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With the purpose of risk management for fossil energy investors, this

paper examines the dynamic spillover effect and asymmetric connectedness

between fossil energy, green financial and major traditional financial markets

in China. By employing the spillover index model of Diebold and Yilmaz, a

weak correlation between green financial and fossil energy markets is verified,

and the market connectedness remains relatively calm despite the COVID-

19 pandemic outbreak. Specifically, green bonds receives fewer shocks from

crude oil than coal, green stocks receive fewer shocks from coal than crude

oil. In addition, rather than the safe-haven characteristics presented by gold,

this paper further proves that green bonds also have the potential to act as

safe-haven assets, due to the fact that the connectedness between green

bonds and energy markets is at low levels. Finally, the magnitude of return

spillovers between markets would vary significantly during different periods.

The results obtained in this paper have practical implications for both investors

and policymakers.
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1 Introduction

Due to the sensitivity of energy prices to economic and geopolitical event (Floros
and Galyfianakis, 2020), energy markets have historically been characterized by a high
degree of uncertainty (Ji et al., 2018b). Influenced by the COVID-19 pandemic, the
economic and production activities have experienced a significant slowdown, resulting
in a considerable reduction in global energy demands (Hoang et al., 2021). Additionally,
geopolitical strife has heightened supply-side vulnerabilities. Since the conflict between
Russia and Ukraine has rendered a great impact on the international coal trade pattern,
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the global supply and demand of coal are unbalanced now,
especially China who acts as a big coal consumer. Crude oil
prices have varied substantially in recent years, increasing the
risks faced by fossil energy investors. With these considerations,
it is necessary to consider the energy market’s spillover effect,
which is crucial for both investors and energy policymakers.

As the main consumer of energy, China’s acquisition
of energy goods is highly reliant on international imports
(Tang et al., 2015). Also, China’s economic development is highly
dependent on coal. Under the reconstruction of coal production
capacity, the supply is still very limited in the short term, and
there is still a large import demand. Nevertheless, China is
currently in an inferior position in the global energy market,
with relatively limited pricing power (Ji and Fan, 2016). Hence,
energy investors in China are confronted with high risk.
Moreover, international participants in the emerging Shanghai
crude oil futures market may have an effect on China’s crude
oil futures market (Ji and Zhang, 2019). This means that risks
associated with worldwide crude oil prices might readily spread
to China’s domestic markets, posing an unavoidable problem. As
a consequence, holding oil-related assets in China may increase
portfolio uncertainty, potentially deteriorating return and risk
performance.

Meanwhile, climate change has triggered growing concerns
from the international community, along with the agreement
reached at The Paris Climate Conference in December 2015.
The agreement established a long-term goal for the global
response to climate change, proposing to achieve net zero
emissions of greenhouse gases in the second half of the 21st
century (UNFCCC, 2015). Over the past 2 decades, China’s
CO2 emissions have grown six times faster than the rest of the
world, accounting for nearly two-thirds of global CO2 emissions
growth (IEA, 2020). As the world’s largest carbon emitter, China
plays a critical role in the worldwide network of embodied
carbon emission transfer (Jiang et al., 2019), and has promised
the international community to strive to reach carbon emissions
peak by 2030 and to achieve carbon neutral by 2060.

The consensus is that energy transition is the key to climate
governance, as global warming caused by excessive consumption
of fossil fuels has posed a threat to humanity’s survival in
terms of resources, ecology, economy, etc. As for the Chinese
policymakers, the efforts should be made from two perspectives.
One is to enhance non-fossil energy consumption, while the
other is to decrease traditional fossil energy use, particularly coal
consumption (He et al., 2022). Admittedly, ambitious emission
reduction targets have advanced the revolution of energy
transition. They do, however, add to the uncertainty in the
financial markets. In particular, the decline in demand for
fossil fuels is quite likely to increase investor’s anxiety in
the fossil energy markets. The Paris Agreement would pose
challenges for energy risk management (Batten et al., 2018),
putting fossil fuel firms in a difficult position, and simultaneously

exposing the corresponding financial assets to risk exposure
(Curtin et al., 2019). Thus, in the context of global climate
governance, the implementation of the related policies in China
as well as investors’ sentiment would even exacerbate the risks of
investing in energy markets.

We consider financial markets as a complex network that
investigates the spillover effects between various markets and
gives investors with portfolio asset ideas. Minimizing the
risk of portfolio selection during the COVID-19 pandemic
and selecting the best strategy to shield the investor from
the anticipated loss during a crisis are crucial components
of any investment. Among the literature,different energy
commodities can be considered to reduce their own risks
(Ghorbel and Trabelsi, 2014). In addition, most studies show
that energy investors can focus on the stocks (Batten et al., 2017,
2018), agricultural commodities (Nazlioglu, 2011) and gold
marketsgold (Reboredo, 2013; Shahzad et al., 2019) at the same
time to ensure their returns. Alongwith the flourish development
of green financial markets as well as the growing awareness of
the climate crisis, both green (renewable energy or new energy)
stocks and green bonds become investors’ favored options in
capitalmarkets. Due to the considerable substitution relationship
between fossil and renewable energy sources, higher fossil fuel
prices increase the economic viability of renewable energy
projects, whereas low prices decrease the value of renewable
energy companies. There is a weak correlation between crude oil
and renewable energy stocks, so that combining the two provides
a lucrative hedging prospect (Henriques and Sadorsky, 2008;
Ahmad, 2017). Likewise, green bonds are also found to beweakly
related with energy markets (Reboredo, 2018; Reboredo and
Ugolini, 2020). Based on these findings, conclusions can be safely
drawn that green financial assets are alternative instruments of
risk management in energy markets.

Nevertheless, most of the previous surveys on the risk
dispersion effect of green financial assets were based on data
from developed economies, and there was little evidence from
China. As the world’s second largest economy, major energy
consumer and largest CO2 emitter, China can play a key role
in the global energy revolution. Its special basic reality leads to
a unique energy structure. On the one hand, as a developing
country, China continues to face the objective needs to build
its economy and improve people’s livelihoods. Driven by China’s
large industries, China’s energy demand has increased rapidly in
recent years, whereas that in some developed countries, such as
Europe and the United States, begins to fall. On the other hand,
fossil fuels account for approximately 85% in China’s energy
structure, in which coal (constituting 57.7%) is the mainstay
rather than crude oil. Figure 1 exhibits the structural difference
between China and the United States, Japan, Germany, and other
countries. China has recently enacted a number of supply-side
regulations aimed at reducing coal use in order to meet emission
reduction targets. However, since the second half of 2020, due
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FIGURE 1
Shares of primary energy in different countries. See British
Petroleum (2020b), Available at https://www.bp.com/.

to the recovery of industrial output and the increase of heating
demand in winter, the overall demand for thermal coal has been
relatively large, and the demand for environmental protection
has also been large. Consequently, both coal prices and risks of
coal markets keep rising at nearly the same pace. As the main
source of volatility in the global coalmarkets, China’s coalmarket
merits additional attention (Batten et al., 2019).

As a the core of the economy, green finance plays a significant
role in the low-carbon transition of the economy. Therefore, the
Chinese government has repeatedly emphasized the importance
of establishing a green financial system. With environmental
concerns and policy support, China’s green finance has advanced
rapidly (Yu et al., 2021). Following the first issuance of green
bonds in 2015, China’s green bond market has grown rapidly,
China has become the emergingmarket economywith the largest
issuance of green, sustainable and social related bonds. At the
same time, China’s cumulative issuance of green bonds ranks
second in the world. In 2019, the trading volume of green bonds
in China accounts for above 20% of the global green bond
market (Chen and Zhao, 2021). In the meantime, China’s new
energy stock market has attracted more and more investors,
the successful listing of many new energy enterprises has been
highly recognized by the society (Liu et al., 2022). According to
Renewable Energy Policy Network (REN21), Chinese renewable
energy investment accounts for 32% in 2018, taking the lead of
global renewable energy investment (Now, 2019).

