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From national development to daily life, electric energy is integral to people’s
lives. Although the development of electricity should be expected, expansion
without restriction will only result in energy waste. The forecasting of electricity
load plays an important role in the adjustment of power enterprises’ strategies
and the stability of power operation. Recently, the electricity-related data
acquisition system has been perfected, and the available load information has
gradually reached the minute level. This means that the related load series
lengthens and the time and spatial information of load become increasingly
complex. In this paper, a load forecasting model based on multilayer dilated
long and short-term memory neural network is established. The model uses
a multilayer dilated structure to extract load information from long series
and to extract information from different dimensions. Moreover, the attention
mechanism is used tomake themodel pay closer attention to the key information
in the series as an intermediate variable. Such structures can greatly alleviate the
loss in the extraction of long time series information and make use of more
valid historical information for future load forecasting. The proposed model is
validated using two real datasets. According to load forecasting curves, error
curve, and related indices, the proposed method is more accurate and stable
in electricity load forecasting than the comparison methods.
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1 Introduction

As a special kind of secondary energy, the most prominent feature of electricity is the
simultaneity, or the complete synchronization of electricity generation by power plants and
consumption by consumers. Because it is difficult to achieve a large amount of storage for
electricity, the best way is to ensure the efficient operation of the power grid is to maintain
the power generation and electricity consumption in a dynamic equilibrium state at all times.
To forecast power load for a future period, load forecasting analyzes past information data,
such as power load, weather change, economic development, etc. It can assist in optimizing
control unit operation, reducing power generation costs, and improving economic efficiency.
Load forecasting can be divided into long-term, medium-term, short-term, and ultra-short-
term according to the projected time span (Hussain et al., 2021). Ultra-short term typically
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refers to load forecasting for the next few hours (Khan et al., 2016).
Accurate forecasting is important to the adjustment efforts of power
generation companies and the scheduling of power grids. Load data
is a non-linear time series, and electricity load forecasting methods
are classified into the following categories: time series analysis,
machine learning, and neural network.

Exponential smoothing (Smyl, 2020), auto-regressive moving
average model (ARIMA) (Wei and Zhen-gang, 2009; Kim et al.,
2019), among others, are examples of forecasting methods based
on time series analysis. These methods mainly apply and analyze
the laws of mathematical statistics and stochastic process theory
to predict the system’s future development trend. However, this
type of methods have good prediction accuracy only for load series
with low fluctuation, and it can only be used for single variable
prediction. It cannot be used effectively when other related variables
such as weather and date exist. To analyze the impact on load data
of multiple factors, multivariate load forecasting is addressed using
machine learning-based methods such as Support Vector Machines
(SVM) (Paudel et al., 2017; Aasim et al., 2021), Random Forest
(Bogomolov et al., 2016; Li et al., 2020), and XGBoost (Wang et al.,
2021a; Dai et al., 2022). These models are capable of automatically
learning not only the series’more complex features, but also the non-
linear relationship between some factors and load data. However,
the overreliance of these methods on sample selection of similar
data makes the model construction and update processes inflexible,
and the load forecasting accuracy cannot meet the requirements of
modern power systems.

Neural networks have the associative memory function and
the ability of parallel information distribution, self-learning, and
arbitrary approximation of continuous functions, which enables
them to capture various changes of electricity load and analyze
non-linear relationships between load data and other data. The
simplest and most basic neural network model is the multilayer
perceptron (MLP) (Hernandez et al., 2014; Mohammed and Al-
Bazi, 2022; Pavićević and Popović, 2022), which consists of fully
connected neurons. Load and related data are propagated forward
in the multilayer perceptron, and parameters are optimized through
error backpropagation (BP) (Su et al., 2017; Qiao, 2018) to produce
a predicted output that progressively approximates the true load.
By using clustering analysis to classify different loads on big data
platforms, Su et al. (Su et al., 2017) improved prediction accuracy
using multiple BP neural networks to solve the time consuming and
overfitting problems in big data. Based on the concept of simulated
annealing, Qiao (2018) proposed a method that combines particle
swarms optimization algorithm with the BP algorithm (SAPOS-
BP) for electricity load forecasting. This method improved the
generalization and self-learning ability of the model. Combining
wavelet decomposition techniques with neural networks, Rana and
Koprinska (2016) proposed an advanced neural network for short-
term load forecasting.

