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In order to improve the accuracy of wind power output forecasting and ensure

reliability of the power grid, multiplex parallel GAT-ALSTM, a spatial-temporal

learningmodel for multi-sites wind power collaborative forecasting is proposed

in this study. Topography was generated by using geographic information

(longitude and latitude) obtained from the wind power generation sites. The

GAT layer was used to capture the spatial correlation characteristics of multi-

sites wind power. Feature dimension enhancement of each wind power

generation site was achieved by aggregating the information from the

adjacent sites. The ALSTM layer was used to capture the temporal

correlation of each power output time series. The multiplex parallel

structure of the model is designed to provide fast prediction of large-scale

distributed wind power generation. The validity of the proposed multiplex

parallel GAT-ALSTM was confirmed by comparison with the forecast results

obtained by RNN, LSTM, ALSTM, and GNN-ALSTM. The testing results showed

that, compared to RNN, LSTM, ALSTM, and GNN-ALSTM, the forecast results of

themultiplex parallel GAT-ALSTMhad the lowestmean absolute value error and

the highest accuracy.
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1 Introduction

With the sharp increase in wind farms and installed capacity, the proportion of wind

power in the total power grid capacity is also increasing. However, due to the

intermittence and volatility of wind power, it will bring challenges to the safety and

stable operation of the power grid (Yan et al., 2018; Li, 2022). Accurate forecasting of wind

power can relieve the pressure of peak shaving and frequency modulation and effectively

improve wind power accommodation capability on the power grid (Li et al., 2022; Liu

et al., 2022).

Wind power prediction has been widely used and extensively researched recently.

Wind power prediction algorithms are mainly divided into two categories: one based on a

statistical model and the other on a deep learning algorithm. Tan et al. (2021) proposed a
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method to use an improved LSTM network with a new gating

mechanism to build a prediction model for ultra-short-term

wind power. González-Sopeña et al. (2020) introduced a

multi-step wind power prediction model using variational

mode decomposition and an extreme learning machine.

Verma et al. (2018) proposed a short-term wind power model

enhanced by support vector machines. Cao and Gui (2018)

combined an LSTM algorithm based on deep learning with a

LighTGBM algorithm based on a statistical model for wind

power prediction. Yatiyana et al. (2017) established wind

power generation prediction technology based on an ARIMA

statistical model. Peng et al. (2016) proposed a new ultra-short-

term wind power prediction method based on numerical weather

forecasting and an error correction method. These methods have

advantages and applicability in different wind power forecasting

situations; however, most of them only focus on the data of a

single site, and ignore the correlation of data between adjacent

sites. At the same time, if it is necessary to predict the wind power

of a large-scale station, model training should be carried out

separately, which is inefficient.

A graph neural network is a deep learning algorithm based

on the topological relationships of nodes to extract their spatial

correlation. In the field of traffic, Tang et al. (2020) proposed the

use of a GAGCN network to predict traffic flow speed. In the field

of communication, He and Zhao (2020) proposed a fault

diagnosis scheme for a telecommunication network based on

a graph neural network. At present, the most widely used and

effective graph neural network is the graph attention network

(GAT) (Hu et al., 2021; Tian et al., 2022). The GAT introduces an

attention mechanism in the process of the graph neural network,

which makes the net pay more attention to neighboring nodes

with large correlations and can achieve better results (Dong et al.,

2022; Xu et al., 2022).

In this study, we propose a collaborative forecasting model

for multi-sites wind power forecasting with strong

generalization ability and greater accuracy. The proposed

model was termed the multiplex parallel GAT-ALSTM,

which aimed to simultaneously capture the spatial-temporal

correlations in multi-sites wind power systems and achieve

multi-sites wind power multiplex parallel forecasts. In this

model, the spatial correlation feature of wind power was

extracted by a multi-channel parallel graph attention

network. After that, the temporal features of multi-sites wind

power were extracted by a multi-channel parallel ALSTM

network. The efficiency and accuracy of the forecast were

improved by the aforementioned method. The rest of this

article is organized as follows: Section 2 describes the

prerequisite knowledge for the graph attention network and

attention-based short- and long-term networks; Section 3

introduces the concrete realization scheme of multiplex

parallel GAT-ALSTM; Section 4 provides experimental

simulation and results analysis; and, Section 5 discusses the

experimental conclusions.

2 Preliminaries

To interpret the multiplex parallel GAT-ALSTM model,

some basic knowledge of GAT and ALSTM is essential.

