 10−8 401 10

7 1 · 50954 × 10−9 1 · 88233 × 10−9 2 · 10328 × 10−9 1 · 51 × 10−9 9 · 94 × 10−8 1 · 00 × 10−8 480 09

8 1 · 20551 × 10−9 1 · 21534 × 10−9 2 · 02206 × 10−9 1 · 21 × 10−9 4 · 71 × 10−8 1 · 00 × 10−9 110 03

9 2 · 70529 × 10−10 3 · 24184 × 10−10 3 · 08943 × 10−10 2 · 71 × 10−10 9 · 96 × 10−8 1 · 00 × 10−10 218 05

FIGURE 5
Pictorial illustration for the LMLA-BPNN base on variants of Da vs f′(η) MHD-WNF-HGA. (A)M-S-E demonstration, (B) transition state analysis,
(C) curve fitting, (D) error histogram, and (E) regression-analysis.
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values, which explains the effectiveness of LMLA-BPNN

resolves the MHD-WNF-HGA fluidic model.

4.1 Velocity distributions

In the rheology of thermal radiation and chemical reaction

with varying heat generation/absorption, the present work

analyzes the Joule heating impact of MHD Williamson

nanofluid flow through a porous layer. This research

compares the effects of applied magnetic field, nonlinear

thermal radiation, and heat generation/absorption. The system

of partial differential equations (PDEs) is changed into a system

of ordinary differential equations (ODEs) using the appropriate

transformation to set an important nondimensional parameter

arising in the physical fluid model and solved numerically by

applying the “bvp4c” technique in MATLAB software to obtain

the dataset. The numerical computation is performed for various

nondimensional parameters, namely, non-Newtonian

Williamson parameter (λ), nonlinear thermal radiation

FIGURE 6
Pictorial illustration for the LMLA-BPNN base on variants of λ vs f′(η) for MHD-WNF-HGA. (A)M-S-E demonstration, (B) transition state analysis,
(C) curve fitting, (D) error histogram, and (E) regression analysis.
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parameter (R), Eckert number (Ec), ratio temperature (θw),
Darcy number (Da), magnetic field parameter (M), Brownian
motion parameter (Nb), heat generation/absorption parameter

(S), thermophoresis parameter (Nt), Lewis number (Le),
Prandtl number (Pr), and chemical reaction parameter (γ).
For computation purpose, we have assumed default values for

the physical quantities in all cases (unless, otherwise specified) as

follows: R � M � Da � Nt � Nb � 0.5, λ � 0.3, γ � Le � 1.0,

Pr � 5.0, and S � −0.1. The computational values of the

diverse thermophysical properties are considered for fluid

profiles, that is, momentum (f′(η)), temperature (θ(η)), and
concentration (ϕ(η)) for magnetohydrodynamic (MHD)

Williamson nanofluid flow over a stretching sheet, which is

displayed in Figures 13–15. For numerical calculations, we

used specific numerical values for parameters as shown in

Table 2. The numerical finding of all the physical quantities

with respect to flow distribution, energy distribution, and

concentration distribution of nanoparticles along with their

reference solution has been displayed with the help of

graphical figures to obtain a good insight into the physical

FIGURE 7
Pictorial illustration for the LMLA-BPNN base on variants of Rvs θ(η) for MHD-WNF-HGA. (A)M-S-E demonstration, (B) transition state analysis,
(C) curve fitting, (D) error histogram, and (E) regression analysis.
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problem. The relative analysis of velocity distribution f(η) with
reference solution is displayed for magnetic field quantity (M),
non-Newtonian Williamson quantity (λ), and Darcy number

(Da) in Figures 13A,C,E, respectively. A single surface’s flow rate

is completely controlled by the velocity distribution. Velocity

distribution plays a significant representation to analyze the

occurrence of the flow rate of the fluid. Conversely, when

external forces are applied to a flowing fluid, the behavior of

FIGURE 8
Pictorial illustration for the LMLA-BPNN base on variants of S vs θ(η) for MHD-WNF-HGA. (A)M-S-E demonstration, (B) transition state analysis,
(C) curve fitting, (D) error histogram, and (E) regression analysis.
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the fluid changes, and one of these external forces is the magnetic

force. Figure 13A displays the consequence of the influence of

magnetic field (M) on the flow profile f′(η) of the fluid. It is

observed that impact in this sense is lowered strongly due to an

inverse relationship between velocity profile and magnetic field

parameter. So by enhancing the influence of magnetic quantity

means a decline in the flow speed of the fluid. When a magnetic

field is used to influence a moving fluid, the particles of fluid

FIGURE 9
Pictorial illustration for the LMLA-BPNN base on variants of θw vs θ(η) for MHD-WNF-HGA. (A) M-S-E demonstration, (B) transition state
analysis, (C) curve fitting, (D) error histogram, and (E) regression analysis.
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stimulated causes a countervailing force called a resistive force,