The recurrent neural network (RNN) (Yang et al., 2019) is a
common method to deal with time series problems. It has good
time series information extraction and non-linear learning abilities,
and it can simultaneously learn the influence of other factors
(such as weather, date, etc.) on load data. The long short-term
memory neural network (LSTM) is a special type of RNN and
can overcome the shortcomings of the vanishing gradient and
gradient explosion in conventional RNN. It is widely used in natural

language processing (NLP), language translation and sequence
prediction. Islam et al. (2023) used a hybridization model of RNN
and LSTM for sentiment analysis of user ratings in an online
meeting app. Yang (2022) applied LSTM to the field of intelligent
translation of English. Peng et al. (2022) employed LSTM in energy
consumption forecasting to achieve a better prediction performance
and the more critical influencing factors are emphasized. Due
to its good time series processing capabilities, LSTM has also
found many applications for load forecasting studies. LSTM was
used in (Ciechulski and Osowski, 2021) to predict 24 and 1 h on
two load datasets respectively, showing good forecasting ability
and applicability. Li et al. (2023) constructed a CEEMDAN-SE-
LSTM model based on time series decomposition-reconstruction
modeling and neural network forecasting. The Gated Recurrent
Unit (GRU) is a variant of LSTM, with a simpler structure and
a common time-series processing network. Mahjoub et al. (2022)
compared LSTM, GRU, and Drop-GRU networks with the ability
to prevent overfitting in the same environment and showed that
LSTM had the best load forecasting effect. Bidirectional long short-
term memory (Bi-LSTM) is an extension of the conventional
LSTM, which can learn from both ends of the sequence at the
same time. Siami-Namini et al. (2019) demonstrated the model’s
usability in load prediction and showed that is has superior ability
compared to conventional LSTM. In Guo et al. (2022) proposed a
combined load forecasting method for Multi-Energy System (MES)
based on Bi-directional Long Short-TermMemory (BiLSTM)multi-
task learning. In recent years, the combination of convolutional
neural networks (CNNs) (Khan et al., 2019; Imani, 2021) and
recurrent neural networks has gained popularity. The main idea
is to use CNN to extract spatial information in the series, and
then extract the time information by LSTM, which can not only
increase the amount of learned information but also produce
better predictions than a single network. A combination of deep
residual neural network and stacked LSTM for building load
forecasting was used in (Khan et al., 2022). Wang et al. (2021b)
combined CNN and BiLSTM for electricity load forecasting.
These hybrid prediction methods have demonstrated superior
performance over a single LSTMnetwork. Echo state network (ESN)
is another unique RNN. A modified hybrid model was used by
Peng et al. (2021) called improved backtracking search optimization
algorithm (IBSA)–double-reservoir echo state network (DRESN)
(IBSA–DRESN) for effective electricity load forecasting.

Attention mechanisms have gained a lot of attention on speech
recognition, image recognition, machine translation, and many
other fields in recent years. Attention has a strong ability to capture
key information, and it was applied for some studies to improve
the accuracy of load forecasting. In Jung et al. (2021) constructed an
attention-based multilayer GRU model for building load prediction
an hour in advance, and showed that this method significantly
improved forecasting accuracy compared to the underlying GRU.
Wu et al. (2021) combined the attention mechanism with CNN
to extract the spatial characteristics of the data and used LSTM
and BiLSTM to extract the time information to effectively predict
the power load in the integrated energy system. The Sequence to
Sequence (Seq2Seq) architecture (Sutskever et al., 2014; Gong et al.,
2019) was first applied in the field of Natural Language Processing
(NLP) (Kwon, 2019) and has also been used for short-term load
forecasting in recent years. It is divided into two parts: encoder and
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decoder. The encoder extracts the information from the input series
and compresses it into a fixed context vector. The context vector,
which is rich in historical load information, is then decoded by the
decoder into the desired value. The lengths of its input and output
series are variable and can be different. Du et al. (2020) designed
an end-to-end structure based on the attention mechanism and
Sequence to Sequence model to address the issue of multivariate
time series forecasting, and verified it on five multivariate time
series datasets. In (Sehovac and Grolinger, 2020), load forecasting
performance was compared between multiple RNN cells (vanilla,
LSTM, GRU) and different attention mechanisms [Bahdanau
(Bahdanau et al., 2014) attention (BA), Luong (Luong et al., 2015)
attention (LA)] in the Seq2Seq framework, and experiments showed
that seq2seq with BA had the best overall prediction performance.