2.1 Graph attention network

The graph attention network is a variant and improvement of

the traditional graph neural network, which considers the

topological relationship between the target node and the

neighbor node from spatial dimension, and can adaptively

assign different weight coefficients to the surrounding nodes

in the aggregation process, which improves the learning and

expression ability of the graph neural network for non-

Euclidean data.

The key of GAT lies in the attention mechanism, and the

attention mechanism is defined as follows:

eij � attention(hi, hj) (1)

attention � { < hi, hj >
OR LeakyReLU(aT[Whi,Whj]) (2)

where hi represents the feature vector of node vi, hj represents the

feature vector of node vj, and eij represents attention coefficients that

indicate the importance of node j’s features to node i. Attention refers

to the attention mechanism layer, which can be in a form without

FIGURE 1
GAT network attention coefficient calculation diagram.
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parameters, such as the inner product of two vectors, or in a form

with parameters, such as a single-layer linear fully connected layer.

To make attention coefficients easily comparable among

different nodes, we normalized them with the softmax

function, and obtained the normalized attention coefficient aij:

aij � softmax(eij) � exp(eij)∑exp(eik) (3)

Figure 1 shows the process of computing the attention

coefficients of the nodes in a graph attention network. In order

to simplify the calculation, we only compute eij for nodes j ∈ Ni,

where Ni is some neighborhood of node i in the graph. In all our

experiments, they are exactly the first-order neighbors of i. The

attention coefficients of n-order neighbor nodes also can be obtained

by overlaying and n-layer attention mechanism.

After the attention coefficients have been calculated, the features

of all neighboring nodes are weighted and summed up to obtain the

new feature vector of node vi, Where h′i represents the new feature

vector of node vi , W represents the linear transformation weight

matrix, and σ represents the activation function:

h′i � σ(∑ aijWhj) (4)

The features of first-order neighbor nodes can be extracted by

a single layer network, while the features of second-order or

multi-order neighbor nodes can be extracted by stacking multiple

GATs. The attention mechanism is introduced in the graph

attention network when updating the node information,

which makes the graph neural network focus more on the

useful feature information of the neighbor node to easily

capture the spatial correlations of the neighboring node

according to the topology structure, which largely improves

the generalization and learning ability of the network.

2.2 Attention-based long short-term
memory network

A long short-term memory network (LSTM) is a popular and

effective deep learning model for processing time series data. The

gating mechanism introduced in LSTM solves the problem of

gradient disappearance in the training process of a recurrent

neural network. The LSTM model is shown in Figure 2A, and

the transfer function of each unit is given by:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
St
Ot

it
ft

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
tanh
σ
σ
σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(W[xt

ht−1
] + b) (5)

S′t � ft·St−1′ + it·St (6)
ht � Ot·tanh(S′t) (7)

where, Ot, it and ft represent the output information of the three

gating mechanisms, S′t represents the new LSTM unit status

information at time t, and ht represents the output of the LSTM

unit at time t.

FIGURE 2
Single LSTM model diagram and ALSTM model diagram. (A) Single LSTM model. (B) ALSTM model.
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When LSTM processes a time series, there is a problem that the

input information in front of the time series will be diluted by the

later input information. The longer the input time series is, the more

obvious this phenomenon becomes. Therefore, in order to solve this

problem, an attentionmechanism is added to the LSTMmodel. The

attention mechanism makes the LSTM network focus on the more

important part of the time series, so as to improve the accuracy and

efficiency of the network. The attention mechanism is given by:

ei � at(hi, yt) � tanh(hTi Wiyt) (8)
ai � softmax(ei) (9)

y′
t � ∑ aihi (10)

where, hi represents the output of the ith LSTM unit, yt

represents the initial output of LSTM, and y′
t is the final

output of the LSTM with attention mechanism. Figure 2B

shows the schematic diagram of the ALSTM model.

3 Implementation of multi-sites wind
power collaborative forecasting
based on a multiplex parallel GAT-
ALSTM model

3.1 Model design

Figure 3 shows the structure of the multiplex parallel GAT-

ALSTM model. It consists of an input layer, a multiplex parallel

GAT layer, a multiplex parallel ALSTM layer, and an output

layer.

(1) Input layer: Using the geographic information (longitude

and latitude) of the wind sites, a topology graph G with N

nodes is generated. Each node corresponds to a wind site.

The input of the GAT-ALSTM model is the wind power

generation of N sites at T slots before the prediction time,

T + 1. The wind power generation is embedded into the

topology graph G as node features.

