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This study aims at investigating the applicability of abnormal electricity

consumption data detection method, which is based on the entropy weight

method and the isolated forest tree algorithm. The inaccessibility and imbalance

of abnormal electricity consumption samples in actual data sets are considered

by analyzing smart distribution network power consumption big data. Firstly,

the users are classified by the k-means clustering algorithm, and then the

characteristics of each type of user are extracted and the feature set is

processed by the principal component analysis method to reduce the

dimensions, followed by the entropy weight method adaptive configuration

of the weight coefficients of each feature index, and finally the abnormal power

consumption users are calculated based on the feature-weighted isolated

forest algorithm. The algorithm verifies the real electricity consumption data

of 6,445 users, and the results show that the method has a high detection

accuracy, recall rate and F1 score, which is more suitable for the detection of

abnormal electricity consumption in scenarios when there are complex and

diverse user power consumption behaviors.
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1 Introduction

With the rapid development of smart grid technology, the electricity consumption

information collection system and distribution automation system have been improved,

smart meters are popular, where the data center has also been gradually established and

improved, and the collected power consumption data of the user end shows the

characteristics of large scale, various types, and fast growth rate (Song et al., 2016). At

the same time, some users steal electricity which causes huge income loss in the power

company. Common ways of stealing electricity include: stealing electricity by changing

the current, stealing electricity by changing the voltage, stealing electricity by changing the

structure and wiring method of the meter, and stealing electricity by strong AC magnetic

fields. Their common feature is to change the real value of electricity consumption to

achieve the purpose of less metering or no metering. Therefore, the behavior of stealing
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electricity will lead to an error between themeter measurement of

the station and the total meter measurement. With the

development of deep learning technology and intelligent

algorithms, it is possible to analyze user behavior, mine data

hidden features and electricity consumption trends (Zhang et al.,

2021). Therefore, it is of great significance to ensure the normal

operation of the power system to make full use of the massive

user power consumption data, mine and analyze the intrinsic

value of the data through intelligent algorithms, and to improve

the detection efficiency and accuracy of electricity theft (Liu et al.,

2020).

Reference (Monedero et al., 2012) uses the Pearson

correlation coefficient to detect typical NTL characterized by a

sudden load drop, and for other types of NTL, it is detected by

Bayesian network and decision tree. Reference (Nizar et al., 2008)

first obtained the characteristic curve of each type of user by

clustering the user load curve, and then divided the users into two

categories: normal and abnormal according to the degree of

deviation between the load curve and the characteristic curve,

and finally predicted new users with extreme learning machine.

type. Reference (Angelos et al., 2011) proposed an NTL detection

method based on fuzzy C-means clustering. Reference (Zheng

et al., 2019) combines the correlation analysis of line loss and the

rapid clustering of density peaks for daily load curves to detect

electricity theft by users. Reference (Zheng et al., 2018) and

Reference (Hu et al., 2019) use a deep convolutional neural

network (CNN) and a support vector machine based on

stacked decorrelation autoencoders, respectively, to identify

electricity stealing users based on load time series data.

Reference (Zhang, 2014) uses the kernel function to map the

dataset to the feature space, and calculates the outlier factor in the

feature space, which is applicable to a wider range of datasets.

Reference (Zhuang et al., 2016) proposes an anomaly detection

method based on unsupervised learning, and uses grid processing

technology to improve the LOF algorithm, which improves the

efficiency of the algorithm.

The above work provides a strong theoretical basis for the

detection of electricity stealing behavior, but the research on

abnormal electricity consumption detection at home and abroad

still needs to be in-depth. Abnormal power consumption

detection is reflected in the current research mainly using an

optimized recognition model driven by accuracy. Abnormal

samples with low weights are easily ignored, resulting in a low

recall rate, and the effect of effectively detecting abnormal

samples cannot be achieved.

