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A method is proposed to assess the health condition of transformers based on

crossmessage passing graph neural networks (CMPGNNs) in this paper. In order

to improve the accuracy of transformer health condition assessment, multiple

indicators and their strong correlation are taken into account. The evaluation

indicators are divided into four comprehensive state categories, and each

category has several indicators. First, the correlation between indicators of a

state category is extracted by the health index method and the importance of

criteria is analyzed through the inter-criteria correlation (CRITIC) method, and

the health index of comprehensive indicators is obtained. Then, a diagram of

comprehensive indicators is constructed, and the correlation between

indicators of different state categories is extracted. Finally, CMPGNN is

constructed to achieve the health assessment. The experimental results

show that the proposed method can improve the accuracy of transformer

health condition assessment.
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1 Introduction

A power transformer is one of the most important parts of the power system (Xie

et al., 2020), and the health of a power transformer plays a vital role in the safe operation of

power grids and the development of national economy (Wang et al., 2022). Accurate

health condition assessment helps detect potential faults and reduce maintenance costs by

20–50% (Sun et al., 2022).

A power transformer is a large system with a complex structure. The selection of

indicators is important for the assessment of the transformer health condition. Zhang

et al., 2021 select dissolved gases in oil as the evaluation indicator. With the operation of

the transformer, the aging of the pressboard will produce furfural. Therefore, furfural

content can effectively reflect the aging of insulation (Lin et al., 2019). In Benhmed et al.,

2018, indicators of dissolved gases and oil tests are selected to construct an evaluation

system. However, in the above methods, only indicators of preventive tests are considered,
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and indicators of other information, such as the basic

information, operating information, and fault maintenance

information, are ignored.

At present, the health condition assessment methods include

not only single algorithms such as an expert system (Purkait and

Chakravorti, 2002), fuzzy theory (Abu-Elanien et al., 2012;

Arshad et al., 2014), the Bayesian network (Quan et al., 2013),

and the artificial neural network (Pengju and Birtwhistle, 2001)

but also the collaborative algorithm of multiple methods (Liao

et al., 2011). The mapping between seven dissolved gases and the

transformer health condition is established by linear models and

nonlinear models (Zeinoddini-Meymand et al., 2021). In

reference Islam et al., 2018, the general regression neural

network (GRNN) is used to quantify the operating state of

each component of the transformer. In reference Ashkezari

et al., 2013, a fuzzy support vector machine (FSVM) is

constructed to predict the health condition of the transformer

insulation system by using the indicators of dissolved gases and

oil tests. In fact, there are correlations between indicators. If

correlations are not taken into account, the accuracy of

evaluation results will be reduced.

Aiming at the problems existing in the transformer health

condition assessment method, a method is proposed to assess the

health condition of the transformer based on cross message

passing graph neural networks (CMPGNNs) in this paper. In

this method, the evaluation system of the transformer is

established by selecting the indicators of various state

information. The health index method and criteria importance

through the inter-criteria correlation (CRITIC) method are used

to consider the correlation between indicators of a state category.

Aiming at the correlation between indicators of different state

categories, a diagram of comprehensive indicators is established,

and a graph neural network (GNN) based on the cross message

passing mechanism is constructed to mine the relationship

between indicators and achieve health condition assessment.

The experimental results show that it is beneficial to evaluate

the health condition of the transformer by using the indicators of

multiple state information. The correlation between indicators is

fully considered by utilizing CRITIC and CMPGNN, which

makes the evaluation results more accurate. In addition, GNN

based on the cross message passing mechanism can improve the

accuracy of the graph classification task.

2 Health index of comprehensive
indicators

2.1 The construction of the transformer
evaluation system

Load rate and operating environment are two important

factors affecting the insulation performance of power

transformers (Muthanna et al., 2006). A preventive test is an

effective method to detect the aging of the transformer. In

addition, the number of transformer faults is directly related

to the health condition (En-Wen and Bin, 2014). In order to

consider the state information as much as possible, indicators of

four comprehensive state categories, including basic operational

information, dissolved gas analysis, oil tests, and electrical tests,

are selected to build an evaluation system, as shown in Figure 1A.

Each state category includes several sub-state indicators, which

are regarded as the low-level indicators.

2.2 Health index of basic operational
information

Health index (HI) is the representation of transformer aging

degree, and its value ranges from 0 to 10. The larger the health

index, the worse the health condition of the transformer.

Four low-level indicators including operating time, designed

life, load rate, and operating environment are used to obtain the

health index of basic operational information. The health index

of basic operational information is expressed as

HI1 � HI0pe
Bp(T2−T1) (1)

where HI0 is the initial health index of the transformer, which is

generally taken as 0.5. (T2-T1) is the operating time. B is the aging

coefficient, which can be expressed as

B � lnHIt − lnHI0
Td

pfLpfE (2)

whereHIt is the health index corresponding to the time when the

transformer has a high probability of failure, which is generally

taken as 7. Td is the designed life. fL and fE are the correction

coefficients of load and environment, respectively. Their values

are shown in Table 1.