The most commonly used method in the field of series
forecasting is still recurrent neural network and has been used with
good results of many studies. Most of the existing load forecasting
methods use LSTM network or mixed network model. This raises
two issues: one of them is that although LSTM networks alleviate
to a certain extent the drawback of traditional RNN networks that
cannot handle long series, the scope of their attention is still limited.
Generally speaking, for series with orders of magnitude less than
100, LSTM networks can perform the task of serial forecasting
relatively well. Beyond this limit, the forecasting accuracy of the
LSTM network will be decreasing. Secondly, in serial forecasting
the input and output dimensions are often unequal, which requires
the use of Seq2Seq models to map them. One of the two: in serial
forecasting the input and output dimensions are often unequal,
which requires the use of Seq2Seq model to map them. However,
Seq2Seq has the generation of context vectors, which will lose the
series information extracted by the Encoder layer to some extent,
making the forecasting accuracy lower.

To solve the above problems, we first used multilayer dilated
LSTMnetworks instead of traditional LSTMnetwork as the Encoder
layer. Dilated LSTM networks not only preserve longer memories
in long series, but their multilayer structure enables the extraction
of series information in different dimensions. Secondly, to reduce
the loss of information when context vectors are generated, we
used an attention mechanism that focuses it more of the important
information in the original series and can reduce the interference
in cluttered information. We proposed a hybrid model based on
the Seq2Seq framework that combines dilated LSTM networks,
attentional mechanism, and LSTM networks for electricity load
forecasting using long series. The model uses a multilayer dilated
LSTM (Chang et al., 2017) structure as the encoder layer, which
learns non-linear and multidimensional dependencies on long load
series. The encoder layer’s output is expressed using an attention
mechanism to reduce the influence of redundant information on the
subsequent decoding process. Finally, a single-layer LSTM network
is used to decode the data, and the output load of the full-connection
layer is used to forecast the result.The contributions of this paper are
as follows:

(1) We used a multilayer extended LSTM network instead of
traditional LSTM to extend the length of the historical series in
load forecasting.

(2) In order to improve the accuracy of load forecasting, a new
model has been established. This model uses a multilayer

dilated LSTM structure as Encoder layer to extract long
series information under the Seq2Seq framework, introduces
attention mechanism to focus on key information, and finally
LSTM are employed to decode the context vectors.

(3) Experiments have been conducted on two real load datasets in
different regions, and the results show that the proposed model
has a higher forecasting accuracy compared to the benchmark
methods.

The rest of the paper is organized as follows: Section 2
introduces some related models and frameworks, Section 3
describes the methodology, Section 4 shows the data selection
and preprocessing, Section 5 explains the experiments and
corresponding results, and at Section 6 concludes the paper.

2 Related theories

2.1 LSTM

RNN is mainly used in series data processing. It remembers
previous information and uses that information to influence the
output of subsequent nodes. However, basic RNN networks are not
only prone to the vanishing gradient and gradient explosion issues,
but also do not effectively handle “long-distance dependency.” LSTM
(Staudemeyer and Morris, 2019) is a variant of RNN, proposed by
Hochreiter and Schmidhuber (1997) in 1997. Its emergence has
largely addressed the shortcomings of the classic RNN, which has
been later improved and promoted by many scholars.

The LSTM network added cell states representing long-term
information to the original RNN hidden state. The structure of an
LSTM cell includes an input gate, an output gate, a forget gate, and a
cell state, as shown inFigure 1. Each LSTMcell receives three inputs:
input vector xt , hidden state ht−1, and previous cell state ct−1. It also
has two outputs: hidden state ht and the current cell state ct .

The forget gate takes the input vector xt and hidden state ht−1
of the previous neuron as input, indicating the extent to which
information was forgotten in the previous neuron, expressed as:

ft = σ(Wi [ht−1,xt] + bi) (1)

FIGURE 1
Cell structure of LSTM.
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FIGURE 2
Basic (A) and dilated (B) LSTM Network.

FIGURE 3
Seq2Seq architecture.