Unlike the previous pandemics, there is consensus that
the COVID-19 would render great impacts on the global
economy and financial markets. Moreover, with the outbreak
of the COVID-19 pandemic and its adverse impact on the
energy market, most energy industries in China have suffered
enormously (Tong et al., 2022), the risk aversion of assets might
change (Elgammal et al., 2021). With these considerations, three
questions are addressed. What is the dynamic connectedness
between China’s various energy assets and other financial assets?
Do green financial assets act superiorly compared with other

assets as risk management instruments in energy markets? How
may the COVID-19 pandemic and the volatility of oil and
coal prices affect the spillover effect between energy and green
financial markets?

The main contributions of this paper are as follows. Firstly,
energy assets are divided into crude oil and coal in the analysis.
To represent green financial markets, green stocks and bonds
are introduced. This paper not only proves the weak relationship
between energy markets and green financial markets, but also
identifies which one of the green financial assets would beweaker
correlated with energy markets. Secondly, both the traditional
financial assets that interact with energy-related markets as well
as the traditional safe-haven assets are also considered in the
present study, with the aim of emphasizing the superiority of
green financial assets as risk management instruments. Thirdly,
apart from static analysis, dynamic and asymmetric analyses are
also conducted in order to accurately capture the risk contagion
across time periods and situations. This paper finds that green
bonds and stocks may become better safe havens with the
proposal of carbon peaking and carbon neutrality goals, but
investors still should be cautious of extraordinary uncertainty in
the coal market.

The remainder of this paper is organized as follows.
Section 2 reviews the related literature. Section 3 introduces
the methodology. Section 4 describes the data and provides the
preliminary analysis. Section 5 presents the empirical results.
Section 6 concludes.

2 Literature review

2.1 Spillover effects between crude oil
and other markets

There is plenty of literature suggesting that energy
commodities and stocks are weakly correlated, which can be
therefore combined to achieve a good portfolio performance.
Through the wavelet analysis, Khalfaoui et al. (2015) the
spillovers between the global oil market and the G7 stock
markets. Following the outbreak of the global financial crisis in
2008, it is verified that the volatility transition between the two
markets has risen tremendously.Moreover, Chkili et al. (2014)
focus on the dynamic spillovers between crude oil and United
States stock markets, thus ending up with the conclusion that the
correlations between those market would significantly increase
during the periods of ascending economic uncertainty. As can
be seen, the majority of investigations focus on global oil prices
and stockmarkets in developed economy, and there is scant data
for China’s markets. However, there are still several exceptions.
For example, both Sadorsky (2014) and Batten et al. (2018)
emphasize the necessity of studying emerging markets, and
present the correlation index based on the data of oil markets
collected from the developed and developing countries.
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Meanwhile, as the most recognized safe-haven asset, the
spillovers between gold and crude oil have been largely studied
as well. It is commonly verified that there exists a relatively weak
relationship between gold and energy markets, especially crude
oil markets (Narayan et al. (2010); Reboredo (2013); Bildirici
and Turkmen (2015)). In addition, Junttila et al. (2018) find that
gold is an attractive cross-market hedging instrument especially
in turbulent times, with its safe-160 haven properties as an
asset being significant in energy stocks. Based on a more recent
research, Elgammal et al. (2021) point out that the spillovers
between the energy, stock, and gold markets have evolved over
time, particularly in the aftermath of the COVID-19 epidemic.

Since biofuels that depend on crops, such as corn and
soybeans, are one of the alternatives to chemical energy sources
(Chang and Su, 2010), oil markets are often linked to agricultural
markets in the spillover analysis, (Harri et al., 2009).Based on the
linear causality analysis, Nazlioglu et al. (2013) believe that oil
prices and agricultural prices do not affect each other. Using
the data from South Africa, Fowowe (2016) ends up with a
similar conclusion. Specifically, he discovers that agricultural
prices are neutral to global oil prices in both short and long
terms. In contrast, Nazlioglu and Soytas (2012) conclude that
oil prices have a significant impact on the prices of agricultural
commodities, by analyzing the prices of 24 types of agricultural
commodities worldwide. Subsequently, Ji et al. (2018a) establish
a dependence-switching CoVaR-copula model, indicating that
along with the financialization of agricultural commodities,
there is a high tail dependence between energy and agricultural
markets.

Moreover, Foglia and Angelini (2020) find that dynamic
connectedness between oil and clean energy sector reach their
highest values in turbulence times. Accordingly, it’s explicit
that the spillovers between crude oil and other markets would
vary against not just geographical factors but also economic
aspects1. From these perspectives, this paper intends to add to the
knowledge about the dynamic networking performance between
crude oil and other markets, by conducting empirical analysis
based on the data from China’s markets covering the periods
of both the COVID-19 pandemic and the subsequent economic
recovery phases.

2.2 Market connectedness between coal
and other assets

China is now the world’s second-largest economy. With
the development of China’s economy and the rising energy
consumption, China’s energy markets have become more

1 Specifically, it is verified that the magnitude and direction of spillovers
among different oil prices could change over time (Dutta et al., 2019).

susceptible to global factors. By presenting an overview of
the changing status of China using data from 1991 to
2016, Yu et al. (2020) conclude that China has turned into
a spreader of spillovers and an indispensable participant
in globalization. However, most of the existing literature
pay attention to the connectedness between oil and China’s
stock markets. Li and Wei (2018) employ Brent oil and
the Shanghai Stock Index to demonstrate that the financial
crisis would enhance the dependences between the crude
oil market and China stock market, especially under long-
term investment horizons. Wang and Wang (2019) examine
the connectedness between the international oil and 11 sectors
in China’s stock markets. Applying the data from Shanghai
oil futures, Zhu et al. (2021) demonstrate that oil futures are
substantially influenced by stock markets during the COVID-19
pandemic.

Coal is crucial to China’s energy framework, even more
important than oil in the country’s energy markets. It is already
argued that coal-related shocks might be more essential in terms
of the spillovers of Chinese energy stocks (Sun et al., 2021).
Therefore, it is vital to segregate various types of energy
submarkets in order to provide more rigorous suggestions about
risk management. Compared to oil, empirical studies on risk
management in coal markets are relatively lacking. Through
a diagonal BEKK model, Zolfaghari et al. (2020) argue that
coal markets are distinct from oil markets in terms of their
negative correlation with stock markets.According to the data
collected in Asia, Batten et al. (2017)) note that coal and natural
gas would perform differently in hedging oil, owing to the
high dependence on the energy structure of this region on
coal. Naeem et al. (2021b) reveal the existence of multiple tail
dependence regimes between the various components of the five
energy markets (crude oil, natural gas, heating oil, gasoline, and
coal) and green bonds. From this point, this paper contributes to
the literature by providing new insights into the riskmanagement
in China’s energy markets, by exploring the spillover effect
between China’s coal and oil markets respectively, particularly in
light of the current supply constraints and anomalous coal prices.

2.3 The nexus between green financial
and fossil energy markets

With the rapid development of green financial markets,
there is a growing body of literature investigating the spillovers
between fossil energy markets and green financial ones, arising
from the significant substitution relationship between fossil and
renewable energy. Nevertheless, research on the spillovers of
green financial assets is still in its infancy and growing phases
with much faultiness.

Firstly, most of the existing literature examine the possibility
of a single green investment to mitigate the risk associated with
energy investments. Bouri et al. (2022) underline the impact
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of climate policy on the preference of investors for green
energy stocks, which matters for asset pricing, style rotation
strategies, and asset allocation. With regard to green stocks,
the information transmission between the stock prices of
renewable energy and fossil energy assets is first discussed by
Henriques and Sadorsky (2008) with a vector autoregressive
(VAR) model. They find that renewable energy stock prices
are closely related to technology stock prices while weakly
affected by oil prices. Sadorsky (2012) extends these findings
with a multivariate GARCH model and suggests that their
correlation increased following the global financial crisis (GFC).
Besides, Ahmad (2017) applies the directional spillover index
approach to analyze the process of information transmission
among the prices of clean energy firms, technology stocks and
oil prices. Finally, argues that there is high interdependence
structure between clean energy stocks and technology stocks.
By employing a wavelet approach, Reboredo et al. (2017) report
the evidence of a moderate correlation between global oil
prices and renewable energy stock prices in the short term,
while a strong correlation in the long term. In terms of green
bonds, Reboredo (2018) constructs systemic risk models of
copulas and CoVaR to explore the tail correlation between
green bonds and other global financial assets, concluding that
the green bond market is not tightly linked to other markets.
Pham and Nguyen (2021) end up with the similar conclusions
through the Cross-Quantilogram (CQ), identifing the cross-
quantile dependence between green bonds and other assets.
Moreover, Naeem et al. (2021a)apply the same approach to verify
the asymmetric spillover between green bonds and different
classes of increasingly financialized commodities across the
time-and frequency-domain.