The conventional anomaly detection problem is a typical

binary classification problem. Usually, the number of abnormal

data samples is much smaller than the number of normal

samples. Therefore, the model is also required to have high

adaptability to imbalanced data sets (Mortaz, 2020). The

detection of abnormal power consumption behavior can also

be classified as a two-category problem, that is, only judging

whether the user uses abnormal power consumption, and

conducting in-depth classification research on the categories

of abnormal user data. For the abnormal detection problem

scenario, abnormal electricity users only account for a small

part, so it is the imbalance learning problem. For the imbalance

problem, we should not only use the accuracy rate as the model

evaluation index, but also pay more attention to the recall rate

and other indicators to measure the effect of abnormal sample

detection. Commonly used evaluation metrics include precision,

recall, confusion matrix, receiver operating characteristic curve

(ROC), and F1-Score (Kim et al., 2007).

The power load anomaly detection model usually includes

two modules: feature construction and anomaly detection

(Rajendran et al., 2019; Zhang et al., 2020). The process of

power load anomaly detection model in this paper is: feature

construction-dimension reduction-clustering-anomaly

detection. Since different types of electricity users (such as

urban resident users, rural resident users, industrial and

commercial users, etc.) often have different types of electricity

consumption patterns, the k-means clustering algorithm (Xu

et al., 2015) is firstly used as the classification model to complete

the rough classification of users; then the entropy weight Method

(Song et al., 2019) is introduced. The weight value of the whole

abnormal score determined by different features is evaluated by

the method; finally, the feature-weighted isolated forest

algorithm is used to obtain the abnormal users of electricity

consumption.

2 Anomaly detection model

2.1 K-means algorithm

The abnormal power consumption detection method adopts

the power consumption data of all power users to detect ill

behaviors. On the one hand, since different types of users have

different power consumption behaviors, an abnormal user may

be distributed in the cluster of another type of normal users.

There is little difference in the electricity consumption behavior

of Class B users. Since the electricity consumption habits of

different users may change, a normal user of Class A may have

similar electricity consumption behavior to that of Class B users

in a certain period of time, so it is classified into Class B in the

user’s cluster. On the other hand, the electricity consumption

behavior of Class A users is quite different from that of Class B

users. However, due to the abnormal electricity consumption

behavior of some abnormal users of Class A, their electricity

consumption behavior changes, which may be similar to those of

Class B users, so they are classified into in a cluster of class B

users. Therefore, after the dimensionality reduction by principal

component analysis, the abnormal user may be distributed in

another type of normal user cluster, and thus be misjudged as a

normal user. After the users are classified, since the electricity

consumption behaviors of similar users are similar, the above-
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mentioned problems do not exist in abnormal detection of each

type of users, and the detection accuracy can be improved.

The k-means algorithm is a clustering algorithm that belongs

to the division method. The Euclidean distance is usually used as

an evaluation index for the similarity of two samples. The basic

idea is: randomly select a sample point in the data set as the initial

clustering center. The distance between each sample in the data

set and the initial cluster center is classified into the class with the

smallest distance, and then the average value of all samples to

each cluster center is calculated, and the cluster center is

continuously updated until the squared error criterion

function is stable at the minimum. value.

When the set of objects is: M � {x1, x2, . . . , xn} , xi �
(xi1, xi2, . . . , xit) , The formula (1) for calculating the

Euclidean distance between the sample xi and xj:

d(xi, xj) � [(xi1 − xj1)2 + (xi2 − xj2)2 +/ + (xin − xjn)2] (1)

The square criterion error function SSE is shown in

formula (2):

SSE � ∑k

i�1∑ti

j�1
����xj − ni

����2 (2)

In the formula: k is the number of clusters; ti is the number of

samples in the i-th class; ni is the mean of the samples in the i-th

class.

As the number of clusters k increases, the sample division is

becoming refined, and the degree of aggregation of each cluster

gradually increases, so the sum of squared errors will naturally

become smaller. When k is less than the real number of clusters,

since the increase of k will greatly increase the degree of

aggregation of each cluster, the sum of squared errors will

decrease greatly, and when k reaches the real number of

clusters, the aggregation obtained by increasing k again The

return degree quickly turns smaller, as the decline of the sum of

squares of errors decrease sharply, and when it turns flat as the

value of k continues to increase, that is to say, the relationship

between the sum of squared errors and k shows an elbow shape,

where the k value corresponding to this elbow is the true number

of clusters of the data.

