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In order to further improve the measurement range and accuracy of optical

fiber stress sensor based on the interference between rising vortex beam and

plane wave beam, a new stress demodulation model is designed. This model

proposes a method to optimize the long-term and short-term memory

network (LSTM) model by using sparrow search algorithm (SSA), extract the

main characteristics of the influence of various variables on optical fiber stress

sensor, and fit the relationship between sensor stress and beam phase

difference. This method is an attempt of the deep learning model LSTM in

the study of stress mediation model. There are very few related studies, and it is

very necessary to fill this gap. In the experiment, the SSA-LSTMneural network is

trained by using the data of stress and phase differencemeasured by the optical

fiber stress sensor. The test results show that the mean error of SSA-LSTM

neural network is less than that of LSTM neural network, which shows that the

combination of SSA-LSTM model and optical fiber stress sensor can make its

measurement accuracy higher, The algorithm can more effectively reduce the

influence of the surrounding environment and the influence of the light source

fluctuation on the measurement range and accuracy of the optical fiber sensor,

and has good practical application value. It is proved that the deep learning

LSTM neural network has good application value in the light intensity

optimization of optical fiber stress sensor.
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Introduction

Force sensor is one of the most important components in the robot control

system, especially at the robot joint. When installed on the robot’s foot and wrist, it

can realize the functions of robot center of gravity tendency perception and balance

state monitoring, and plays an irreplaceable role in the force analysis and stability of

the robot. Traditional mechanical sensors mainly include resistive sensors, capacitive

sensors, etc. (Zhou et al., 2014; Yue et al., 2022), which have the characteristics of high

precision and high sensitivity, and are widely used in various mechanical sensing

fields. However, traditional resistive sensors and capacitive sensors are vulnerable to
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electromagnetic interference, corrosion, high temperature and

high voltage, and can not be used normally in harsh

environment (Zm et al., 2020).

Optical fiber sensor has the advantages of light weight, small

volume, high sensitivity and easy reuse to form distributed

measurement. It is widely used to measure physical quantities

such as stress and strain in engineering projects such as bridge

construction, pipeline leakage and deepwater riser (Zhao et al.,

2021). Researchers have proposed various types of optical fiber

stress sensors (Asriani et al., 2020; Cai et al., 2020; Guo et al.,

2020; Tan et al., 2020; Zheng et al., 2020; Tang et al., 2021; Xiang,

2021), which are based on single-mode multi-mode single-mode

tapered fiber Bragg grating sensors. The measurement range of

the sensor is 0–960 με; A Fabry Perot based strain sensor (He

et al., 2020). The cavity is formed by splicing a new advanced

silicon tube between two standard single-mode fibers. The

maximum strain range measured by the sensor is 2500 με。
However, these sensors usually use ordinary Gaussian light

source, and due to the limitation of the structure itself, they

can not measure large strain, or the measurement results have

errors.

In recent years, with the continuous development of

vortex rotation, some scholars have proposed an optical

fiber sensor based on vortex rotation. According to the

spiral and fork characteristics of the interference pattern

between vortex and Gaussian light, researchers have

proposed several different types of interference optical fiber

sensors. A new strain sensing method based on the

interference of vortex light and Gaussian spherical wave

(Ning et al., 2020). The rotation angle of spiral image

caused by strain is recognized by digital image processing

technology. In theory, high-resolution strain measurement

can be realized, but no experimental research has been carried

out. An optical fiber stress sensor based on the interference

between vortex beam and plane wave beam extracts two main

features of interference pattern set by principal component

analysis (PCA) (Lv et al., 2018), and realizes the demodulation

process according to the variation law of interference pattern

correlation coefficient group corresponding to different phase

difference, but the demodulation process is complex and the

stress measurement range is small.