2.3 Preprocessing of low-level indicators
of the preventive test

The preventive test includes dissolved gas analysis, oil tests,

and electrical tests. The low-level indicators of the preventive test

are divided into positive and negative indicators. The positive

indicator is the indicator that the larger the value, the better the

health condition of the transformer, such as breakdown voltage.

The negative indicator is the indicator that the larger the value,

the worse the health condition of the transformer, such as water

content. Positive indicators and negative indicators are

preprocessed by Eq. 3 and Eq. 4, respectively.

y �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

10 0≤ x≤ a

5 − 5 sin[ π

b − a
p(x − a + b

2
)] a≤x≤ b

0 x> b

(3)
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FIGURE 1
Evaluation system and model of health condition assessment.
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y �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 0≤ x≤ a

5 + 5 sin[ π

b − a
p(x − a + b

2
)] a≤ x≤ b

10 x> b

(4)

where a and b are thresholds for indicators. x is the measured

value. y is the preprocessed value, which means the health index

of each low-level indicator. In this paper, 110 kV power

transformer is taken as an example. The thresholds and

pretreatment methods of low-level indicators are shown in

Table 2.

2.4 Weight of low-level indicators of the
preventive test

The CRITIC method uses the contrast intensity and conflict

of the samples to obtain the weights of indicators. Contrast

intensity refers to the volatility of the value of an indicator in

different samples. The greater the volatility, the stronger the

contrast intensity and the higher the weight of the indicator.

Conflict refers to the correlation between different

indicators. The greater the correlation, the less the conflict

and the lower the weight of the indicator. In this paper, the

CRITIC method is used to obtain the correlation between

indicators of a state category and assign weights to each

indicator. With n samples and m evaluation indicators, the

state evaluation matrix is

X �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x11

x21

..

.

xi1

..

.

xn1

x12

x22

..

.

xi2

..

.

xn2

/ x1j /
/ x2j /

..

.

/
..
.

..

.

xij

..

.

/
/
/

/ xnj /

x1m

x2m

..

.

xim

..

.

xnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

where xij is the value of the jth indicator of the ith sample.

Positive indicators and negative indicators are normalized by Eq.

6 and Eq. 7, respectively.

xij
′ �

xij − min
1≤ i≤ n

{xij}
max
1≤ i≤ n

{xij} − min
1≤ i≤ n

{xij} (6)

TABLE 1 Correction coefficient for load, environment, and number of faults.

Load rate
(%)

fL Environment grade fE Number of
faults

Correction coefficient
of number
of faults

[0–40) 1 0 1 0–1 0.96

[40–60) 1.05 1 1 2–4 1.04

[60–70) 1.1 2 1.05 5–10 1.2

[70–80) 1.25 3 1.15 >10 1.4

[80–150) 1.6 4 1.3 - -

TABLE.2 Thresholds and pretreatment methods of low-level indicators.

Low-level indicator a b Formula of pretreatment

H2 (μL/L) 10 150 Eq. 3

CH4 (μL/L) 0 60 Eq. 3

C2H6 (μL/L) 0 40 Eq. 3

C2H4 (μL/L) 0 70 Eq. 3

C2H2 (μL/L) 0 5 Eq. 3

Water content (mg/L) 20 35 Eq. 3

Dielectric loss of oil (%) 0 4 Eq. 3

Breakdown voltage (kV) 35 50 Eq. 4

Furfural content (mg/L) 0 4 Eq. 3

Absorption 1.3 2 Eq. 4

Dielectric loss of winding (%) 0 0.8 Eq. 3

DC resistance unbalance rate (%) 0 2 Eq. 3

Earth fault current (mA) 0 100 Eq. 3
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xij
′ �

max
1≤ i≤ n

{xij} − xij

max
1≤ i≤ n

{xij} − min
1≤ i≤ n

{xij} (7)

In this paper, the standard deviation is used to measure the

contrast intensity of the low-level indicators, which can be

expressed as follows:

�xj � 1
n
∑n
i�1
xij
′ (8)

Pj �

����������∑n
i�1
(xij

′ − �xj)2
n

√√
(9)

where �xj represents the average value of indicator j. Pj is the

standard deviation of indicator j. In this paper, the Spearman

correlation coefficient is used to measure the conflict between the

low-level indicators, which is expressed as follows:

di � zi(s) − zi(j) (10)

rsj � 1 −
6 p∑n

i�1
d2
i

n p(n2 − 1) (s, j ∈ m) (11)

where zi(s) and zi(j) represent the new index of the ith sample after

the sample sequences of indicator s and indicator j are,

respectively, arranged in descending order. di represents the

difference of the new index. rsj represents the correlation

coefficient between indicator s and indicator j, and rsj = rjs.