which slows and resists the motion of these fluids. Furthermore,

this force is upright to both the magnetic field vector and the

velocity vector which give rise to the resistive force, known as the

Lorentz force generated in the direction of the fluid flow. As a

result of the applied magnetic field, the Lorentz force emerges,

FIGURE 10
Pictorial illustration for the LMLA-BPNN base on variants of Nt vs ϕ(η) for MHD-WNF-HGA. (A) M-S-E demonstration, (B) transition state
analysis, (C) curve fitting, (D) error histogram, and (E) regression analysis.
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opposing the flow and reducing fluid viscosity. The existence of a

magnetic field causes a drag force, which causes to lower down

the motion of the fluid. Figure 13C presents the impact of Darcy

number (Da) on velocity distribution. It is illustrated from the

figure that the influence of larger values of (Da) causes a

decrease in velocity distribution. Physically, the porous

media with a network of tiny voids known as pores that are

disrupted by the fluids as it travels through this medium.

Simultaneously, the porosity of a porous medium affects the

permeability of the fluid through it. In addition, the higher the

Darcy number (Da), the larger the conflict of the porosity in

permeable media which leads to the movement of fluid on one

hand, and the fluid viscosity on the other hand, resulting a

decline in fluid velocity. The association between the non-

Newtonian Williamson parameter (λ) and the velocity

distribution is shown in Figure 13E. A rise in a non-

Newtonian Williamson parameter (λ) allows retardation in

the velocity distribution f′(η) which reduces the movement

of fluid velocity. The absolute error (AE) analysis is shown in

Figures 13B,D,F for (M), (Da), and (λ) to verify the correctness
criterion. The numeric output of AE for (ε) lies in the range

10−8 − 10−3 , 10−8 − 10−4, and 10−8 − 10−1 for (M), (Da), and

FIGURE 11
Pictorial illustration for the LMLA-BPNN base on variants of γ vs ϕ(η) for MHD-WNF-HGA. (A)M-S-E demonstration, (B) transition state analysis,
(C) curve fitting, (D) error histogram, and (E) regression analysis.
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(λ) with respect to f′(η), respectively. The absolute error

numeric result with the reference outputs shows the

satisfactory accuracy criteria.

4.2 Temperature distributions

Fluid temperature distribution θ(η) has a considerable

influence on the behavior of fluids and the impact on the

particles within the fluid. Figures 14A,C,E show the

comparison with a reference solution for various values of

nonlinear thermal radiation parameter (R), heat generation/

absorption parameter (S), and ratio temperature (θw).
Figure 14A exemplifies the differences in temperature

distribution θ(η) with altered values of nonlinear thermal

radiation parameter (R). The temperature profile increased

with upsurging values of the nonlinear thermal radiation

parameter. The heat transfer rate inside the flow regime is

FIGURE 12
Pictorial illustration for the LMLA-BPNN base on variants of Le vs ϕ(η) for MHD-WNF-HGA. (A) M-S-E demonstration, (B) transition state
analysis, (C) curve fitting, (D) error histogram, (E) and regression analysis.
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higher and it works to simulate the fluid flow. The nonlinear

thermal radiation parameter has three physical effects on the heat

transmission of the nanofluid. First, the temperature of the

boundary layer is raised on a regular basis. Second, the flow

regime’s nanoparticles acquire thermal energy, enhancing

thermal diffusion and heat transmission within the fluid

owing to the thermal conductivity of the nanoparticles.

Finally, it aims to improve the thermal transfer techniques

of nanofluids, specifically the thermal transfer method by load

and by conduction. Figure 14C shows fluid temperature

distribution θ(η) with different values of heat generation/

absorption parameter (S). Due to the rise in numerical

values of the generation/absorption parameter, a huge rise

in the fluid heat transfer is seen. There is a physical increase in

FIGURE 13
Assessment of LMLA-BPNN with reference dataset of MHD-WNF-HGA. (A) Variation of M for f′(η), (B) AE for MHD-WNF-HGA, (C) Variation of
Da for f′(η), (D) AE for MHD-WNF-HGA, (E) Variation of λ for f′(η), (F) AE for MHD-WNF-HGA.
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the thermal dispersion and transfer of the fluids when heat is

generated, which raises the temperature of the fluids. Also,

with an increase in the heat source type (S> 0) values, the

thickness of the boundary layer and the fluid temperature are

likewise upsurges, while an opposite behavior occurs in the

case of the heat absorption type (S< 0). However, when

moving upward from the state of heat absorption to

generation, there is reformation in boundary layer thickness

and thermal diffusion. Figure 14E investigates the disparities

in temperature distribution θ(η) with improved values of the

ratio temperature parameter (θw). The temperature profile

increased with the enhancing ratio temperature parameter

(θw). This effect enhances the temperature of the boundary

layer and increases its thickness. The absolute error tool is

FIGURE 14
Assessment of LMLA-BPNN along the reference dataset of MHD-WNF-HGA. (A) Variation of R for θ(η), (B) AE for MHD-WNF-HGA, (C) Variation
of S for θ(η), (D) AE for MHD-WNF-HGA, (E) Variation of θw for θ(η), (F) with AE for MHD-WNF-HGA.
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FIGURE 15
Assessment of LMLA-BPNN along the reference dataset of MHD-WNF-HGA. (A) Variation of Nt for ϕ(η), (B) AE for MHD-WNF-HGA, (C)
Variation of γ for ϕ(η), (D) AE for MHD-WNF-HGA, (E) variation of Le for ϕ(η), (F) AE for MHD-WNF-HGA.