2.2 Isolation forest algorithm

The Isolation Forest algorithm (Li et al., 2019) is an

unsupervised anomaly detection algorithm suitable for

continuous data. Different from other anomaly detection

algorithms, which use quantitative indicators such as distance

and density to characterize the degree of alienation between

samples, this algorithm uses an isolation tree structure to isolate

samples. Since the number of outliers is small and most of the

samples are sparse, the outliers will be isolated earlier, that is, the

outliers are closer to the root node of the isolation tree. Therefore,

the distance between the sample and the root node can be used as

the abnormality index of the sample. Compared with traditional

algorithms such as local outlier detection algorithm and

K-means, the isolation forest algorithm has better robustness

to high-dimensional data.

The isolation forest consists of multiple isolation trees, and

the structure of the isolation tree is the same as that of the binary

search tree, so the average path length of the leaf nodes is

equivalent to the expectation of the binary search tree.

Therefore, the isolation forest algorithm draws on the related

methods of analyzing binary search trees to predict the average

path length of its leaf nodes, as shown in the following

formula (3):

C(n) � 2H(n − 1) − 2(n − 1)
n

(3)

H(i ) is the harmonic number, and n is the number of data

samples, as is shown in formula (4):

H(i) � ln(i) + co (4)
c0 � 0.5772156694 , which is called Euler’s constant. Because it is

the average value of the path length of a given number of data

samples, it can be used to standardize the path length, and finally

get the abnormal score S of the test data sample. The calculation

formula is as formula (5):

S � 2−
E(h)
C(n) (5)

where E(h) is the average of the path lengths of the test data

sample in all separation trees.

2.3 Feature construction

The data set contains the power consumption data of N

power users for H days. The power consumption patterns of

users are represented by their monthly average loads. The load

sequence of each user can be expressed as an H-dimensional

vector xn � {x(h)
n , h � 1, 2, . . . , H}, and all users can be expressed

as a data setX � {xn, n � 1, 2, . . . , N}. On the basis of the data set
X, the feature quantity of the user’s electricity consumption

pattern can be further extracted. The feature construction can

mine the deep information of the original load data and improve

the accuracy of the anomaly detection model. This model

constructs its form, volatility, trend and correlation indicators

based on the user’s daily and monthly electricity consumption

data. The following is four indicators in the feature construction.

1) Form indicators: including daily and monthly average power

consumption; daily and monthly power consumption rate,

that is, the ratio of average power consumption to maximum

power consumption; monthly power consumption peak-to-

valley difference rate, that is, the maximum and minimum
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power consumption The ratio of the difference to the

maximum electricity consumption; the ratio of quarterly

electricity consumption to annual electricity consumption.

2) Volatility indicators: including the daily and monthly power

consumption dispersion coefficient, the ratio of the standard

deviation of daily and monthly power consumption to the

average daily and monthly power consumption; the daily and

monthly power consumption dispersion coefficient and the

industry’s daily and monthly power consumption The ratio of

the quantity dispersion coefficient (the average value of the

electricity consumption of all users represents the electricity

consumption of the industry); the difference between the

front and the end of the electricity consumption of m months

before and after.

3) Trend indicators: the slope k of the linear fitting of the daily

electricity consumption series; the upward and downward

trends of the monthly electricity consumption series.

4) Correlation index: The Pearson correlation coefficient between

the daily electricity consumption series of each household and

the typical daily electricity consumption series (represented by

the daily average value series of all users).

2.4 Feature set dimension reduction

Since the number of extracted features is large and different

features may contain overlapping information, in order to

visually display the electricity consumption patterns of each

user at a low-dimensional level and to efficiently mine

abnormal users, it is necessary to perform dimensionality

reduction on the dataset, that is, dimensionality reduction

processing. The so-called dimensional reduction is to

transform the data set, and use a small number of new

attributes to represent as much information as possible in the

original data set. Principal component analysis (PCA) and factor

analysis (FA) are two representative dimensionality reduction

methods (Wold et al., 1987; Hyvärinen and Oja, 2000).