Secondly, in the existing research, green financial assets
are often represented by global indices, such as MSCI
Green Bond Index and S&P Green Bond Index. Due to the
considerable investment demands and policy support in China,
the association between China’s green financial and energy
markets is worth discussing. To the best of our knowledge, few
studies have yet been conducted based on China’s data. Lin and
Chen (2019) investigate the dynamic correlations and volatility
spillovers between Beijing CET market, coal market and stock
market of NEC based on VAR model and GARCH model,and
discover that there exists time-varying correlation and significant
long-term persistence of shocks in both the coal and new energy
stock markets in China. Gao et al. (2021) analyze China’s data
from 2015 to 2020 and discover that the green bond market
is affected by the unidirectional spillover from green stocks,
industrial stocks, and industrial commodities.

Thirdly, positive and negative market impacts in one market
may spillover into other markets in different ways, making
asymmetric correlations critical for investors. However, only a
few papers have included asymmetric correlations in the study
of risk management, especially the asymmetry in spillover of

China’s green financial markets. Xia et al. (2019) investigates
the dependence between various fossil energy products returns
with renewable energy development from the extreme risk
perspective, various fossil energy products especially oil and
coal indeed exert a strong time-varying effect on renewable
energy development. In the analysis of Dutta et al. (2020) and
Liu et al. (2021), which studies the effect of uncertainty in energy
sector firms on clean energy exchange traded funds (ETFs), the
evidence of an asymmetric effect is presented. Kocaarslan and
Soytas (2019) reveal significant asymmetric effects among the
variables of interest, and suggest that the impacts of positive
and negative changes in the oil prices, interest rates and
technology stock prices on clean energy stock prices substantially
vary in the short-run and long-run. Saeed et al. (2021) and
Saeed et al. (2020) show that, unlike clean energy stocks, green
bonds are negatively related to dirty energy assets, especially
energy ETF. Park et al. (2020) report that green bonds exhibit
asymmetric spilloverand behave differently from the stock
market. This paper applies the data of China’s markets, examines
the dynamic spillover effect and asymmetric connectedness
between fossil energy, green financial and major traditional
financial markets in China. It is worthy noting that our
results could complement the limited literature on the dynamic
spillover effect between China’s green financial and energy
markets.

3 Methodology

To analyze the direction and the of the spillover effect
across various markets, this paper adopts the spillover index
of Diebold and Yilmaz (2012), which is developed based on
both the generalized VAR and the forecast error variance
decomposition procedure. Comparedwith the traditionalmodel,
the DY spillover index model can not only eliminate the
dependence of the results on the lag order, but also reflect
the risk spillover results of the whole market and in different
markets. After continuous improvement, the current spillover
index and complex network method are able to quantify the
overall risk spillover of multiple markets as well as the direction
and strength of mutual spillover between two markets, and
further estimate the net risk spillover in different markets over
time.

Firstly, the p-order VAR model of covariance stability can be
mathematically described as

xt =
p

∑
i=1

φixt−1 + εt, (1)

where xt represents the N-dimensional column vector of each
market price yield and ɛ∼(0,∑) is a vector of independently and
identically distributed disturbances with zero and ∑ covariance
matrix. Since φt(N×N) is the autoregressive coefficient matrix
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with respect to time t = 1,…,T, we thus have the moving average
representation, given by

xt =
∞

∑
i=0

Aiεt−i. (2)

In Eq. 2, the coefficient matrix Ai is N×N, satisfying

Ai = φ1Ai−1 +φ2Ai−2 +⋯+φpAi−p, (3)

where A0 is the N×N identity matrix and Ai = 0, i < 0.
Secondly, we present the forecast error variance

decomposition procedure. It should be noted that the variance
decomposition, which describes the proportion of the H-step
prediction error variance of xi explained by variable xj especially
when variable xi is externally affected, is often used to quantify
the spillover effect of variable xj on xi, denoted as θg

ij(H). However,
in order to make variance decomposition independent from
variable ordering, Diebold and Yilmaz (2012) use the approach
of Koop et al. (1996); Pesaran and Shin (1998), expressed as

θg
ij (H) =

σ−1jj ∑
H−1
h=0
(e′iAh∑ej)

2

∑H−1
h=0
(e′iAh∑A′hei)

, (4)

where σjj is the standard deviation of the error term for the
jth equation, and ei is the selection vector with one as the ith
element, and zeros otherwise. Additionally, ∑ represents the
covariance matrix of the vector of errors ɛ. Under the framework
of the generalized variance decomposition, the impact is usually
explained by the error distribution of historical observations,
rather than normalizing the residual error. At this point, for
variable xi, the sum of contributions of other variables to its
prediction error variance is not equal to 1, which suggests
∑N

j=1θ
g
ij(H) ≠ 1. Therefore, we normalize the matrix shown in

Eq. 4 as

θ̃g
ij (H) =

θg
ij (H)

∑N
j=1

θg
ij (H)
, (5)

with ∑Nj=1θ̃
g
ij(H) = 1 and ∑Ni,j=1θ̃

g
ij(H) = N. Accordingly, θ̃g

ij(H) is
obtained as an alternative measure of the pairwise directional
connectedness from market j to market i at horizon H. In
the connectedness decomposition table, we define the pairwise
directional connectedness from j to i as

Sg
i←j (H) = θ̃

g
ij (H) . (6)

Furthermore, to examine the spillover effect transmits
(receives) to (from) one particular variable, Diebold and
Yilmaz (2012) define the directional spillover index through the
matrix as

Sg
•←i (H) =

∑N
j=1
j≠i
θ̃g
ji (H)

∑N
i,j=1

θ̃g
ji (H)
× 100 =

∑N
j=1
j≠i
θ̃g
ji (H)

N
× 100, (7)

Sg
i←• (H) =

∑N
j=1
j≠i
θ̃g
ij (H)

∑N
i,j=1

θ̃g
ij (H)
× 100 =

∑N
j=1
j≠i
θ̃g
ij (H)

N
× 100, (8)

where the spillover “to others” index and the spillover “from
others” index are denoted by Sg

•←i(H) and Sg
i←•(H) respectively.

And then the difference between the two is defined as the net
spillover index, given by

Sg
i (H) = S

g
•←i (H) − S

g
i←• (H) . (9)

As implied by Eq. (9), when Sg
i (H) > 0, market i should regarded

as a net transmitter of risk, that tends to exert influence on other
markets in the whole system. As Sg

i (H) < 0, market i should be
regarded as a net receiver, that is more sensitive to the variation
of other markets. So that the total spillover index can be derived,
given by

Sg (H) =
∑N

i,j=1
i≠j

θ̃g
ij (H)

∑N
i,j=1

θ̃g
ij (H)
× 100 =

∑N
i,j=1
i≠j

θ̃g
ij (H)

N
× 100, (10)

which explains the proportional contribution of the spillover
effect between N markets to the total forecast error variance and
averages the off-diagonal elements.

Following Diebold and Yilmaz (2014, 2016), we rewrite the
connectedness network as a weighted directed one, the element
of which depicts pairwise directional connectedness, Sg

i←j(H).
To be specific, each row sum of the adjacency matrix (node-in
degrees) describes the total directional connectedness “from” the
corresponding market, Sg

i←•(H); and each column sum of that
(node-out degrees) describes the total directional connectedness
“to” the corresponding market, Sg

•←i(H). In doing so, we are able
to visualize the connectedness acrossmarkets, where both “from”
and “to” directional connectedness are presented by the edges of
network.