TABLE 2 Variant of MHD-WNF-HGA.

Physical quantities of our interest-based scenarios

Case S-I S-II S-III S-IV S-V S-VI S-Ⅶ S-Ⅷ S-Ⅸ

Case I M = 0.0 Da = 0.0 λ = 0.1 R = 0.1 S = -0.3 θw = 0.1 Nt = 0.1 γ = 1.0 γ = 1.0

Case II M = 0.5 Da = 0.5 λ = 0.3 R = 0.5 S = -0.2 θw = 0.4 Nt = 0.3 γ = 2.5 γ = 2.5

Case III M = 1.0 Da = 1.0 λ = 0.5 R = 0.9 S = -0.1 θw = 0.7 Nt = 0.5 γ = 3.0 γ = 3.0

Case IV M = 1.5 Da = 1.5 λ = 0.7 R = 1.3 S = 0.0 θw = 1.0 Nt = 0.7 γ = 4.0 γ = 4.0

S stands for scenario.
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shown in Figures 14B,D,E for (R), (S), and (θw) to check the

accuracy criteria, respectively. The values of AE are in the

ranges 10−9 − 10−4 , 10−7 − 10−3, and 10−7 − 10−3 for θ(η). The
absolute error numeric result with the reference outputs shows

the satisfactory accuracy criteria.

4.3 Concentration of nanoparticle
distribution

To examine the physical properties of the concentration of

nanoparticles within the fluids, it is important to study the

nomenclature and application of the fluids. The effectiveness

and intensity of thermal and electrical conductivity, for instance,

are correlated with the concentration of nanoparticles while

studying fluid behavior. The relative analysis of nanoparticles

concentration distribution ϕ(η) with reference result is

illustrated in Figures 15B,D,E) for (Nt), (γ), and (Le).
Figure 15A investigates the effect of the thermophoresis

parameter (Nt) with respect to the concentration of

nanoparticle distribution ϕ(η) within the flow regime of the

fluid. As the thermophoresis parameter increases, the

concentration of nanoparticle distribution enhances, the rate

of heat transfer in the boundary layer increases, provoking

particle deposition away from the fluid regime and therefore

enhancing the concentration of the nanofluid particles. The

effect of the chemical reaction parameter (γ) and Lewis number

(Le) on the concentration of nanoparticles distribution ϕ(η) is
illustrated in Figures 15C,E, respectively. A significant decrease

is observed with the rise in the chemical reaction parameter (γ)
and Lewis number (Le). The absolute error (AE) analysis of

(Nt), (γ), and (Le) on nanoparticle concentration distribution

ϕ(η) are shown in Figures 11B,D,F to check the accuracy

criteria, respectively. The AE values lies between 10−8 − 10−3,
10−7 − 10−3, and 10−8 − 10−3 for ϕ(η). The absolute error

numeric result with the reference outputs shows the

satisfactory accuracy criteria.

5 Conclusion

This research used the Levenberg–Marquardt neural network

technique with backpropagation to solve themagnetohydrodynamic

Williamson nanofluid flow through a stretched surface under the

effects of nonlinear thermal radiation, Joule heating, heat

generation/absorption, and chemical reaction (MHD-WNF-

HGA). The solution of a mathematical model exhibiting (MHD-

WNF-HGA) was examined with the adjustment of certain

circumstances (scenarios). The bvp4c approach is used to build

the dataset for the MHD-WNF-HGA model, which contains

deviations from a variety of physical measurements such as the

Williamson parameter, thermal radiation parameter, magnetic

parameter, Eckert number, Darcy number, Brownian motion,

and thermophoresis parameter. The MHD-WNF-HGA reference

dataset is made up of various versions, with LMLA-BPNN training,

testing, and validation accounting for 80, 10, and 10% of the dataset,

respectively.

The important findings of the present investigations are as

follows.

• Fluid flow speed drops when magnetic force and Darcy law

are applied to the flow. Also, Williamson fluid velocity is

high for the lower values but as the values rise, the velocity

drop with speed.

• The temperature distribution elevates with the help of the

thermal radiation parameter, heat generation absorption

parameter, and temperature ration parameter.

• The thermophoresis effect enhances the strength of nanofluid

concentration, while the chemical reaction quantity and

Lewis number weaken the concentration strength.

Furthermore

• The mean square error is anticipated to be in the average

range of 10−5 for LMLA-BPNN when comparing the

reference solution to the suggested data, which shows

the close agreement between both.
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