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INTRODUCTION

Energy storage system (ESS) is a crucial part of intelligent grid. It plays a key supporting role in improving
system efficiency. ESS has great potential applications in many scenarios, but it still faces challenges such
as system framework design and operation strategy formulation in the future. In traditional framework
design, consumers own and independently schedule the ESS, and have many difficulties with the high
investment and management costs of the ESS (Dai et al., 2021). In general, shared energy storage system
(SESS) can be treated as a problem of achieving efficiency and profit sharing (Noman et al., 2021). For
example, a mainstream SESS structure, that is, installed in an energy community to serve many families
was proposed (Miiller and Welpe, 2018; Terlouw et al,, 2019; Zhu and Ouahada, 2021). There are also
many studies on the operation strategy of SESS. A strategy was proposed to manage SESS by aggregating
controller to coordinate energy storage capacity (Dai and Charkhgard, 2018; Kalathil et al., 2019; Zhang
et al, 2020). In (Terlouw et al,, 2019; Murty and Kumar., 2020), an optimal method of SESS in grid-
connected microgrid was proposed and the two-layer decision-making model to allocate the storage
capacity was presented. Furthermore, multi-grade and multi-energy pricing and trading strategies were
proposed in (Veeramsetty, 2021; Li et al,, 2022; Zhang et al., 2022) to achieve the maximum of satisfaction
and protection of participants’ privacy.

In this paper, an energy trading framework is proposed for shared energy storage provider (SESP)
and multi-type consumers aiming at improving utilization efficiency of SESS and the benefits of all
participants. The opinions of this paper are twofold as listed: 1) An energy trading framework is
proposed for SESP and consumers. Within the proposed framework, a system consisting of multiple
consumers and SESS built between consumers is considered. Then, the provider makes full use of the
time similarity characteristics of consumer load by formulating electricity price and optimizing the
energy storage scheduling, so as to promote the utilization efficiency of energy storage and optimize
the benefits; 2) An optimal energy pricing strategy is developed by constructing the trading
framework as a bi-level optimization model. The energy optimal pricing strategy can benefit
both provider and consumers and improves utilization efficiency. The upper-level problem aims
to maximize the profits of provider, while the lower-level problem aims to get the optimal energy
consumptions. The bi-level optimization model can be transformed as a single-level by shifting the
lower-level problem with its Karush-Kuhn-Tucker (KKT) conditions.

HIERARCHICAL TRADING FRAMEWORK OF SHARED ENERGY
STORAGE SYSTEM

The hierarchical trading framework among SESP, power utilities, and multi-type consumers is
depicted in Figure 1. For the provider, it takes advantage of their scale to establish large-scale SESS
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FIGURE 1 | Hierarchical trading framework of SESS.
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among consumers, and manage them uniformly to provide
shared energy storage services for multi-type consumers in the
same distribution network area (Li et al., 2019; Zhu and Ouahada,
2021). In terms of demand side, consumers are willing to
purchase electricity from the provider due to its price
superiority and would trade electricity with power utilities
once the power price released by power utilities is lower than
that released by the provider (Zhao et al, 2014). In addition,
consumers will trade with power utilities for its power shortage
when the demand of consumers surpasses the supply of the
provider.

The service objects of shared energy storage include residents,
commercial consumers, and large industrial consumers. The
consumers send their demand information to SESP, the
provider extends the consumption behavior of the consumers
in time and space, and gathers multiple similar consumers
together to form a number of consumers clusters with a
certain similarity. According to the results of similarity
analysis, the provider sends service price information to
consumers on the premise of achieving its own optimal profit.
However, both consumers and provider aim to maximize their
own interests. Provider should supply consumers with suitable
prices to compete with power utilities. For example, consumers
reduce the power purchased from provider, so that provider
passively reduces its electricity prices. The interest optimization
process of provider and consumers forms a game relationship.
Provider strategically provides consumers with electricity prices

to maximize profits, while consumers influence provider by
optimizing electricity consumption to maximize benefits. This
is a sequential decision-making process, which constitutes a
leader-follower game dominated by SESP, and can be
expressed as a mathematical bi-level optimization model. The
decision objective of upper model is to maximize the income of
SESP to obtain the electricity price demanded by the provider.
The decision objective of lower model is to maximize the
satisfaction with energy consumption of consumers where the
consumers adjust the strategy of their energy consumption
according to the price. In the end, the optimal electricity price
and the optimal discharge strategies set {1%;, P&} are obtained in
this cycle.

OPTIMAL PRICING STRATEGY BASED ON
STACKELBERG GAME

From the perspective of consumers, different consumers choose
to buy different amounts of energy according to their preferences
for energy consumption. The utility can be defined as the
satisfaction level of energy consumption. In this paper, a
widely used quadratic function u is used to represent
consumer’s utility (Wu et al., 2020; Liu et al., 2022), which is
strictly concave and continuously differentiable. Then, the
consumer satisfaction function § is introduced, defined as the
difference between utility and electricity consumption cost. It can
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be described as a consumer satisfaction optimization problem.
Since the demand of consumers is variable, consumers can always
achieve optimal satisfaction by adjusting their demand to a point.
When the marginal utility equals the energy prices, each
consumer obtains the maximum satisfaction level based on
optimality condition VS = 0. SESP, as the provider of
electricity, will produce costs during operation, including the
operation and maintenance costs of battery energy conversion
process and power supply costs from the power utilities. Hence,
the profit of SESP F can be expressed as the difference between
electricity sales and operating costs.

The electricity trading problem between SESP and consumers
can be described as a Stackelberg game G with the provider as the
leader and consumers as followers. The game G is defined as a set
of strategies, including provider and consumers, where {1} is the
strategy set of the provider; {P.} is the strategy set of consumers;
{S} is the satisfaction strategy set of consumers; {F} is the profit of
the provider.

G = {(N U SESP); {F}, {Aes}; {S} {Pes}} 1)

When all the participants in game G are at a Stackelberg
equilibrium, SESP cannot improve its profit by adjusting
energy prices from the Stackelberg equilibrium prices (%),
and similarly, no consumer can increase its satisfaction by
adjusting its energy consumption (P%,). Based on the decision
order, this game can be expressed as a bi-level optimizing
model. In the upper-level, SESP finds the optimal energy prices
(M%) by maximum F subjected to operational constraints. In
the lower-level, consumers aim to get the optimal energy
consumptions (P%;) by maximum S subjected to energy
constraints. Note that consumers who have the approximate
consumption energy similarity will get the same energy prices
offered by the provider. Different group of consumers
distinguished by consumption energy similarity will get
different energy prices.

Due to its hierarchical structure and nonlinear objective
function, the bi-level optimization problem cannot be directly
solved by the available commercial solver. A common and
accurate solution to this problem is to replace the lower-level
problem by their KKT conditions. In this bi-level optimization
problem, the optimal pricing strategy of SESP is composed of
price variables, which are known parameters of the lower-level
problem. In addition, when price constraints are given, the
energy price set by the provider will always be lower than that
set by the power utilities. Therefore, the bi-level optimization
model can be transformed into a single-level optimization
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