4 Data and preliminary analysis

4.1 Data

Table 1 describes the variables used in the analysis. With the
aimof presenting a synthetical analysis onChina’s energymarket,
this paper divides the energy market into crude oil and coal.
As for the energy futures market, we choose NanHua Crude Oil
Index2 andCSI Coal Futures Index3 as the proxies. In specific, the

2 Established in 1996, Nanhua Futures Co., Ltd. is a leading integrated
financial service provider in China, providing high-quality integrated
financial services for domestic and overseas customers.

3 China Securities Index Co., Ltd. (“China Securities Index Company”) is
one of the most influential index suppliers in China, founded in August
2005, who is currently a financial market index provider jointly funded
by Shanghai and Shenzhen stock exchanges.
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TABLE 1 Description of variables.

Primary submarket Secondary submarket Index name Abbreviations

Energy Market
Futures Market NanHua Crude Oil Index Oil

CSI Coal Futures Index Coal

Green Financial Market
Stock Market CSI New Energy Index CSINE

Bond Market
ChinaBond China Green

CGBI
Bond Index

Traditional Financial Market

Stock Market China Securities Index 300 CSI300
CSI Oil and Gas Index CSIOG
CSI Coal Index CSICo

Bond Market CSI Treasury Bond Index CTBI
Futures Market SHFE Aurum Commodity Gold

SHFE Argentum Commodity Index Silver
CSI Agriculture Futures Index AGI
CSI Industrial Metals Futures Index IMI

former is calculated based on the closing price of Shanghai crude
oil futures contract in China, which is the third largest trading
volume crude oil futures and the Asian price benchmark. While
the latter is a composite index on the basis of the coal-related
commodity futures in China’s commodity futures markets.

Also, we apply CSI New Energy Index and ChinaBond China
Green Bond Index4 as the respective proxies of the green financial
market. For the sake of comparison, we further introduce the
traditional financial markets, such as stock market, commodity
futures market and bond market. They namely China Securities
Index 300 (CSI300), CSI Oil and Gas Index, CSI Coal Index
and CSI Treasury Bond Index. Specifically, China Securities Index
300 (CSI300) is the most representative stock index in China,
tracking the top 300 mainland listed firms in the Shanghai
Stock Exchange and Shenzhen Stock Exchange, CSI Oil and
Gas Index and CSI Coal Index track the performance of the
listed companies running business in oil, gas and coal-related
mining and processing respectively. CSI Treasury Bond Index
is widely employed as the variable of Treasury in China-
based studies. Besides, we consider four important commodity
futures markets, namely SHFE Aurum Commodity Index5, SHFE
Argentum Commodity Index, CSI Agriculture Futures Index and
CSI Industrial Metals Futures Index. The sample data is obtained
from the wind database and ranges from 26 March 2018 to 5
November 2021.

In addition, all the time series of prices are originally
transferred to returns series by the logarithmic percentage

4 Although there are several other green bond indexes, i.e., ChinaBond
China Green Bond Select Index, ChinaBond China Climate-Aligned Bond
Index. They all belong to ChinaBond index, the volatility difference of
which is less than 0.0015.

5 SHFE refers to Shanghai Futures Exchange, which is one of the major
futures exchanges in China.

difference, defined as

rt = ln(Pt/Pt−1) × 100. (11)

To quantify the asymmetric information spillovers, we divide the
data of returns into positive returns and negative ones, expressed
as

r (+) = {
rt, rt > 0,

0, rt ≤ 0.
(12)

r (−) = {
0, rt ≥ 0,

rt, rt < 0.
(13)

In Eqs 12, 13, r(+) and r(-) represent positive and negative
returns respectively. It is obvious that the sum of the two returns
shown in Eqs 12, 13 describes the overall returns.

4.2 Preliminary analysis

Table 2 reports the descriptive statistics for submarket
returns. As shown in Table 2, all series of all markets have a
positive average value close to 0, except oil futures and oil stock.
Also, it can be seen that green stocks have the largest standard
deviation value, whereas green bonds exhibit the lowest standard
deviation values. From the kurtosis and skewness coefficients, we
firstly find that the kurtosis values of all series are high, indicating
they show the leptokurtic distributions. Secondly, we can see that
the returns of the majority markets are negatively skewed, while
green bonds and the treasury bonds are exceptions. Furthermore,
the test of Jarque Bera rejects the null hypothesis of normal
distributions. In terms of Dickey-Fuller (ADF) test, the results
show clearly that all return series have stationarity at the 1%
significance level. And the Ljung-Box test provides evidence of
autocorrelations of returns series Table 3.

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2022.986341
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


T
A
B
LE

2
Su

m
m
ar
y
d
es
cr
ip
ti
ve

st
at
is
ti
cs

fo
r
su
b
m
ar
ke
ts
re
tu
rn
s.

O
il

C
oa

l
C
SI
O
G

C
SI
C
o

C
SI
30
0

C
SI

N
E

C
TB

I
C
G
BI

G
ol
d

Si
lv
er

A
G
I

IM
I

M
ea

n
−0

.0
00

4
0.
10

54
-0

.0
00

3
0.
00

02
0.
00

03
0.
11

42
0.
00

02
0.
00

02
0.
03

34
0.
03

2
0.
03

92
0.
07

84
M

ax
im

um
0.
09

73
6.
56

7
0.
06

76
0.
06

94
0.
05

78
7.
16

78
0.
01

12
0.
00

8
5.
39

89
8.
06

18
3.
63

31
4.
07

66
M

in
im

um
−0

.1
12

−1
1.
58

88
−0

.0
81

−0
.0
96

5
−0

.0
82

1
−9

.4
58

5
−0

.0
04

2
−0

.0
02

4
−4

.8
08

6
−1

0.
34

59
-4

.7
95

3
−6

.8
77

7
St

d.
D
ev

ia
tio

n
0.
02

22
1.
51

96
0.
01

53
0.
02

02
0.
01

34
1.
99

53
0.
00

11
0.
00

07
0.
87

86
1.
76

18
0.
67

03
1.
05

71
Sk

ew
ne

ss
−0

.3
13

6
−0

.8
77

9
−0

.3
15

−0
.2
66

1
−0

.3
93

3
−0

.1
82

9
1.
57

68
2.
93

91
−0

.2
77

8
−0

.3
22

2
−0

.3
98

1
−0

.7
43

6
Ku

rt
os

is
5.
57

89
10

.8
95

1
6.
06

52
4.
91

79
6.
16

64
4.
86

79
18

.6
80

7
36

.0
21

4
7.
93

86
8.
67

77
8.
73

85
7.
09

68
Ja
rq

ue
-B

er
a

25
7.
40

37
**

*
2,
39

0.
38

1*
**

35
7.
83

07
**

*
14

4.
76

06
**

*
38

8.
98

03
**

*
13

2.
38

3*
**

9,
34

8.
40

3*
**

41
,1
08

.1
5*

**
90

2.
52

33
**

*
1,
19

3.
14

2*
**

1,
22

6.
48

2*
**

69
4.
12

67
**

*
A
D
F

−2
7.
39

29
**

*
−1

8.
53

84
**

*
−2

9.
47

40
**

*
−3

0.
86

79
**

*
−2

9.
72

37
**

*
−3

0.
06

03
**

*
−2

0.
54

96
**

*
−1

4.
49

46
**

*
−2

8.
65

13
**

*
-2

6.
41

58
**

*
−2

5.
15

96
**

*
−2

4.
08

36
**

*
LB

-Q
(1

0)
16

.8
1*

12
1.
34

**
*

18
.2
57

**
16

.7
74

*
12

.4
88

7.
23

16
12

9.
39

**
*

24
1.
84

**
*

16
.1
94

*
37

.5
64

**
*

31
.8
87

**
*

41
.1
83

**
*

N
ot
es
:J
ar

qu
e-

Be
ra

te
st
sf

or
th

e
nu

ll
hy

po
th

es
is

of
a
no

rm
al

di
st
rib

ut
io

n.
A
D
F
te
st
st

he
es

tim
at
es

of
th

e
A
ug

m
en

te
d
D
ik

ey
Fu

lle
ru

ni
tr

oo
ts

te
st
s.