The conflict of indicator j is expressed as follows:

Qj � ∑m
s�1
(1 − rsj) (12)

Therefore, the information provided by indicator j is

expressed as follows:

Tj � Pj pQj (13)

Then the weight of indicator j is expressed as follows:

wj � Tj/∑m
j�1
Tj (14)

2.5 Health index of dissolved gas analysis,
oil tests, and electrical tests

The health index of dissolved gas analysis, oil tests, and

electrical tests can be expressed as follows:

HIi � ∑o
j�1
yjwj (15)

where i is equal to 2, 3, and 4, and the corresponding HIi is the

health index of dissolved gas analysis, oil tests, and electrical tests,

respectively. o is the number of low-level indicators. o is equal to

5, 4, and 4.

3 Assessment of the transformer
health condition based on cross
message passing graph neural
networks

The assessment model of the transformer health condition

based on CMPGNN is shown in Figure 1B. According to the

figure, the model includes an input layer, a cross message passing

graph convolution layer, and an output layer.

3.1 Input and output of the model

The input layer consists of three parts, namely, the correction

coefficient of the number of faults, a diagram of comprehensive

indicators, and the global information of the graph. The

correction coefficient of the number of faults is determined by

the number of faults, as shown in Table 1.

In order to mine the correlation between indicators of

different state categories, this paper constructs a diagram of

comprehensive indicators as shown in Figure 1C. Each node

on the graph represents a comprehensive indicator. The

characteristic information of the node is the health index of

the comprehensive indicator. The edges between nodes represent

the possible correlations between comprehensive indicators.

When mining the correlation between indicators and

updating the characteristic information of each indicator, not

only the local information but also the global information of the

graph should be taken into account. The global information of

the graph is the centralized representation of the diagram of

comprehensive indicators, which contains the important

information of each node and the correlation between nodes.

Transformer health condition types include excellent, good,

average, poor, and serious. Therefore, these five health conditions

are selected as the output of the model. In addition, the health

level for each health condition is set to 0, 1, 2, 3, and 4,

respectively.

3.2 Working principle of the cross
message passing graph convolution
layer

The message passing mechanism is the framework followed

by the GNN, including the message passing stage and readout

stage. It completes the learning task on the graph according to the

correlation between nodes on the graph. The GNN based on the

traditional message passing mechanism only performs the

readout operation after the message passing stage, and the

dynamic features of the graph are ignored during the running

time step. In addition, in the process of message generation in the

message passing stage, only the information of its own node and

neighbor node is considered, and the global information of the
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graph is not considered. To solve the above problems, a cross

message passing mechanism is proposed.

The readout layer is used to realize the readout operation

and complete the extraction of the global information of the

graph. The sigmoid function is introduced to retain

important information of each node and remove

redundant information. Then, the aggregation of

important information of all nodes on the graph hg
t can

be expressed as follows:

htg � ∑
i∈G
(hti ⊙ sigmoid(v1(hti))) (16)

where v1 ( ) is a linear function. t is the running time step. hi
t is the

information of node i in time step t.G is the set of all nodes on the

graph.

The gated recurrent neural network (GRU) includes a

reset gate and update gate. The reset gate is used to forget

part of the information from the previous time and generate

candidate information by combining the selected important

historical information with the new input information. The

update gate is used to retain part of the information of the

previous time and generate the information of the current

time by combining the retained historical information with

the candidate information. Compared with feed forward

neural networks, GRU has memory functions. In addition,

compared with long short-term memory networks, GRU has

fewer parameters, which can reduce the risk of overfitting.

Therefore, GRU is used to synthesize the global information

of the graph at the previous time fg
t−1 and aggregation of

important information of all nodes hg
t and update the global

information of the graph at current time fg
t in this paper,

ft
g � GRU(ft−1

g , htg) (17)

The graph convolution layer is used to realize the

message passing stage, which completes message

generation, message aggregation, and node embedding

update. First, a nonlinear neural network is constructed to

generate messages between nodes with correlation, and its

principle is formulated as

et+1ij � u(v2(hti ‖ htj ‖ ft
g)) (18)

where v2 ( ) is a linear function. ‖ is the concatenation operation,

which concatenates the i node information, the j node

information, and the global information of the graph with

time step t. u( ) is a nonlinear activation function. By

constructing the nonlinear relationship, the message generated

from node j to node i in time step (t+1) is obtained.

In the message aggregation, in order to avoid assigning the

same weight to each neighbor node, the sigmoid function is used

to assign different passing coefficients for the generated

messages. By multiplying the corresponding coefficients with

the generated messages and adding them, the aggregation of

messages generated by the neighbor node can be obtained, which

can be expressed by the formula

ut+1
i � ∑

j∈N (i)
(et+1ij ⊙ sigmoid(v3(et+1ij ))) (19)

where v3 ( ) is a linear function. N(i) is the set of neighbor nodes

of node i.