The update gate is mainly to retain the total information of the
new input xt first, and then update the cell state:

ut = σ(Wj [ht−1,xt] + bj) (2)

vt = tanh(Wz [ht−1,xt] + bz) (3)

ct = ft ⋆ ct−1 + ut ⋆ vt (4)

The output gate is to fuse the input of this cell with the
information of the previous cell to form a new series information.

yt = σ(Wo [ht−1,xt] + bo) (5)

ht = yt ⋆ tanh(ct) (6)

Wx and bx(x = i, j,z,o) are the weight parameters and bias of
the model, respectively. Their initial values are usually randomly
generated and shared among the weight of each layer of the network
to prevent the gradient from exploding or vanishing. σ(x) is the
Sigmoid activation function, σ(x) = (1+ e−x)−1, and tanh(x) is the
hyperbolic tangent activation function. The initial parameters of
the hidden layer are randomly generated in [0,1]. As the network
is trained, the Adam method is used to gradually update the
parameters in the LSTM network by back-propagation of errors, so
that the whole model achieves the desired forecasting results.

2.2 Dilated LSTM

The LSTM network receives time series data sequentially and
can memorize information in long series by hiding states and cell
states. The left subgraph in Figure 2 shows a layer of conventional
LSTM structure, where information is transmitted sequentially
between different nerve cells within a layer, and ht and ct of one

neuron can only be transmitted to the next cell. However, this type
of memory is only a short-distance long-term memory. Due to
parameter limitations, the hidden state information, which has the
function ofmemory, will always be replaced by the new information.
Therefore, when the length of the sequence is relatively long, the
front-end information on the sequence is not well preserved. This
is somewhat mitigated by the Dilated RNN structure (Chang et al.,
2017; Smyl et al., 2021), whose network structure is shown on the
right of Figure 2. Its most notable feature is the multiresolution
expansion loop jump,which cannot only alleviate gradient problems
but also expand the dependencies with fewer parameters. Using
a multilayer expansion loop layer can also learn dependencies on
multiple dimensions.

In the Dilated LSTM structure, a cell in the same layer does not
receive ht−1 and ct−1 from the previous cell, but rather the output
information ht−d and ct−d in the previous d (d = 2 in Figure 2) cell,
thereby obtaining the information dependence of long time series.
This structure has two benefits: first, it allows different layers to focus
on different dimensions of time, and second, the average length
between timestamps is reduced. Not only can the ability of LSTM to
extract long-distance dependencies be improved, but the vanishing
gradient and gradient explosion can also be prevented.

2.3 Seq2Seq model

TheSeq2Seqmodel can be specifically used to deal with variable-
length time series problems under the Encoder-Decoder framework.
It consists of three parts, the Encoder part can transform the time
series into context vector, which can be decoded into the desired
output sequence through theDecoder part. At this point, the output’s
length and dimension can be different from the input. The Seq2Seq
structure is depicted in Figure 3. Both the Encoder and Decoder
modules can use common networks such as CNN, RNN, and LSTM.
In load forecasting, we need to use historical load, weather, and date
data, among others, to forecast the load for a period of time in the
future. The Seq2Seq model can achieve this goal effectively.

2.4 Attention mechanism

Whenusing the Seq2Seqmodel, the Encodermodule transforms
the input time series into a fixed-length context vector after learning.
However, the generation of context vectors is the result of data
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FIGURE 4
Unit structure of attention mechanism.

compression, which inevitably results in information loss. Using
the attention mechanism can assign different weights to different
features so that important information receives more attention.
Therefore, since the output of the conventional encoder is a single
long tensor and cannot store too much information, this paper
proposes to use the attention mechanism in the Encoder module,
which can effectively focus the output results of the encoder
according to the target. Since the time series has been processed, the
information remembered by the Encoder can be directly treated as
the initial hidden layer of the Decoder. The computational steps of
the attention mechanism include the following:

2.4.1 Calculate weights

Wi = hi ⋆ ST (7)

where hi represents the state of the last hidden Encoder layer at
times i, S is the last hidden state, numerically the same as hm
and ⋆denotes the multiplication of two tensors. Wi denotes the
correlation weight between S and hi. To better represent the different
levels of importance in the initial series, the hidden states at different
moments are multiplied with the final state vector to represent
their attention probability distribution values. The weights Wi are
recalculated during each training session.

2.4.2 Normalization of weight vectors

ai =
exp(Wi)
m

∑
i=1

exp(Wi)
(8)

where ai is the result of normalizing the weight vector Wi.