In this paper, the optical power output of optical fiber stress

sensor depends on many environmental factors, such as ambient

light change, vibration noise and light source fluctuation. The

measurement of optical fiber stress sensor depends on the stress

phase difference relationship of light and the change value of

power. The output optical power value will be affected by the

fluctuation of light source and the coupling between light source

and optical fiber, resulting in measurement error. In view of the

nonlinear impact of the above problems, the hardware and

software can be optimized, and the hardware can be replaced

with a new structure. Although the above problems can be solved

to a certain extent, it will lead to the increase of cost and circuit

complexity, and the electronic devices themselves will also

produce new interference, which will affect the range and

accuracy of the whole optical fiber stress sensor measurement

system.

Therefore, it is necessary to introduce the algorithm to

optimize the experimental data in order to improve the

measurement accuracy of the optical fiber stress sensor

system. Based on the short-term and long-term memory

network method optimized by sparrow search algorithm,

SSA-LSTM neural network is proposed to improve the

measurement accuracy. Because the LSTM network is a

nonlinear optimization, the weights and thresholds are

generated randomly, which will cause the structure to be

accidental and locally optimal (Jiang et al., 2021). The

search of SSA (sparrow search algorithm) algorithm is

based on the optimal location and the historical optimal

location of all discoverers in the population, which can

quickly achieve the goal of global optimization. This feature

can be used to optimize the weight and threshold of LSTM

neural network and avoid falling into the situation of partial

optimization in solvable space (Yao et al., 2022). This paper

introduces the composition of optical fiber stress sensor

measurement system, the principle and method of

experiment and the principle of sparrow search algorithm

optimizing LSTM neural network, and compares the

experimental data after light intensity optimization of SSA-

LSTM neural network with the experimental data of LSTM

neural network without optimized weight threshold, which

provides a certain reference value for improving the

measurement range and precision optimization of optical

fiber stress sensor.

Methodology

Fiber optic stress sensing system structure

The design of stress sensing system based on the

interference between vortex beam and plane wave beam is

shown in Figure 1. The light source is a 632.8 nm He Ne laser.

After passing through a 1:1 beam splitter, the collimated laser

is divided into a reference light path and a sensing light path:

the reference light path is coupled into a 3 m long single-mode

fiber through a lens with a focal length of 240 mm, emitted

through a fiber collimator (74UV-FC), and then the first-order

vortex light is obtained through a polarizer, a quarter wave

plate and a vortex wave plate (VR1-633); The sensing optical

path is coupled into a 3 m long single-mode optical fiber

through a lens with a focal length of 240 mm. The single-mode

optical fiber is fixed on the tensile test bench. After being

emitted by the optical fiber collimator (74UV-FC), the plane

wave beam is obtained through the polarizer. Finally, the

reference light interferes with the sensing light beam
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mirror, and the charge coupled element (CCD) collects the

interference pattern.

Principle of light interference in sensing
system

Vortex light is a special light field with helical phase

wavefront. The phase distribution contains exp(ilθ) term, θ is

the rotation azimuth and l is the topological charge. When the

vortex light propagates along the positive direction of the Z axis,

the complex amplitude E1 of the electric field on the observation

surface (Ying et al., 2021) with Z � 0 can be expressed as:

E1(X,Y) � E0 exp(ilθ + iφ) (1)

Where E0 is the beam amplitude and φ is the additional phase

difference.

When the plane wave with inclined wavefront propagates

along the Z axis direction, the complex amplitude E2 of the

electric field on the observation surface with Z � 0 can be

expressed as:

E2(X,Y) � E0 exp(ikX sin α) (2)
WhereX is the component of rectangular coordinate system, k is

the wave number, and α is the included angle between k and the

positive direction of Z axis.

If two beams of light interfere on the plane of Z � 0,

according to E � E1 + E2, the expression of electric field E

after interference is:

E � E0 exp(ilθ + iφ) + E0 exp(ikX sin α) (3)

According to I � EEp, the light intensity distribution I after

interference is:

I � 2 + 2 cos(lθ + φ − kX sin α) (4)

System optimization by SSA-LSTM

The SSA-LSTM model is used to extract the main

characteristics of the interference wave, and the relationship

between the phase difference between the two beams and the

correlation coefficient of the corresponding main characteristics

of the interference is fitted. According to the stress phase

difference relationship, the relationship between the stress and

the correlation coefficient is obtained.