LB
-Q

(1
0)

is
th

e
Lj

un
g-

Bo
x
te
st

fo
rt

he
au

to
co

rr
el
at
io

n
of

re
tu

rn
ss

er
ie
s.

*,
**

an
d
**

*
de

no
te
ss

ig
ni

fic
an

ce
at

th
e
10

%
,5

%
an

d
1%

le
ve

ls,
re

sp
ec

tiv
el
y.

T
A
B
LE

3
Su

m
m
ar
y
d
es
cr
ip
ti
ve

st
at
is
ti
cs

fo
r
p
o
si
ti
ve

re
tu
rn
s.

O
il

C
oa

l
C
SI
O
G

C
SI
C
o

C
SI
30
0

C
SI

N
E

C
TB

I
C
G
BI

G
ol
d

Si
lv
er

A
G
I

IM
I

M
ea

n
0.
00

78
0.
56

95
0.
00

53
0.
00

74
0.
00

5
0.
79

38
0.
00

05
0.
00

03
0.
31

74
0.
57

83
0.
26

32
0.
42

46
M

ax
im

um
0.
09

73
6.
56

7
0.
06

76
0.
06

94
0.
05

78
7.
16

78
0.
01

12
0.
00

8
5.
39

89
8.
06

18
3.
63

31
4.
07

66
M

in
im

um
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
0.
00

00
St

d.
D
ev

ia
tio

n
0.
01

26
0.
90

02
0.
00

89
0.
01

19
0.
00

78
1.
22

43
0.
00

08
0.
00

05
0.
53

26
1.
09

24
0.
40

97
0.
61

16
Sk

ew
ne

ss
2.
51

16
2.
60

74
2.
43

22
2.
11

07
2.
17

15
1.
99

25
5.
15

11
6.
75

26
2.
97

83
3.
06

7
2.
46

42
1.
90

19
Ku

rt
os

is
11

.3
83

5
11

.8
37

3
10

.4
42

2
7.
68

99
9.
09

85
7.
27

43
54

.2
28

6
80

.2
83

1
17

.2
60

6
14

.4
04

1
12

.3
35

3
7.
29

85
Ja
rq

ue
-B

er
a

3,
49

0.
27

5*
**

3,
84

7.
54

5*
**

2,
88

8.
54

1*
**

1,
45

4.
94

3*
**

20
48

.2
93

**
*

1,
24

7.
87

9*
**

99
,7
77

.3
9*

**
22

4,
91

6.
4*

**
8,
72

7.
89

3*
**

6,
12

7.
32

**
*

4,
07

2.
05

4*
**

1,
20

3.
92

2*
**

A
D
F

−2
9.
47

49
**

*
−2

1.
93

47
**

*
−1

8.
74

73
**

*
−2

8.
18

37
**

*
−2

9.
02

27
**

*
−2

9.
98

23
**

*
−2

2.
94

24
**

*
−1

6.
22

04
**

*
−2

7.
83

10
**

*
−1

7.
83

80
**

*
−2

4.
73

41
**

*
-2

4.
66

65
**

*
LB

-Q
(1

0)
15

.2
13

18
7.
07

**
*

43
.7
34

**
*

61
.5
41

**
*

25
.3
41

**
*

38
.1
4*

**
63

.9
4*

**
11

1.
66

**
*

41
.0
51

**
*

11
3.
29

**
*

57
.2
67

**
*

50
.6
46

**
*

N
ot
es
:J
ar

qu
e-

Be
ra

te
st
sf

or
th

e
nu

ll
hy

po
th

es
is

of
a
no

rm
al

di
st
rib

ut
io

n.
A
D
F
te
st
st

he
es

tim
at
es

of
th

e
A
ug

m
en

te
d
D
ik

ey
Fu

lle
ru

ni
tr

oo
ts

te
st
s.

LB
-Q

(1
0)

is
th

e
Lj

un
g-

Bo
x
te
st

fo
rt

he
au

to
co

rr
el
at
io

n
of

re
tu

rn
ss

er
ie
s.

*,
**

an
d
**

*
de

no
te
ss

ig
ni

fic
an

ce
at

th
e
10

%
,5

%
an

d
1%

le
ve

ls,
re

sp
ec

tiv
el
y.

8



Tables 3, 4 present the descriptive statistical analyses of
positive and negative returns. It is obvious that the negative
returns series have more leptokurtic distributions compared
with positive ones, whereas bond markets are the exception.
Also, positive and negative returns series deviate from normal
distributions and both are stationary.

5 Empirical results

5.1 Total spillover index

Table 5 reports the estimates of the total static spillover
matrix between the fossil energy markets, green financial
markets and major traditional financial markets. Specifically,
the diagonal of the matrix demonstrates the proportion of
risk carried by each submarket. The off-diagonal row sums
(termed “From”) and column sums (termed “To”) show the
entire directional connectedness from the correspondingmarket
and to that respectively. Moreover, the bottom right corner
presents the total connectedness. The row “Net” exhibits the
total sum of the net-bilateral directional spillover effect, where
a negative value implies a net receiver while a positive one
implies a net transmitter. In general, we may safely end up the
conclusion that roughly 48.17% of the forecast error variances
can be attributed to the return spillovers, indicating high
interdependence between the returns of various markets.

With respect to the directional connectedness, the main
focus of this paper is the fossil energy markets as well as
their spillover relationships with other markets, especially the
green financial markets. Firstly, it can be seen that the fossil
energy stock markets have strong spillover effects, among which
the oil stock is the most interconnected with other markets,
transmitting 74.41% shocks to others while receiving 60.83%
shocks from others. Noticeably, in China’s fossil energy markets,
there are significant return spillovers from the stock to the futures
markets. Specifically, as for coal, the contribution of stocks to
futures is 12.70%. Likewise the oil stocks contribute to 11.09%
of the variation in the oil futures returns, and there is a negative
net connectedness of oil futures relative to the system.

The beforementioned results are different from the findings
of previous studies, claiming that oil shocks act as an important
factor affecting stock market returns (Maghyereh et al., 2016;
Ahmed andHuo, 2021). A possible explanation is that we choose
a sample period ranging from 2018 to 2021, at that time, China
was experiencing both shocks from the oil market and the
COVID-19 pandemic. However, the oil demands depend on the
development of the global economy (Unger, 2015), while stock
markets are more responsive to the prosperity and recession of
the global economy than oil (Kim andAndo, 2012). Moreover, as
indicated by Yu et al. (2020), the oil market stimulates rapid and
continual fluctuations in market dependences, which become
manifest most acutely in the aftermath of the Financial Crisis T
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TABLE 5 Total return spillovermatrix.

Oil Coal CSIOG CSICo CSI300 CSI NE CTBI CGBI Gold Silver AGI IMI FROM

Oil 65.39 2.62 11.09 4.01 3.10 1.76 0.59 0.08 0.03 3.04 4.24 4.05 34.61
Coal 2.52 54.74 5.42 12.70 1.20 1.01 0.59 0.13 0.10 1.16 2.91 17.52 45.26
CSIOG 6.67 3.66 39.17 20.41 12.70 7.97 1.74 0.45 0.03 1.23 1.65 4.33 60.83
CSICo 2.42 8.64 20.40 39.22 10.84 7.07 2.04 0.82 0.01 0.99 1.57 5.99 60.78
CSI300 1.96 0.82 13.35 11.45 41.45 22.47 2.36 1.36 0.06 1.58 0.39 2.75 58.55
CSINE 1.41 0.62 9.80 8.86 25.92 47.96 1.05 0.70 0.21 1.31 0.27 1.89 52.04
CTBI 0.58 0.70 2.33 2.90 3.42 1.18 52.92 29.87 2.40 0.28 1.13 2.29 47.08
CGBI 0.08 0.14 1.12 1.51 2.44 1.02 36.03 53.79 1.97 0.38 0.53 0.98 46.21
Gold 0.02 0.19 0.04 0.07 0.19 0.22 2.39 1.61 60.14 34.12 0.80 0.21 39.86
Silver 2.52 0.98 1.66 1.35 2.05 1.53 0.19 0.28 30.81 54.09 1.87 2.68 45.91
AGI 5.19 4.08 3.25 2.88 1.20 0.74 1.57 0.77 0.50 1.85 67.96 10.01 32.04
IMI 3.48 17.69 5.95 8.39 4.24 3.01 2.06 0.87 0.16 2.57 6.51 45.08 54.92
TO 26.85 40.13 74.41 74.54 67.30 47.98 50.60 36.94 36.26 48.52 21.86 52.70 578.08
All 92.24 94.87 113.58 113.76 108.75 95.93 103.52 90.74 96.40 102.60 98.82 97.78 48.17%
NET −7.76 −5.13 13.58 13.76 8.75 −4.07 3.52 −9.26 −3.60 2.60 −10.18 −2.22

Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike information criterion), generalized variance decompositions of 10-days-ahead forecast errors.

of 2007–08, demonstrating the increasing interdependence
between the oil and stock markets. Furthermore, the growing
influence of China on the dynamics of these relationships, in
the period following the Great Recession, presents evidence
that it begins to assume an increasingly important role in
global economic recovery. Through the dynamic analysis of the
overview of China’s economic growth spillover effect, Wang and
Zhang (2021) also confirmed that China’s huge economic scale
after COVID-19 has played an important role in revitalizing the
global economy. As a consequence, the spillover effect of China’s
stock market could not be ignored.

Secondly, we find that energy futures show a relatively
close relationship with agricultural and industrial metals
commodities6. Particularly, the returns of coal are highly
correlated with that of industrial metals, transmitting 17.69%
shocks to industrial metals and receiving 17.52% shocks from
them. In comparison, energy futures are weakly linked to
green financial assets. Specifically, compared with traditional
bonds, the green bond market is in weaker correlation
with the fossil energy markets, receiving only 0.08% and
0.14% shocks from oil and coal, that is second only to
gold. Green stocks also receive fewer shocks from energy
futures than large-cap stocks. Therefore, we can conclude that,
compared to other financial assets, green financial assets have
weaker spillover effects with energy assets and may serve as
an appropriate diversified portfolio instrument for energy
futures, with green bonds having the greatest potential for
performance.

Thirdly, the contributions of the two fossil energy assets to
the two green assets are significantly different. For the green

6 These results agree with the statements that the market co-movements
between energy and agricultural commodities have been increasing in
recent years whose returns are highly associated Nicola et al. (2016).

bondmarket, it receivesmore information fromcoal (0.14% from
futures and 1.51% from stocks), while it receives a less portion of
spillovers from oil (0.08% from futures and 1.12% from stocks).
Nevertheless, for the green stock market, it receives more shocks
from oil (1.41% from futures and 9.80% from stocks), rather than
from coal (0.62% from futures and 8.86% from stocks). China’s
special energy structure should play as the main reason for these
results. In specific, China’s coal consumption accounts for 57%
in 2020, and most of its carbon-based electricity comes from its
huge coal reserves (Wang and Li, 2016). In the context of strong
industrial demands as well as the low price of coal, coal becomes
the backbone of China’s energy, so that its price rise would not
affect investors’ sentiment causing them to switch to other assets.
In terms of oil, China is the largest importer of oil with a high
degree of overseas dependence and is susceptible to international
factors. It is not difficult to explain our finding that the green
stockmarket has a close linkwith oil instead of coal because there
is a substitution relation between oil and new energy7.

Finally, we can observe that green bonds are closely related
with treasury bonds, while green stocks are correlated with
the large-cap stock market, implying that the two green
financial markets are relatively independent8. Also, we find that
green stocks are more associated with industrial metals than
agricultural commodities. It implies that, compared to biofuels,
the development of the new energy sector is more susceptible to
changes in the cost of industrial metals.

To sum up, there are strong spillover effects in the fossil
energy markets, including futures and stocks. It also indicates
that diversification benefits are not provided within the same

7 According to the conclusion of Oberndorfer (2009), rising oil prices are
always regarded as one of the factors stimulating new energy investment.

8 The results suggest that using Chinese data also bears out Pham and
Nguyen (2021)’s arguments.
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market. Compared with the traditional financial assets, green
financial assets are more suitable for the fossil energy markets as
risk diversification instruments.In China, green bonds receives
fewer shocks from crude oil than coal, however, green stocks are
precisely the opposite.

5.2 Asymmetric spillover analysis

In this subsection, we conduct the asymmetric spillover
analysis by decomposing the returns into positive and negative
ones. As shown in Tables 6, 7, we can generally find that the
total connectedness in the positive returns system (39.20%) is less
than that in the negative returns system (45.54%), thus providing
evidence of asymmetry.

Firstly, we put attention on the role of green financial assets
in diversifying the risks of fossil energy stocks. Likewise, the

stocks internally remain a strong spillover effect. However, the
contribution from oil stocks and coal stocks to green bonds
decrease to 0.20% and 0.30% respectively in the negative returns
system. Generally, investors are more afraid of the risk of price
decline, and the spillover effect of negative emotions between
markets is stronger. Hence these results indicate that the green
bond market is almost immune to the downside risk from the
fossil energy stocks, which suggests that green bondsmay present
safe-haven characteristics as risk diversification instruments. As
for green stocks, the downside risk of oil stocks and coal stocks
on green stocks increase significantly (to 10.68% and 10.53%
respectively), which reveals that the green stocks are not suitable
as a dispersant of fossil energy stocks, but may play the role of a
hedge.

Secondly, we compare the connectedness of various assets
in different subsamples. To be specific, for the green bond
market, the connectedness between gold and green bonds in

TABLE 6 Total spillovermatrix for positive return.

Oil Coal CSIOG CSICo CSI300 CSI NE CTBI CGBI Gold Silver AGI IMI FROM

Oil 75.49 1.80 8.56 1.68 1.26 0.67 0.17 0.23 0.49 2.63 3.97 3.05 24.51
Coal 1.75 62.85 5.23 12.47 0.29 1.14 0.07 0.10 0.01 0.53 2.53 13.03 37.15
CSIOG 5.43 3.80 48.12 21.04 11.48 5.26 0.28 0.02 0.04 0.67 1.35 2.51 51.88
CSICo 1.13 8.92 20.90 48.42 9.17 5.54 0.37 0.18 0.05 0.29 1.12 3.92 51.58
CSI300 0.86 0.26 12.22 9.91 53.00 19.68 0.97 0.62 0.10 0.85 0.38 1.16 47.00
CSINE 0.48 1.05 6.33 6.80 22.48 60.27 0.34 0.11 0.32 0.71 0.32 0.78 39.73
CTBI 0.04 0.07 0.30 0.47 0.64 0.15 59.28 35.82 2.40 0.31 0.04 0.48 40.72
CGBI 0.01 0.06 0.13 0.46 0.25 0.14 38.92 58.12 1.53 0.21 0.04 0.12 41.88
Gold 0.39 0.13 0.11 0.07 0.00 0.03 2.48 1.49 64.09 30.23 0.75 0.22 35.91
Silver 2.11 0.54 0.88 0.29 0.97 0.92 0.28 0.22 28.92 60.91 1.91 2.07 39.09
AGI 4.75 2.94 2.02 1.57 0.54 0.95 0.22 0.14 0.54 1.64 79.37 5.32 20.63
IMI 3.02 14.87 3.74 6.71 2.23 1.91 0.50 0.35 0.26 2.11 4.58 59.72 40.28
TO 19.96 34.43 60.43 61.48 49.33 36.38 44.60 39.27 34.65 40.18 16.99 32.66 470.36
All 95.45 97.28 108.55 109.90 102.33 96.65 103.88 97.39 98.74 101.09 96.35 92.39 39.20%
NET −4.55 −2.72 8.55 9.90 2.33 −3.35 3.88 −2.61 −1.26 1.09 −3.65 −7.61

Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike information criterion), generalized variance decompositions of 10-days-ahead forecast errors.