2.4.3 Calculating attention

c0 =
m

∑
i=1

aihi (9)

The calculation of c0 considers the hidden layer hi(i = 1,2,3,…,m)
at all times, which is denoted by the input sequence X. That is to say,
c0 takes all inputs into account, and with the attentionmechanism, it
gives more attention to important input moments and less attention
to others. The structure of the attention mechanism is shown in
Figure 4.

3 Methodology

3.1 Proposed network architecture

This paper proposes a short-term load forecasting model
that combines dilated LSTM and attention mechanism under the
Seq2Seq framework. The specific implementation process is shown
in Figure 5. First, the collected load data are pretreated with relevant
factor data such as date and weather, and split into training,
validation, and test datasets. In this model, three different levels
of dilated LSTM structure are used as the Encoder layer under
the Seq2Seq framework to extract the dependencies in the original
long series. Three levels of dilated LSTM are used, namely, d = 2,
d = 4, and d = 1. The dilated LSTM of the last layer is equivalent to
the basic LSTM network (d = 1), its main function is to aggregate
and memorize the information extracted from the first two layers.
Training and validation data are fed to the Encoder layer to extract

FIGURE 5
Flowchart of the proposed model.
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non-linear relationships and multidimensional information from
long series. The features obtained by the Encoder layer are then
used as input to the attention layer, and the key information are
distinguished from a weighted form to form a context vector. One
layer of basic LSTM network is used as the Decoder layer to decode
the context vector formed by the attention layer and predict the
future load data through a layer of fully connected nodes.

In this paper, other factors related to electricity load, including
weather and date, are added to the load forecasting. The data
dimension used is high, which makes it less likely that the model
has a local minimum. Therefore, it is more important to consider
the training convergence of the model. We use the optimization
method Adam, which is commonly used in neural networks. This
method can not only find the global minima of the model effectively
and quickly, but also avoid the training results falling into the local
minima to a certain extent. During the training phase, the mean
square error (MSE) is calculated as the loss function of the model
using the predicted results of the training and validation datasets
in the input model with corresponding true label values, and the
model parameters are updated using Adam optimization method in
turn through the back-propagation. After training, when the error
of the model meets the requirements, the trained model parameters
are retained. Finally, the test data are input into the trained model to
forecast the future load.

3.2 Evaluation indices

To evaluate the performance of the proposed load forecasting
model, four quantitative measures were used, including mean
absolute percent error (MAPE), root mean square error (RMSE),
mean square error (MAE), and mean square error (MSE) (Chai and
Draxler, 2014; Moon et al., 2019):

MAPE = 1
n

n

∑
i=1

|yi − Li|
Li
× 100 (10)

RMSE = √ 1
n

n

∑
i=1
(yi − Li)

2 (11)

MAE = 1
n

n

∑
i=1
|yi − Li| (12)

MSE = 1
n

n

∑
i=1
(yi − Li)

2 (13)

where Li is the actual value, yi is the predicted value, and n is the total
number of values. The smaller the value of these four indicators, the
smaller the error between the predicted value and the real value, and
the more accurate the load forecast.

4 Data selection and preprocessing

4.1 Data selection

To verify the forecasting performance of the proposedmodel, we
selected the true load data (the sampling period is 15 min, MW) of a
specific location from January 2020 to August 2022 for experiments.
Figure 6A shows the load change curve of the region for 1 year. It

can be seen that the change of electricity load is not only related
to the date but also to the time of the day. For a more accurate
load forecasting, this paper not only considers the date factor, but
also includes weather, holidays, and other factors as well. Table 1
lists the various attributes of the dataset used in this work with a
brief description of each feature. We used 60% of the total data for
training, 20% for validation, and the last 20% for testing.