(2) Multiplex parallel GAT layer: T parallel GAT networks are

used to simultaneously learn the correlation of wind

power between different sites at T slots from the spatial

dimension. GAT uses different weights to aggregate the

information of neighbor nodes according to the learned

correlation among sites. The features of each site are

dynamically updated.

(3) Multiplex parallel ALSTM layer: A multiplex parallel

ALSTM layer is used to capture the temporal correlation

of time series.

(4) Output layer: uses a linear transform layer to predict wind

power at all sites at time, T + 1.

3.2 Prediction based on a multi-channel
parallel GAT-ALSTM model

A set of wind power data of model input is denoted as:

FIGURE 3
GAT—ALSTM model diagram.
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{pnt |n � 1, 2, / , N; t � 1, 2, /, T} (11)

where, pnt ∈ Rmeans the nth wind power ofNwind sites at time t,

N represents the number of wind sites, and T is the input time

window of the model. The input sequences of the nth wind site

are written as:

Pn � (pn
1, p

n
2, . . . , p

n
T) ∈ RT (12)

The model input matrix is denoted as:

P � (P1, P2, . . . , PN)T ∈ RN×T (13)

A one-step ahead forecast is applied in the model, which

inputs the content sequences of N wind sites from time 1 to time

T, and outputs the predicted wind power of N wind sites at time

(T + 1), which is denoted as:

P̂ � (p̂1T+1, p̂2T+1, ... , p̂NT+1)
T

∈ RN×1 (14)

The prediction model can be described as follows:

P̂ � F(P, θ), (15)
where, θ is the parameter set and F is the multiplex parallel GAT-

ALSTM model.

In order to achieve wind power prediction at multiple sites

based on the multiplex parallel GAT-ALSTM model, the specific

steps are as follows:

Step 1: Data preprocessing, such as data cleaning and

normalization, is performed first, then the history

power data of the selected N wind turbines are divided

into training sets and test sets for model training and

testing.

Step 2: Generate topography by using the geographic

information (longitude and dimension) of the sites.

The history power data of the selected N wind

turbines and the wind power of N stations at the

same time are used as features of nodes in each

topological structure graph. T GAT networks are

used for parallel computation. Finally, the

characteristic matrix of n sites of T moments that

aggregate the information of neighbor node is output

by the GAT.

Step 3: Use the output of the GAT network as the input to the

ALSTM. After processing by the GAT network, the initial

features of the n sites at each time are increased from one

dimension to high dimensions. Finally, the ALSTM uses

enhanced feature data to output the wind power at N

sites.

Step 4: Train the neural network.

Step 5: Use the model obtained by the aforementioned steps to

make predictions on the test set sample and analyze the

results.

4 Application and results

The wind power of seven adjacent sites from January to

March 2013 was collected fromNRELWest. The training data set

was from January 1 to March 20. The test data set was from

March 21 to March 31. The data is in the form of csv files

containing power values at 10-min resolution for seven wind

sites.

4.1 Data preprocessing

Due to measurement errors or data storage errors in the data

sampling equipment, there may be random errors in the original

sampling data. These erroneous values will interfere with the

efficacy of the model in wind power forecasting. In order to

improve the speed of the machine learning model gradient

descent to find the optimal solution, it is also necessary to

preprocess the original data. The formula is as follows, where

xt represents the wind power at a certain moment, and X

represents the wind power sequence:

xt � xt −min(X)
max(X) −min(X)

For wind power generators with a capacity of 1.5 MW, the

reasonable range of power outputs is 0–1.5 MW. Data beyond

this range are regarded as abnormal and are eliminated and

replaced with interpolated data. Lastly, all data are

normalized.

4.2 Evaluation methods

To evaluate the accuracy of the prediction results, the mean

absolute error (MAE) is used to evaluate the forecast results

accuracy and the correlation coefficient (CC) is used to evaluate

the time lag. The formula is as follows:

MAE(Pn, P̂
n) � 1

T
∑t1+T
t�t1

∣∣∣∣pn
t − p̂n

t

∣∣∣∣ (16)

CC �
cov(Pn, P̂

n)���
σPn

√ · ���
σ P̂n

√ (17)

where T represents the number of consecutive one-step-ahead

forecasts from time t1, cov(Pn, P̂
n)represents the covariance, and

σPn σ P̂n represent standard deviation.