In the updating of the node embedding, not only the

aggregation of messages generated by neighbor nodes is used

but also the previous information of its own node is used. GRU

can selectively retain and forget some historical information and

realize update, which is expressed as

ht+1i � GRU(hti , ut+1
i ) (20)

Finally, the health condition of the transformer is obtained by

a full connection layer which is constructed by using the output

of the cross message graph convolution layer and the correction

coefficient of the number of the faults.

4 Experiment

4.1 Experimental process

Based on Python language, the model is built on the Spyder

platform. The virtual environment is Python 3.7 built by

Anaconda.

The training set is used to train the transformer health condition

assessment model based on CMPGNN. Figure 2A shows the curve

of training loss with the number of iterations. As can be seen from

the figure, when the number of trainings reaches 100 times, the loss

curve changes slowly and tends to be stable.

Figure 2B is the confusion matrix of the test set. It can be seen

from the figure that the model has better performance for

transformer health condition evaluation, and there are fewer

misjudgments. In addition, the evaluation accuracy of the

proposed method in this test set is 95%.

4.2 The influence of the selection of
indicators on health condition assessment
results

At present, most evaluation methods of the transformer

health condition only use the indicators of preventive tests.

Therefore, the health condition assessment results using the

indicators selected in this paper are compared with those

using only indicators of preventive tests. The confusion matrix

for the test set using indicators of the preventive test is shown in

Figure 2C.

As a large system, there are many factors affecting the

health condition of the power transformer, and the preventive
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test indicators are only a part of them. Therefore, the health

condition of the transformer cannot be accurately obtained by

using only the indicators of the preventive test, as shown in

Figure 2C.

4.3 The influence of correlation between
indicators of a state category on results

The standard deviation method (SD) uses the standard

deviation to obtain the sample volatility and assigns weights

to each indicator. Compared with the CRITIC method, this

method lacks consideration of the correlation between

indicators. In this paper, the results of SD-CMPGNN and

CRITIC-CMPGNN methods are compared, as shown in

Figure 2D.

As can be seen from the figure, the F1 values obtained by

using CRITIC-CMPGNN are 0.04, 0.06, and 0.06 higher than

those obtained by SD-CMPGNN when the health condition

is “good”, “average”, and “poor”, respectively. This is due to

the duplication of information between the low-level

indicators. In the SD method, the correlation between

indicators is ignored, resulting in more redundant

information and less important information provided to

comprehensive indicators, thus affecting the accuracy of

evaluation results. Therefore, considering the correlation

between indicators of a state category can improve the

accuracy of results.

FIGURE 2
Experimental results.
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4.4 The influence of correlation between
indicators of different state categories on
results

Figures 2E–H are PR curves of the health condition

assessment method based on CRITIC-SVM, CRITIC-CNN,

CRITIC-GNN, and CRITIC-CMPGNN, respectively.

The results of the four methods are also shown in Figure 2I.

Here, APi is the area under the PR curve for the ith health

condition. mAP is the average of AP for five health conditions.

The larger the value of the above indicators, the better the effect

of the model. According to the figure, the effect of CRITIC-SVM

is the worst, and the effect of CRITIC-CNN is better than that of

CRITIC-SVM. This is due to the inherent shortcomings of SVM

in solving multiple classification problems, while CNN has good

feature extraction ability. Compared with CRITIC-CNN, the

effects of CRITIC-CMPGNN and CRITIC-GNN are

improved. This is because CMPGNN and GNN can effectively

extract the spatial features of the topology and deeply mine the

correlation features of the topology. Therefore, considering the

correlation between indicators of different state categories can

improve the accuracy of results. In addition, the effect of

CRITIC-CMPGNN is better than that of CRITIC-GNN,

which indicates that GNN based on the cross message passing

mechanism can improve the accuracy.

5 Conclusion

In order to improve the accuracy of transformer health

condition assessment, multiple indicators and their strong

correlation are taken into account in this paper. CMPGNN is

designed to achieve higher accuracy. The conclusions of this

paper are as follows:

(1) The accuracy of the result is improved by considering the

indicators of multiple state information.

(2) The accuracy of the result is improved by using CRITIC. This

is because the correlation between low-level indicators is taken

into account, resulting in less redundant information and

more important information for comprehensive indicators.

(3) The accuracy of the result is improved by using CMPGNN.

This is because the correlation between the comprehensive

indicators is deeply excavated.

(4) In the cross message passing mechanism of CMPGNN, the

global information of the graph at the previous time is taken

into account in subsequent node updates and global

information updates of the graph. This is beneficial to

improve the accuracy of evaluation results.
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