LSTM neural network
LSTM makes information selectively affect the state of each

time in the model by adding gate structure (Vpn et al., 2021;

FIGURE 1
Fiber optic stress sensing system structure.

FIGURE 2
Cell structure of LSTM.
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Delgado et al., 2020), which is mainly composed of input gate,

output gate and forgetting gate. The specific formula is shown in

(5–10), and the specific structure of LSTM unit is shown in

Figure 2.

If the input is [x1, x2, ..., xt] and the state of the hidden layer

is [h1, h2, ..., ht], the following operations are performed at time t:

(1) Forgetting gate operation: determinewhether to forget the hidden

cell state hl−1t transmitted by the upper layer with a certain

probability in LSTM, and control the output range between [0,1]

through sigmoid function. See formula (5) for details.

fl
t � σ(wl

f · [hlt−1, xl−1
t ] + blf) (5)

In Eq. 5, σ() is the activation function, • is the vector inner

product, t is the time, l is the number of layers of LSTM neural

network, f is the forgetting gate,w is the weight, b is the bias, and

h is the cell output.

FIGURE 3
Flow chart of LSTM optimized based on SSA.
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(2) Input gate operation: the input gate consists of two parts.

Sigmoid and tanh activation functions are used to control the

range of output value respectively, and the product of the two

parts is used to participate in the update of cell state. See

formulas (6) and (7) for details.

gl
t � σ(wl

g · [hlt−1, xl−1
t ] + blg) (6)

~clt � tanh(wl
c · [hlt−1, xl−1

t ] + blc) (7)

In Eqs 6, 7, tanh ( ) is the activation function, g represents the

input gate, c represents the cell state, and ~c represents the current

input unit state.

(3) Cell state update: the cell state is updated by calculating the

product of the cell state at the previous time and the output of

the forgetting gate and the product of the results of the two

parts of the input gate, and adding the products of the two

parts. See formula (8) for details.

clt � fl
tpc

l
t−1 + gl

tp~c
l
t (8)

Equation 8, * represents the multiplication of the elements of the

corresponding dimensions of two vectors.

(4) Output gate operation: the output gate consists of two parts.

The first part is also the hidden state at the previous time and

the input variable at this time as the input, and the output

range is controlled by sigmoid function. The second part

controls the output range by tanh activation function, and

thenmultiplies the output result of the first part to update the

hidden layer state. The specific formulas are as follows (9)

and (10).

olt � σ(wl
o · [hlt−1, xl−1

t ] + blo) (9)

hlt � olt · tanh(clt) (10)

o in Eqs 9, 10 represents the output gate.

SSA optimization algorithm
Sparrow search algorithm (SSA) (Jia et al., 2022; Qi et al.,

2021; Wc et al., 2021) is a new intelligent optimization algorithm

based on sparrows’ foraging behavior and anti predation

behavior. The algorithm can optimize several super

parameters of LSTM at the same time, and has strong

optimization ability and convergence speed. The basic theory

of SSA optimization algorithm is as follows:

FIGURE 4
Interference patterns corresponding to different phase differences.

FIGURE 5
Relationship between characteristic correlation coefficient
ω1 and stress.
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When using SSA algorithm to optimize the super parameters

of LSTMmodel, n sparrows form a population to search for food.

The population is expressed as follows:

X �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1,1 x1,2 ... x1,d

x2,1 x2,2 ... x2,d

... ... ... ...
xn,1 xn,2 ... xn,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

Where, d represents the dimension of the problem to be

optimized. Therefore, the sparrow fitness value is expressed as

follows:

FX �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f([ x1,1 x1,2 ... x1,d ])
f([ x2,1 x2,2 ... x2,d ])

...
f([xn,1 xn,2 ... xn,d ])

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

Where f is the fitness value.