2.4.1 Principal component analysis
Principal component analysis (hereinafter referred to as

PCA), also known as principal component analysis, is one of

the most basic and important data dimensionality reduction

methods. The basic idea is to recombine the original

correlated indexes X1, X2,/, Xn into a small number of

uncorrelated comprehensive indexes. Comprehensive

indicators should reflect the information represented by the

original variables to the greatest extent, and can ensure that

the new indicators remain independent of each other. PCA can

examine the correlation between multiple original variables, and

further reflect the internal structural relationship of all original

variables with a small number of principal components. The

refined principal components can retain as much information

contained in the original variables as possible to achieve the

purpose of data dimensionality reduction and condense data

information. If F1, F2,/, Fm are used to represent the m

principal components of the original variables X1, X2,/, Xn,

that is, as shown in formula (6):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F1 � a11X1 + a12X2 +/ + a1nXn

F2 � a21X1 + a22X2 +/ + a2nXn

..

.

Fm � am1X1 + am2X2 +/ + amnXn

(6)

2.4.2 Factor analysis
The factor analysis model assumes that the variables are

composed of two parts: common factors and special factors.

Common factors are factors common to all original variables,

which can explain the correlation between variables. Special

factors are factors that are unique to each original variable

and represent the portion of the variable that cannot be

explained by common factors. The mathematical model of

factor analysis is shown in formula (7):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f 1 � a11x1 + a12x2 +/ + a1nxn
f 2 � a21x1 + a22x2 +/ + a2nxn

..

.

f m � am1x1 + am2x2 +/ + amnxn

(7)

The model can also be represented in matrix form, as shown

in formula (8):

X � AF + ε (8)

In the formula: X is the standardized original variable; F is

the common factor; A is the factor loading matrix; ε is the special

factor.

The number of constructed features is large and may contain

features with strong correlation. In order to facilitate data

visualization and improve algorithm efficiency, it is necessary

to reduce the dimensionality of the feature set. In this paper, the

principal component analysis algorithm is used to process the

data set, so as to reflect the cumulative contribution rate of the

original data information contained in the dimensionality

reduction data to determine the dimension of the new feature.

The cumulative contribution rate is usually greater than 85% in

order to fully express the original data information. The

calculation of the contribution rate and cumulative

contribution rate of a single feature is as shown in formula

(9) and formula (10):

εi � λi
∑p

j�1λi
(9)

εci � ∑i

j�1εi (10)

In the formula: εi is the contribution rate of the eigenvalue; λi
is the ith eigenvalue; p is the total number of new eigenvalues; εci
is the cumulative contribution rate of the first i eigenvalues.
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2.5 Electricity anomaly detection based on
entropy weight method and isolated
forest algorithm

Since the feature data has multiple features, each feature in

the feature data after dimensionality reduction will get an

anomaly score on the feature through the isolated forest

algorithm, and the score describes the abnormality degree on

the corresponding feature. Since the meanings of each feature of

the feature data are different, the influence of all the features of

the feature data set on the abnormality degree of the data set is

comprehensively considered, and the multiple abnormal scores

output by each feature in the feature data are integrated and

analyzed.

Since each feature in the feature data contributes differently

to the entire data-set, the difference in the configuration of the

weight coefficients of the features will greatly affect the quality of

anomaly detection. The importance of the same feature index

varies greatly for users with different electricity consumption

behaviors. This paper uses the entropy weight method to

configure the feature weight coefficients. First, the entropy

weight method does not limit the number of features, which

is related to the multi-dimensional power consumption data of

users. Second, the entropy weight method has no complicated

calculation formula, and the calculation process is relatively

simple, which is conducive to reducing the time and space

complexity of the algorithm; third, the entropy weight method

does not need to consider the relationship between indicators.

The specific steps of determining the weight coefficient by the

entropy weight method are as follows.

1) Normalization of data: Assume that m features

X1, X2,/, Xm of n data samples are given, where

Xi � {xi1, xi2,/, xim}. Normalization is processed

according to formula (11):

yij �
xij −min(Xi)

max(Xi) −min(Xi) (11)

Where xij is the attribute value of the ith feature of the j-th data

sample, min(Xi) is the minimum value of the attribute value of

the ith feature in all the data samples, and max(Xi) is the

maximum value of the attribute value of the ith feature in all

the data samples.