4.3 Experimental results

To verify the validity of the proposed model in an actual wind

power forecasting task, the multiplex parallel GAT-ALSTM
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FIGURE 4
Experimental result diagram. (A) Relative geographical locations of seven wind sites. (B) Topology graph of seven wind sites. (C) Site weight
coefficient diagram learned by the GAT layer. (D)Wind power forecast chart of Site 1. (E)Wind power forecast chart of Site 2. (F)Wind power forecast
chart of Site 3. (G)Wind power forecast chart of Site 4. (H)Wind power forecast chart of Site 5. (I)Wind power forecast chart of Site 6. (J)Wind power
forecast chart of Site 7.
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model and other associated models were used for wind power

forecast experiments. The RNN and LSTM networks are

common time series prediction models, and the ALSTM and

GNN-ALSTM networks are used to verify the effectiveness of the

attention mechanism. The experiment consists of one-step ahead

forecasting of wind power. Figure 4A shows the location of each

site. Figure 4B shows the topology graph of the seven wind sites.

Figure 4C shows the attention weight coefficient between the

wind sites learned by the GAT layer. It can be seen that the

attention coefficient basically conforms to the rule of “near large

and far small” in the spatial dimension. Figure 4D–J shows a

comparison diagram of wind power forecasts at wind sites 1 to

site 7 using five network models. Table 1 shows the evaluation

index values of five network models for wind power forecast at

sites 1 to 5.

It can be seen from the experimental results that,

compared to the RNN network, theMAEof LSTM was

reduced due to the introduction of the gating mechanism.

ALSTM introduced a time attention mechanism into LSTM,

and the CC of site one was increased by 0.8%, which indicates

that a temporal attention mechanism can improve the time lag

in time series prediction to a certain extent. Compared with

ALSTM and GNN-ALSTM, the multiplex parallel GAT-

ALSTM can fully utilize the information of adjacent sites,

and theMAEof site 1 and site 5 decreased by 0.45% and 0.84%,

respectively. Lastly, by comparing the forecast results of

GNN-ALSTM with those from multiplex parallel

GAT-ALSTM, the MAEof multiplex parallel GAT-ALSTM

for site 1 was 0.39% lower than that of GNN-ALSTM, and

the CC of multiplex parallel GAT-ALSTM for site 1 was 0.26%

higher than that of GNN-ALSTM. It can be concluded from

Table 1 that multiplex parallel GAT-ALSTM had the best

prediction results among the five models because it introduced

the attention mechanism for both temporal and spatial

dimensions.

5 Conclusion

This study has proposed multiplex parallel GAT-ALSTM,

a spatial-temporal learning model for multi-sites wind power

collaborative forecasting. Leveraging the geographical

information and historical power output data of adjacent

wind sites, the model simultaneously captured the spatial-

temporal correlation in multi-sites wind power by two

attention mechanisms. Based on the learned spatial-

temporal correlation, it improved the accuracy of the

forecast. The multiplex parallel structure of the model is

suitable for fast prediction of large-scale distributed wind

power generation. The validity of the proposed multiplex

parallel GAT-ALSTM is confirmed by comparing its

forecast results with those obtained from RNN, LSTM,

ALSTM, and GNN-ALSTM. It was found that forecast

errors were minimized by the proposed model; hence, the

TABLE 1 Performance comparisons of five models for predicting wind power generation at sites 1 and 5.

Model RNN (%) LSTM (%) ALSTM (%) GNN-ALSTM Multiplex parallel
GAT-ALSTM (%)

Indicators

MAE of site 1 9.21 8.77 8.47 8.02% 7.41

CC of site 1 94.32 94.58 95.38 96.97% 98.56

MAE of site 2 9.32 9.02 8.76 8.32% 7.67

CC of site 2 94.12 94.65 95.33 95.98% 97.24

MAE of site 3 9.06 8.85 8.31 7.98% 7.32

CC of site 3 94.43 94.87 95.43 96.11% 98.04

MAE of site 4 9.51 8.54 8.29 8.01% 7.58

CC of site 4 94.69 95.01 96.59 97.55% 98.43

MAE of site 5 9.10 8.64 8.32 8.11% 7.52

CC of site 5 94.07 94.87 95.33 96.86% 98.06

MAE of site 6 9.10 8.21 8.07 7.89% 7.44

CC of site 6 94.76 95.01 95.78 97.32% 98.10

MAE of site 7 9.11 8.91 8.41 7.99% 7.36

CC of site 7 94.76 95.11 96.78 97.33% 98.21
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proposed model shows good performance in forecasting wind

power.

In potential future work, we plan to incorporate atmospheric

factors such as wind speed and temperature as exogenous

variables in the learning process to further enhance the

forecasting ability.
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