Since the discoverer provides foraging directions for all

participants, once the existence of predators is found, the

individual starts to sound an alarm. If the alarm value is

greater than the safe value, the discoverer will shift the

location and bring the participants into a new area for

foraging. During the iteration, the location of the discoverer is

updated as follows:

Xt+1
i,j �

⎧⎪⎨⎪⎩
Xt

i,j · exp(− i

α · T) if R2 < ST

Xt
i,j + Q · L if R2 ≥ ST

(13)

Where t represents the current number of iterations, T is the

maximum number of iterations, j � 1, 2, ..., d.Xi,j represents the

position information of the ith sparrow in the j dimension. R2

and St are the early warning value and safety value respectively.

The ranges are [0,1], [0.5,1] and α is a random number within

[0,1]. L is the matrix of 1 × d whose internal elements are all 1.

Among them, when the early warning value is less than the safety

value, the sparrow can perform the search operation. When the

early warning value is greater than the safety value, it indicates

that predators have appeared within the search range, and all

sparrows need to be transferred to a safe place to look for food

immediately.

For those who join in the process of sparrow foraging, if the

energy is too low, they need to fly to other places for foraging to

obtain more energy. Some participants will compete for food in

order to increase their energy and even monitor the discoverer. If

the participants win, they will get new food. The location update

is shown in the formula:

Xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q · exp(Xworst −Xt

i,j

i2
) if i> n/2

Xt+1
p +

∣∣∣∣∣Xt
i,j −Xt+1

p

∣∣∣∣∣ · AT(AAT)−1 · L if otherwise

(14)
Where A is a 1 × d matrix, each element is 1 or - 1, Xworst is the

global worst position, andXp is the best position occupied by the

current discoverer.

During the experiment, we assume that the number of

sparrows aware of danger accounts for 10%–20%. The

location of these sparrows is shown in formula (8):

Xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xt

best + β ·
∣∣∣∣∣Xt

i,j −Xt
best

∣∣∣∣∣ if fi >fg

Xt
i,j +K · (

∣∣∣∣∣∣∣∣∣
Xt

i,j −Xt
worst(fi − fw) + ε

∣∣∣∣∣∣∣∣∣) if fi � fg

(15)

Xbest and β are the globally optimal position and step control

parameters respectively, which obey the standard normal

distribution. fi, fg and fw are the fitness values of individual

sparrow, global optimal position and worst position respectively,

K ∈ [−1, 1], ε is a very small constant, in order to avoid the

occurrence of zero denominator.

FIGURE 6
Relationship between α and different stresses.

FIGURE 7
Relationship between characteristic correlation coefficient
ω1 and stress.
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In formula (8), when fi � fg, it indicates that the sparrows

in the population have realized the danger and need to quickly

move to other positions to avoid being preyed on, where K is the

moving step.

The algorithm calculates the fitness of sparrows in the

population and sorts them to select the optimal value and the

worst value; Then, update the location of the discoverer, entrant

and aware of the dangerous sparrow. Finally, obtain the current

best location. If the current location is better than the result of the

previous iteration, stop the iteration. Otherwise, continue the

iteration until the termination conditions are met. The process is

shown in Figure 3.

Experimental comparison and
analysis

In this paper, the sensing system (Figure 1) is built to study

the response characteristics of stress sensing. The optical fiber in

the sensing optical path is fixed on the tension platform, and the

stress is applied from 10.18 MPa to 50.88 mpa in steps of

4.07 MPa, that is, the maximum value of strain measurement

is 3492 με, CCD collects interferograms corresponding to

different stresses (Li et al., 2021a; Li et al., 2021b; Li 2022a; Li

2022b).

General collection and mediation
methods

According to the analysis process in Section 2.1 and Figure 4

is the collected picture, this paper processes the bifurcation

interferogram collected in the experiment, regards the

collected interferogram as a pattern set, calculates the main

features of the pattern set, obtains the correlation coefficient

ω1 of each interferogram for the main features, and obtains the

relationship between the correlation coefficient ω1 of the

bifurcation interferogram and the stress, as shown in Figure 5.

It can be seen that there is a periodic trigonometric function

distribution between stress and correlation coefficient ω1.