2) Finding the information entropy Ei of each feature: Calculate

the information entropy of each feature according to the

calculation formula of information entropy. In the problem of

m feature indicators and n evaluated objects, the entropy

value of the i-th indicator is calculated according to the

formula (12) Calculate:

Ei � −ln(n)−1∑n

j�1pij ln(pij) (12)

Among them pij � yij∑n

j�1 yij
, another special definition, if

pij � 0, then lim
pij→0

pij ln pij � 0.

3) Calculating the weight value of each feature: After calculating

the information entropy value of each feature, calculate the

weight of each feature according to the information entropy,

and the weight calculation is as formula (13):

wi � 1 − Ei

m −∑m
j�1Ej

(13)

4) Obtaining the weight vector W corresponding to the m

feature indicators

Denote the weight vector of the extracted N-dimensional

feature index as W � {w1, w2,/, wN}, 0<wi < 1, and satisfy the

∑N

i�1wi � 1 (14)

Based on the above analysis, this paper establishes an

anomaly detection model based on the entropy weight

method and the isolated forest algorithm. Taking the feature

data set of anomaly detection as the input, the anomaly score is

calculated for each feature of the feature data through the isolated

forest algorithm. Then use formula 11,12,13 to assign weights,

and finally get the comprehensive anomaly score of each user,

whose expression is as formula (15):

S � ∑m

i�1wiSi (15)

Where m is the number of features, wi is the weight of the ith

feature, Si is the abnormal score of the data sample in the ith

feature.

It is important to calculate the comprehensive abnormal

score of each sample to determine whether it is abnormal data

according to the set threshold. Those with abnormal scores

greater than the threshold are regarded as abnormal data,

otherwise, they are regarded as normal data. The selection of

the threshold value is usually set according to the probability

of abnormal electricity consumption (Xu and Lu, 2021).

2.6 Detection model

The flow chart of the abnormal user detection mining model

proposed in this paper is shown in Figure 1.

3 Model evaluation metrics

Anomaly detection of power load is essentially a binary

classification with unbalanced categories, and cannot simply

be an evaluation index based on accuracy, because even if the

classifier identifies all users as normal users, a higher
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evaluation can be obtained. The pros and cons of the abnormal

power load detection model are often evaluated by the AUC

index of the receiver operating characteristic (ROC). The

calculation of AUC needs to first obtain the confusion

matrix of the binary classifier.

3.1 Confusion matrix

The letters T and F in Table 1 represent the correctness

and error of the classification result of the classifier

respectively, and the letters P and N represent that the

classifier predicts abnormal and normal respectively. TP

and TN represent two correct classification results, and FP

and FN represent two incorrect classification results. The

following metrics can be calculated from the confusion matrix

(Yu and Zhao, 2021):

1) Recall Rate

R � ATP

ATP + AFN
(16)

In the formula (16): ATP represents the number of users

who are predicted to be abnormal by the classifier and are

actually abnormal; AFN represents the number of users who

are predicted to be normal by the classifier but are actually

abnormal; R represents the ratio of the number of correctly

detected abnormal data to the total number of abnormal data.

The larger the recall rate R is, the better the classifier performs.

2) Accuracy Rate

P � ATP

ATP + AFP
(17)

In the formula (17): AFP represents the number of users who

are predicted to be abnormal by the classifier but are actually

normal; p represents the ratio of the number of correctly detected

abnormal data to the total number of detected abnormal data.

The higher the precision rate p, the lower the false detection rate

and the better the classifier performance.

3) F1 score

F1 � 2PR
P + R

(18)

where p and R represent precision and recall respectively. The

F1 score represents the harmonic mean of the precision rate and

the recall rate. In some multi-class machine learning algorithms,

the F1 score is usually used as the final indicator for evaluating

the quality of the algorithm.