TABLE 7 Total spillovermatrix for negative return.

Oil Coal CSIOG CSICo CSI300 CSI NE CTBI CGBI Gold Silver AGI IMI FROM

Oil 68.30 1.33 8.08 3.67 4.66 2.95 0.04 0.09 0.56 3.13 4.17 3.02 31.70
Coal 1.60 58.08 5.06 12.46 1.30 1.16 0.22 0.17 0.10 0.63 2.65 16.56 41.92
CSIOG 5.06 3.00 40.81 20.47 13.50 9.84 0.36 0.08 0.04 0.70 1.78 4.36 59.19
CSICo 2.20 7.45 20.07 40.01 11.19 9.40 0.46 0.14 0.01 0.84 1.96 6.26 59.99
CSI300 2.76 0.65 13.72 11.66 41.67 24.19 0.25 0.14 0.09 1.01 1.14 2.72 58.33
CSINE 2.01 0.51 10.68 10.53 26.12 45.12 0.05 0.16 0.23 1.36 0.65 2.57 54.88
CTBI 0.10 0.73 0.88 0.92 0.35 0.12 64.07 31.11 0.80 0.34 0.15 0.44 35.93
CGBI 0.05 0.64 0.20 0.30 0.16 0.21 31.55 65.68 0.44 0.27 0.16 0.35 34.32
Gold 0.46 0.11 0.08 0.07 1.00 1.02 0.72 0.32 60.73 33.97 1.42 0.11 39.27
Silver 2.97 0.28 0.91 1.12 1.47 1.95 0.15 0.15 31.24 56.66 1.97 1.13 43.34
AGI 4.72 3.60 3.57 3.53 2.40 1.37 0.19 0.30 1.23 2.10 65.41 11.58 34.59
IMI 3.05 16.69 5.82 8.48 4.48 3.96 0.35 0.33 0.18 1.79 7.94 46.92 53.08
TO 24.98 35.00 69.06 73.21 66.62 56.18 34.34 33.00 34.93 46.15 23.98 49.09 546.54
All 93.28 93.08 109.88 113.23 108.29 101.30 98.42 98.67 95.66 102.81 89.39 96.01 45.54%
NET −6.72 −6.92 9.88 13.23 8.29 1.30 -1.58 -1.33 -4.34 2.81 −10.61 −3.99

Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike information criterion), generalized variance decompositions of 10-days-ahead forecast errors.
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the positive returns system is stronger and larger than that
in the negative returns system, which means positive returns
dominate. The reason behind these surprising results is that
green bonds might have the same properties of stability as
precious metals. Due to the safe-haven characteristic of green
bonds, investors are likely to hover between them and stable
precious metals in order to maximize returns and mitigate
risks (Naeem et al., 2021a). For the green stock market, it can
be seen that the spillovers from coal futures markets to the
green stock market are relatively higher in the positive-returns-
based subsamples (1.05%) than that in the negative-returns-
based subsamples (0.51%). These observations further support
our argument that green bonds can act as a safe haven against the
fossil energy markets shocks and green stocks are suitable to be
added into the portfolios of coal investors. However, agricultural
and industrial metals commodities are more susceptible to the
shocks of the fossil energy markets in the negative return
system.

5.3 Dynamic spillover index

Employing a rolling window approach with a window length
of 150, which helps revealing the intensified connectedness on
account of specific events that occurred during these periods,
Figure 2 demonstrates the time-varying symmetric spillover
index between the mentioned markets. It is obvious that there
are three phases in Figure 2. In specific, Phase I appears in the
first 2 years after the listing of Shanghai crude oil futures with
an increasing number of news about the trade conflicts between
China and the United States In the time of high uncertainty, the
connectedness index did not present a downward trend until
the end of 2019. In Phase II, following a slight decline, the
spillover reaches the maximum level in the beginning of 2020
which coincide with the outbreak of COVID-19 pandemic as
well as oil recessionary periods, ranging from about 47% to
almost 75%9. Generally, these markets are less interconnected
in the absence of a crisis than during a crisis. As a result
of China’s effective epidemic prevention and control, China’s
economyhas recovered steadily, and the investment environment
has also become stable to a certain extent. It can be seen that the
average connectedness of Phase III, that is, the year of 2021, is
relatively lower than before. However, it still oscillates around
50% which may be explained by the volatility of fossil energy
prices.

The role of each variable might change over time. Figure 3
presents the net spillovers of each market during the whole

9 This finding is in consistent with Gao et al. (2021); Kang et al. (2019), who
found a high degree of financial contagion between markets during the
global health crisis and oil price plunged.

FIGURE 2
Rolling-windows estimation of total connectedness.

sample period. As demonstrated by Figure 3, we can firstly
conclude that oil futures and green bonds are mostly net
receivers, which may be explained by the fact that China’s crude
oil markets are still emerging and susceptible to other markets.
This seems to hold true for the green bond market as well.
However, the COVID-19 recessionary periods bring a temporary
spillover effect to other markets from the green bond market. It
is not hard to understand that when global shocks occur, a large
amount of capital will flow into the bondmarket due to investors’
risk aversion reasons. Therefore, unexpected changes in returns
will lead to a sharp increase in the green bond market spillovers
(Gao et al., 2021).

Secondly, it can be observed from Figure 3 that the spillovers
in the coal futures market could vary over time. Since the second
half of 2020, the abnormal coal prices, a large amount of capital
have flown in, adding to the uncertainty in coal. Basically, the
market serves as a net transmitter. The main reason is that
the basic supply-demand relationship does not match, which
widens the gap between supply and demand, causing the rise
of the coal price, and the spillover effect of the coal futures
market.

Thirdly, given the strong spillover characteristics of stock
markets, the fossil energy stocks show the role of a net transmitter
most of the time. Though the spillover effect of the oil slightly fell
during the oil shock in 2020, the counterpart of coal increased
to some extent because of the substitution effect. Considering
China’s condition, the coal industry has resumed production
quickly in early 2020, becoming an important energy guarantee
to maintain social operation and economic development in
China. Investors’ confidence in the coal sector (and coal prices)
was less dominated by the pandemic (Tong et al., 2022). Yet the
spillover level of green stocks is significantly lower compared
with that of other stock markets. This finding indicates that as
an emerging financial market tool, the green stock market is
not mature enough. Hence, it is still necessary to be alert to the
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FIGURE 3
Rolling-windows estimation of net spillovers.

FIGURE 4
Rolling-windows estimation of positive and negative
connectedness.

impact of risk contagion from other markets in times of extreme
events.

Finally, we further study the dynamic and the asymmetric
spillovers by separating the positive return connectedness
and negative return connectedness respectively (see Figure 4).
Apparently, the negative spillover is dominant during the
COVID-19 pandemic, which is not surprising because investors
were more sensitive to negative news during abnormal periods.
It is consistent with our results presented in Section 5.2.

From the rolling-window analysis, we can end up with
the conclusion that it is a necessity of prudent portfolio
diversification during abnormal periods, such as the COVID-
19 pandemic, and periods of rising or falling energy prices. In
doing so, green bonds have been noticed by plenty of investors
as a safe-haven asset. Also, green stocks seem to perform more
calmly compared with the large-cap stock market, thus can be
also regarded as risk diversification instruments.

5.4 Network connectedness

In this subsection, we further demonstrate interactive
connectedness among markets in Figure 5 respectively, which
could revealmore specific information about the roles of different
markets in the process of risk transfer as well as the strength
of risk transmissibility. In Figure 5, the size of a node indicates
the magnitude of a net transmitter/receiver “To” or “From” other
variables. And the color of the node in a receiver is yellow,
while it is green in a transmitter. The edge colors rank the
strength of the pairwise directional connectedness from blue
(strongest) to purple, orange, and light yellow (weakest). Also, the
arrow thickness reflects the strength of the pairwise directional
connectedness.