Through trigonometric function curve fitting, the fitting

degree R2 is 0.94591. In order to obtain high-quality images

and improve the fitting effect, higher precision CCD equipment

can be used to collect interference patterns. The mathematical

expression of the demodulation model obtained by fitting is:

y � y0 + A sin(π x − xc

ω
) (16)

Where, y is the correlation coefficient of the main features of

the fitted fork image, x is the stress, and y0, A, ω and xc are the

known constants, y0 ≈ 0.39813, A ≈ 7.03067, ω and xc. This

document defines:

(y − y0)/A � β (17)
sin(π x − xc

ω
) � sin α (18)

It can be obtained according to Eqs 17, 18

β � sin α (19)

According to the properties of trigonometric function, given

the value of β and the shape of β − α curve, the value of a can be

expressed as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α � 2kπ + arcsin β,−π

2
+ 2kπ ≤ α≤

π

2
+ 2kπ(Increasing interval)

α � (2k + 1)π − arcsin β,
π

2
+ 2kπ < α< 3

2
π + 2kπ(Decreasing interval)

(20)

Where k is an integer, that is, the number of cycles from

α � 0.

Judge the period and monotonic interval of α at any position

according to Figure 4, and substitute Eq. 20 to calculate the α

value of each point. It is concluded that there is a linear

relationship between α and stress, as shown in Figure 6. The

fitting curve can be expressed as:

α � 7.21344 + 0.25694x (21)

The fitting results show that the phase adjustment method

can achieve the sensitivity of stress measurement of

0.257 rad/MPa.

Fitting method based on SSA-LSTM

The method based on SSA-LSTM takes the relationship

between ω1, α and stress as training data, and fits a more

suitable corresponding relationship through the training of

neural network. Because the LSTM model is suitable for

fitting the relationship between nonlinear quantities, this

FIGURE 8
Relationship between α and different stresses.

Frontiers in Energy Research frontiersin.org07

Yu et al. 10.3389/fenrg.2022.972437

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.972437


method is different from the method in Section 3.1. SSA-LSTM

does not need to fit any relevant equations or mathematical

expressions. Instead, it tests the values between the stress of

multiple groups of data and relevant variables, and takes these

values as the training data of the model. Through training, the

corresponding values can be obtained through SSA-LSTM by

inputting the measured data without mathematical calculation.

For example, taking the data in Section 3.1 as the test, the

fitting curve of the relationship between the characteristic

correlation coefficient ω1 and stress is finally obtained, as

shown in Figure 7. It can be seen that there is a periodic

trigonometric function distribution between stress and

correlation coefficient ω1. Through trigonometric function

curve fitting, the fitting degree R2 is 0.98591, which is higher

than the fitting degree 0.94591 of the formula calculation method

used in 3.1. Similarly, for the relationship between α and stress,

the fitting degree is 0.99893, which is more accurate than the

method without LSTM neural network. As shown in Figure 8, the

fitting curve is expressed as:

α � 7.31361 + 0.28634x (22)

The fitting results show that using SSA-LSTM method, the

sensitivity of stress measurement can be 0.286 rad/MPa, which is

greater than the original 0.257, so the performance is better.

Conclusion

In this paper, an optical fiber stress sensing system is

designed, and a new stress demodulation model is proposed.

The feasibility of realizing large range monitoring by the

sensor is verified by simulation and experiment. In the

experiment, an interferometric sensing system based on

vortex rotation light is built, and the fork interferograms

corresponding to different stresses are collected. The main

features of the fork interferogram are extracted by SSA-LSTM

method. Through model regression analysis, the periodic

triangular function distribution of the correlation

coefficient between the stress and the image is obtained;

Through further training and fitting of LSTM model, the

linear relationship related to stress is obtained. The

experimental results show that the sensitivity of the sensing

system is 0.286 rad/MPa and the maximum measurement

range is 3492 με. In this study, the performance of deep

learning model has been greatly improved by applying it to

the related research of fiber optic stress sensor. In the future,

deep learning will be combined with more studies and be more

fully applied.
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