FIGURE 1
Flow chart of abnormal power consumption mode detection.
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3.2 ROC curve and AUC metrics

According to the confusion matrix, the true positive rate

(TPR) and false positive rate (FPR) of the classifier can be

calculated, which can reflect the detection rate and false

detection rate respectively. Different thresholds correspond

to different TPR and FPR values. The ROC curve takes FPR as

the horizontal axis and TPR as the vertical axis, which reflects

the trade-off between the detection rate and the false

detection rate under different thresholds (Huang and Xu,

2021). The value range of the AUC indicator is [0, 1]. The

larger the AUC value is, the closer the ROC curve is to the best

classification point (0, 1), and the better the classification

performs.

4 Case analysis

4.1 Data introduction

The data in this paper comes from the Irish smart meter

data set (Cer, 2011), which contains 536 days of electricity

consumption data (in kW·h) of 6,445 electricity users, and the

sampling frequency is once every 30 min. A total of 138 users

with abnormal electricity consumption behavior were

annotated. The abnormal user labels were only used as the

basis for model evaluation and were not used in the detection

process.

In order to obtain the power consumption characteristics

of each time scale (day, month), firstly, the daily power

consumption data of 536 days was obtained by

accumulating the power consumption of each user at each

time of day; secondly, the monthly daily power consumption

of each user was calculated. The power consumption data was

accumulated to obtain 18 months of monthly power

consumption data. The actual data set contains normal

data with daily electricity consumption of 0, but some

feature values could not be obtained during feature

construction, so the data with 0 electricity consumption on

a certain day was assigned a value (0.001) that does not affect

the data characteristics.

4.2 Feature construction and dimension
reduction

18 features are constructed from the user’s daily and

monthly electricity consumption sequence: average daily and

monthly electricity consumption f1, f2; discrete coefficients

f3, f4 of daily and monthly electricity consumption sequence;

daily and monthly electricity consumption rate f5, f6; the

peak-to-valley difference rate of the monthly electricity

consumption series f7; the electricity consumption

difference f8 of the first three months of the first and the

second first three months; the user’s daily and monthly

power consumption dispersion coefficient and the industry

daily and monthly power consumption The ratio of the

discrete coefficient of electricity consumption f9, f10; the

proportion of electricity consumption in the four quarters of

spring, summer, autumn and winter in the first year to the

annual electricity consumption respectively f11~f14. The

correlation coefficient between the daily electricity

consumption of users and the typical daily electricity

consumption f15; The slope f16 of the linear fitting of the

daily electricity consumption series; the upward trend

indicator and the downward trend indicator f17 and f18.

Since the magnitudes of the above features are not the

same, in order to balance the influence of each feature on the

results, the above features are normalized according to

formula (19).

Xi � xi − xmin

xmax − xmin
(19)

In the formula: Xi and xi are the values before and after

normalization of a feature of the ith user; xmin and xmax are

the minimum and maximum values of the feature,

respectively.

Considering that the features f11~f14 both represent the

annual electricity consumption pattern, multiply them by the

weight factor 0.25.

Perform correlation analysis on all the extracted feature

sand the obtained correlation matrix are shown in Figure 2.

The Figure 2 shows the degree of linear correlation

between the extracted features. Among them, f1 and f2, f3

and f9, f4 and f10 are completely related, so f2, f9, and f10 are

deleted, and the remaining 15 features are retained. Some

features are still highly correlated, that is, these features

contain more overlapping information. Through principal

component analysis or factor analysis, new variables that

are independent of each other can be constructed to

eliminate the information overlap between the original

variables. In this paper, 15 power consumption features are

used for dimensionality reduction processing to obtain several

new features. All new features are arranged in descending

order according to the contribution rate. Table 2 intercepts the

top seven new features with high contribution rate.
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When the number of new features reaches 5, the

cumulative contribution rate of the PCA dimensionality

reduction method reaches 98.24%. As can be seen from

Section 3.2.2, five new features can well reveal the original

feature information.

4.3 Result analysis

The k-means clustering algorithm is used to cluster the

data set, and the optimal k value is determined according to

the elbow method. It can be seen from Figure 3 that an

FIGURE 2
Correlation matrix of feature set.

TABLE 1 Confusion matrix for power load anomaly detection.