4.1.1 Data preprocessing
The obtained load and meteorological data are often subject to

data anomalies and deficiencies for several reasons.These anomalies
need to be corrected. Load data sampling is continuous, and usually
the load does not change much over a continuous period of time.
Therefore, when the load difference between two adjacent moments
is too large, we consider that there is an anomaly. Consider the
following conditions:

{
{
{

|pi − pi−1| > ζ×min{pi,pi−1} ,

|pi+1 − pi| > ζ×min{pi+1,pi} ,
(14)

where pi is the load value at time i, and ζ is a threshold between 0
and 1. When pi meets the above conditions, we determine that it is
abnormal and needs to be deleted for subsequent correction. For lost
data, prior correction is required. If a single data value is missing, it
can be corrected by the nearest average method, expressed as:

pi = (pi+1 + pi−1)/2 (15)

When load data are lost for several consecutive days at a certain
time, this paper uses the weighted average of the values of the same
time of the days before the missing value to replace the next value.
Mathematically, it is expressed as:

pi =
1
d
×

i−1

∑
k=i−d

Wkpk (16)

where wk(i− d ≤ k ≤ i− 1) is the weight coefficient, and d is the
number of days for weighted average. In the case of missing
weather data, the above method can also be used when the adjacent
weather conditions do not change much. When the missing value
differs significantly from the weather before and after, it can be
supplemented by replacing the data from the day of the previous year
or directly using the data of the previous or following day.

4.2 Data normalization

After processing the anomalous data, the data become relatively
smooth, normalization is still required because the units and
dimensions of the data are different (Patro and Sahu, 2015). This
not only eliminates the influence of different data norms on load
forecasting, but also speeds up the convergence of the models
and prevents gradient explosion. In this work, the data for each
characteristic are normalized into (−1, 1), and the calculation
process is as follows:

F̂ =
F− Fmin

Fmax − Fmin
(17)

where F represents the different raw data, F̂ is the normalized data,
and Fmax and Fmin are the maximum and minimum values of the
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FIGURE 6
Load change curves of two real data. (A) The first place load data, (B) another place load data.

feature, respectively. When the data are preprocessed, time series
with different characteristics can be entered into the proposedmodel
for model training and load forecasting.

5 Experimental analysis

The proposed model can effectively extract the non-linear
dependencies in quite long series and learn the relevant non-
linear relationships from multiple time dimensions. To verify the
forecasting performance of the proposed model, we selected two
advanced short-term load forecastingmethods, LSTM and Seq2Seq,
for comparison. LSTM uses a single layer structure, and Seq2Seq
uses a layer of LSTM as the Encoder layer and the Decoder layer,
respectively. Each time point of the input series in the experiment
contains the load value and other characteristics related to the
current load, such as:

xt = {Power,Month,Week,Point,Holidy,TopTem,LowTem,AvgTem,

Rain,Hum} (18)

TABLE 1 Dataset features.

Attribute Description

Power Real load value (MW)

Month Month of sampling point (1–12)

Week Week of sampling point (1–7)

Point Sampling point (1–96)

Holiday Holiday or not (0 for non-holiday, 1 for holiday)

TopTem Maximum temperature

LowTem Minimum temperature

AvgTem Average temperature

Rain Rainfall

Hum Humidity

To verify the performance of the proposed method under different
experimental conditions, we have designed a variety of experiments
as follows:
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FIGURE 7
Comparison of the curves of four sampling points forecast using 7-day series by different methods. (A) LSTM; (B) Seq2Seq; (C) proposed.

FIGURE 8
Comparison of errors curves using 7-day series by different methods.(A) four sampling points forecasting results, (B) one sampling point forecasting
results.

Experiment 1: Load values for the next hour were predicted
using a time series from the previous 7 days.

Experiment 2: Load value for the next sampling site were
predicted using a time series from the previous 7 days.

Experiment 3: Load values for the next hour were predicted
using a time series from the previous 2 days.

5.1 Experimental results

5.1.1 Experiment 1
In the first experiment, the input of the model is the 7 days data

in the time series such as {xt−681,xt−680,…,xt−1,xt}, and the output is
1 h load forecasting (four sampling points {xt+1,xt+2,xt+3,xt+4}). The

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1116465
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Wang et al. 10.3389/fenrg.2023.1116465

TABLE 2 Index values of four and one sampling points forecast using 7-day
series by different methods.