Figure 5A illustrates the pairwise directional connectedness
during the whole sample period, echoing the results of Table 5.
It is noted that there are fairly strong pairwise spillovers between
similar markets. For instance, a strong connectedness can be
observed between green bonds and treasury bonds, gold and
silver, even inside the stock market (including four submarkets),
though the connectedness is weaker for the latter. Interestingly,
within the four stock submarkets, coal stocks appear to be
more sensitive to oil stocks, while green stocks have a stronger
interaction with large-cap stocks. These findings suggest that
the time-domain spillover seems to be more relevant to the
classification of markets, as an indication that gold and silver are
classified as precious metals, coal and oil belong to fossil energy,
however, green stocks still do not show a strong personality.
Moreover, we also observe that industrial metals and coal have
strong spillover effects in the futures markets, which is consistent
with the conclusion in Section 5.1. Notably, the correlation
between fossil energy futures and the stocks of respective sectors
is stronger than they do with other kinds of futures. In other
words, the risk transfer in the energy market is inherent. By
contrast, there seems to be no strong cross-market spillover
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FIGURE 5
Network connectedness: (A) The whole sample period; (B) Pre-pandemic period; (C) The COVID-19 pandemic; (D) Post-pandemic period.

FIGURE 6
Robustness checks: (A) 2-days forecast horizon and 100-days rolling windows; (B) 2-days forecast horizon and 150-days rolling windows; (C)
2-days forecast horizon and 180-days rolling windows; (D) 5-days forecast horizon and 100-days rolling windows; (E) 5-days forecast horizon
and 150-days rolling windows; (F) 5-days forecast horizon and 180-days rolling windows; (G) 8-days forecast horizon and 100-days rolling
windows; (H) 8-days forecast horizon and 150-days rolling windows; (I) 8-days forecast horizon and 180-days rolling windows.
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between precious mentals and other markets, and a similar
pattern exists in green bonds, which is in line with the findings
of Linh (2016); Reboredo (2018); Reboredo and Ugolini (2020),
indicating that they can offer advantages against market
risks.

We further explore the risk spillovers based on the following
three subsample periods. In terms of the previous analysis, we
divide the entire sample period into three phases. Frequent
oil-price shocks and Sino-US trade war occurred in the first
phase as shown in the Figure 5B (from 2018 to 2019). In this
period, the internal spillovers of stock markets are significantly
stronger compared with other markets. Influenced by the
trade war, the stock market have become more compact,
strengthening information transmissions across different sectors
(Chen and Pantelous, 2021). Meanwhile, the uncertainty in the
international crude oil markets has also led more investors
to hover among different stock sectors for better portfolio
hedging. While the rising tariff would exert a huge negative
impact on China’s real economy, weakening the linkages of
commodity markets. Due to the high exposures to the trade
tensions, industrial metals receivemore risk spillovers during the
period.

Figure 5C displays the network connectedness during the
COVID-19 pandemic period. It could be clearly found that
the network is more complex implying that the magnitude
of risk contagion effects has intensified. Significant negative
social events increased risk spillovers across the financial
system, especially the interaction between futures and stocks.
In addition, risks spread from the single-market spillovers to
cross-market spillovers and the net spillovers of the stock market
increase. It is worthy noting that the spillovers of treasury
bonds and stocks also present a rising tendency, but green
bonds remain relatively slightly connected with the overall
market.

In Figure 5D, with the domestic economy gradually
recovering, the whole market in this period tends to be calm
and the stock market spillovers return to a relatively stable state,
whereas the energy markets remain a strong connectedness
with each other. Different from the first two periods, the coal
futures market transform into a net shock transmitter. This
could be attributed to the sharp rise of coal prices. Practically,
investors should pay special attention to capturing the volatility
dynamics and preventing the financial risks associated with coal
markets, especially based on the special structure of China’s
energy supply. Meanwhile, we find that the green stock market
transform into a net receiver, which means that it receives more
shocks from other markets compared to what it transmits to
other markets. The development of new energy is correlated
with traditional fossil energy, therefore uncertainty in the
green stock market is increasing during the time of coal prices
rising.

5.5 Robustness check

To further verify the robustness of the above results, we refer
to Diebold and Yilmaz (2009)’s method to change H-step-ahead
forecasting days to 2, 5 and 8 days, meanwhile adjust rolling
windows to 100 and 180 days, respectively. Figure 6 show the
time-varying spillover graphs of the total spillover index under
different forecast horizon and rolling window size combinations.
It can be observed that the connectivity index was at a low level
before the outbreak of COVID-19, and reached its maximum in
early 2020.There are comparable trends, indicating that themain
empirical results are stable.

6 Conclusion

This article employs the spillover index model developed
by Diebold and Yilmaz, to analyze the dynamic spillover and
asymmetric connectedness between the fossil energy markets
and the green financial markets based on the data collected in
China. As for the fossil energy markets, this papers takes crude
oil and coal as the representatives. With respect to the green
financial markets, this papermainly studies the riskmanagement
strategy with the instruments of both green bonds and green
stocks. The main findings of this paper can be summarized as
follows.

Firstly, by conducting the static spillover analysis, a weak
spillover effect between the fossil energy markets and the green
financial markets is confirmed. To be specific, green bonds
receive few return shocks from crude oil, while green stocks
virtually unaffected by coal. However, we could observe strong
connectedness within the fossil energy markets.

Secondly, this paper unveils the connectedness of markets
over time through the dynamic spillover analysis. Dynamic
spillovers have increased significantly since the global COVID-
19 pandemic, indicating a contagion effect. Besides, we find that
oil as well as green bonds usually act as net receivers, while
fossil energy stocks and new energy stocks act as net transmitters
during most of the time.

Thirdly, the asymmetric spillover is also considered.
Compared with positive spillovers, negative spillovers dominate
around 2020. Interestingly, the spillovers from fossil energy
stocks to green bonds are significantly weaker in the negative
returns system. Similar to the safe-haven characteristics, green
bonds are also in a relatively weak correlation with fossil energy
markets. Meanwhile, green stocks are more sensitive to positive
coal futures shocks than negative ones.

Finally, through the network connectedness analysis, we find
that the assets within the same class are more connected to each
other.Moreover, by dividing the sample period into three phases,
we document that the intensity of network connectedness of coal
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futures markets keeps rising in the year of 2021 with China’s coal
prices going up, during which period the coal futures markets
start to be a net transmitter rather than a net receiver. In the
meantime, the green stock market becomes a net receiver. These
results indicate that the spillover relationship of coal markets are
experiencing increasing uncertainty in the wake of the COVID-
19 pandemic.

Our empirical findings have practical implications for both
investors and the energy-related policymakers. As for investors,
during the time of rising risks in the energy markets, combining
large proportions of crude oil, coal and the related stocks
into one portfolio is certainly undesirable. Otherwise, green
assets provide opportunities for portfolio diversification, helping
investors reducing the risk in their fossil energy investments.
To be specific, green bonds are more suitable for diversifying
the risks of crude oil, while green stocks are more appropriate
for diversifying the risks of coal. In particular, due to the
safe-haven characteristics of green bonds, it’s a wise strategy
for investors to hold them in time of crisis. Furthermore,
the strong connectedness between green and energy stocks in
negative returns reveals a hedging possibility for investors. As
for policymakers, they are suggested to be alert to the impact
of energy market uncertainty on financial markets, not only
focusing on crude oil but also on coal. Also, policymakers should
emphasize the role of green financial markets in stabilizing
energy markets, and carry out environmental policies to support
the development of green financial markets. This will encourage
more capital to flow into the energy sector to facilitate energy
transition in China.

To sum up, this paper provides more comprehensive
advice on the risk management of China’s energy markets.
Moreover, our results unveil the dynamic and the asymmetric
connectedness between China’s various markets during the
periods of the COVID-19 pandemic and that of the volatile
fossil energy prices.Since the current studymainly focuses on the
spillovers between China’s energy and green financial markets,
therefore quantifying the market correlations between fossil
energy and the several green financial assets, we have to admit
that there are limitations. Future reseach venues may investigate
the network connectedness of green-fossil energy portfolio to
construct optimal portfolios and downside risk reduction. On
the basis of this paper, it would be also of interest to analyze the
risk transmission mechanism between these markets, as well as
the potential driving facrots of spillovers between them.
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