Users Detected
as normal user

Detected
as abnormal user

actual normal user TP (true positive) FN(false negative)

actual abnormal user FP(false positive) TN (true negative)

TABLE 2 Contribution rate and cumulative contribution rate of new
features after PCA dimensionality reduction.

New features Contribution rate/% Cumulative
contribution rate/%

1 60.87 60.87

2 24.18 85.05

3 6.89 91.94

4 3.89 95.83

5 2.41 98.24

6 0.89 99.13

7 0.58 99.71

FIGURE 3
Elbow method to determine k value.
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inflection point occurs when k = 4, so the feature data set is

divided into four categories.

Figure 3 shows the classification of the users according to

the clustering results and count the number of each type of

users. Among them, there are 124 users in category 1;

6,155 users in category 2; 153 users in category three; and

13 users in category 4. Due to space limitations, this paper

only presents the anomaly detection process of the second

type of users, and other types of users can be handled in the

same way. The cluster center of a certain category reflects the

overall characteristics of all samples in this category, so the

power consumption curve of users in each category of cluster

center can be used as the typical power consumption curve of

the corresponding category, and the power consumption

curve of typical users of different categories as shown in

Figure 4.

The second type of user’s electricity consumption

characteristic index is used as the input data of the

abnormality detection algorithm in this paper, and the

comprehensive abnormality score of each user is calculated,

and it is used as a quantitative index of the abnormality degree

of electricity consumption.

The ROC curve reflects the effectiveness of the algorithm.

This paper compares the KNN algorithm, logistic regression

algorithm, naive Bayes algorithm and the outlier detection effect

of the algorithm in this paper. It can be seen from Figure 5 that

the difference in AUC of the area under the ROC curve of the

KNN algorithm and the logistic regression algorithm is small,

while the AUC of the area under the ROC curve of the method in

this paper is larger than that of the KNN algorithm, the logistic

regression algorithm and the Naive Bayes algorithm which has a

higher AUCdetection accuracy.

FIGURE 4
Power consumption curve of typical users of different categories.

FIGURE 5
Comparison of ROC curves of the four algorithms.
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Table 3 is a comparison table of the precision rate, recall rate,

AUC value and F1 score value of each algorithm. Figure 6 more

intuitively shows the difference between the accuracy and recall of the

algorithm in this paper and other comparison algorithms. The

precision rate of the KNN algorithm and the logistic regression

algorithm and the recall rate of the Naive Bayes algorithm are slightly

higher than electricity anomaly detection model based on entropy

weightmethod and isolated forest algorithm, but the recall rate of the

algorithm in this paper is slightly higher. The rate and F1 score are

significantly higher than those of the KNN algorithm and the logistic

regression algorithm, and the AUC values of the algorithm in this

paper are higher than those of other algorithms. Considering the

evaluation indicators of each algorithm comprehensively, the

algorithm in this paper has a better anomaly detection effect.

5 Conclusion

Aiming at improving the efficiency of abnormal electricity

consumption data detection, this paper proposes an abnormal

electricity consumption detection method based on entropy weight

method and isolated forest tree algorithm.Given that a large number

of normal users perform various electricity consumption patterns,

the model firstly classifies electricity users with different electricity

consumption behaviors based on the k-means clustering algorithm;

Secondly, themodel calculates the weight coefficient of the indicator;

Finally, the feature-weighted isolated forest algorithm is used to

detect abnormal electricity users. The experimental comparison

using the electricity consumption data of Irish residents to verify

that electricity anomaly detection model based on entropy weight

method and isolated forest algorithm has a higher precision and

recall rate in a close to the actual detection environment.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: Previously reported electricity data was

used to support this study and are available at https://www.ucd.

ie/issda/data/commissionforenergyregulationcer.

TABLE 3 Algorithm model performance comparison.

Algorithm Accuracy rate/% Recall rate/% F1 score AUC

The algorithm of this paper 86.8 82.2 0.844 0.99

KNN algorithm 93.3 40 0.534 0.71

Logistic Regression Algorithm 96 32.6 0.459 0.64

Naive Bayes Algorithm 35.9 100 0.517 0.97

FIGURE 6
Comparison of indicator histograms.
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