Model Type MAPE/% RMSE MAE MSE

LSTM Four points 1.8852 49.2611 36.2736 2,426.6526

Seq2Seq Four points 1.9217 49.8480 37.21039 2,484.8269

Proposed Four points 1.7895 46.9927 34.2902 2,208.3108

LSTM One point 1.2408 30.0151 23.7579 900.9071

Seq2Seq One point 1.2099 29.4476 23.0446 867.1591

Proposed One point 1.1686 28.3678 22.2320 804.7341

The best value for each index is labeled in bold.

results of the four samplingpoints predictedby the threemethods are
shown in Figure 7. The horizontal axis represents 150 sample points
we selected from the test dataset, and the vertical axis represents
load.The two curves are the true andpredicted values, respectively. It
can be seen that the forecasting curve of the proposed method has a
fluctuation closer to the actual load.Figure 8A shows the error curve
between the predicted and true values of Figure 7. The curve shown
for theproposedmethod is always between the curves obtainedusing
theother twomethods.Overall, the errorfluctuates around0, and the
error range is within (−100, 150). It is evident from the forecasting
and error curves that the suggested approach is preferable.

The first three rows in Table 2 shows the indicator results of the
four sampling points forecast by different methods. The best value
for each index is labeled in bold.The proposed model exhibits better
results on the four indicators listed. This shows that the proposed
model’s Encoder can effectively extract the information from the
long series, while the load of the next hour is more accurately
predicted through the Decoder.

5.1.2 Experiment 2
In the second experiment, we adopt the load series
{xt−681,xt−680,…,xt−1,xt} of the 7 days to predict the load value
of the next moment {xt+1}. Figure 9 displays the results of the
forecast curves produced by various methods. The load forecast at
the following instant belongs to single step load forecasting, and both
Seq2Seq and the proposed method have achieved good forecasting
accuracy. Intuitively, there is little difference between the forecast
values obtained by the proposedmethod and the actual values. In the
error curve of Figure 8B, the three curves at the left and right ends

TABLE 3 Index values of four sampling points forecast using 2-day series by
different methods.

Model Type MAPE/% RMSE MAE MSE

LSTM Four points 1.9701 50.8092 37.5497 2,581.5757

Seq2Seq Four points 2.0870 52.5477 40.4891 2,761.2601

Proposed Four points 1.8325 47.5722 35.1991 2,263.1151

The best value for each index is labeled in bold.

always fluctuate around 0, and the error of the proposed method
basically remains in the middle of the three curves and is closer
to 0. However, the curve of the proposed method is always at the
highest position around 80. This is because all the forecast values
of the three methods are lower than the true values, while the error
curve of the proposed method is the closest to 0, and its error range
is within (−40, 30).

The last three rows in Table 2 shows the indicator results
calculated by different methods to forecast load values at the next
sampling point. It can be seen that the four indicator values of
the proposed method are the smallest, which is consistent with
the proposed model’s forecasting error curve being closer to 0.
Summarizing the results of experiments 1 and 2, the proposed
method outperforms LSTM and Seq2Seqmethods in bothmultistep
and single step forecasting.

5.1.3 Experiment 3
Table 3 shows the indicator results from various next hour load

forecasting methods using the series data {xt−191,xt−190,…,xt−1,xt}
from the two previous days. It can be seen that the proposed
method still outperforms the other two methods in forecasting the
next four points using only a 2-day time series. Besides, because
the performance of Seq2Seq method is constrained by the length
of the context vectors, it exhibits a larger error than that of the
LSTM method in load prediction. The performance of the proposed
method is the best in load forecasting with a length of 96 × 2,
followed by the LSTM method, while the forecasting effect of the
Seq2Seq method cannot achieve the expected performance.

5.2 Supplementary experiment

In order to better illustrate the generalization and effectiveness
of the proposedmodel, we selected the real load data of a certain year

FIGURE 9
Comparison of the curves of next sampling points forecast using 7-day series by different methods. (A) LSTM; (B) Seq2Seq; (C) proposed.
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FIGURE 10
Comparison of the curves of four sampling points forecast using another reagional 7-day series by different methods. (A) LSTM; (B) Seq2Seq; (C)
proposed.

FIGURE 11
Comparison of the curves of next sampling points forecast using another reagional 7-day series by different methods. (A) LSTM; (B) Seq2Seq; (C)
proposed.

in another place for supplementary experiments. The load sampling
points in this data are for 1 h. The load change curve over the course
of the year is shown in Figure 6B. Temperature, wind speed and
air humidity are the only three factors that have a high correlation
with the load selected in order to reduce the effect of too many
complex factors. At this time, each time point of the input series
in the experiment contains the load value and other characteristics
related to the current load, such as:

yt = {Power,Temperature,Humidity,Speed} (19)

In the data preprocessing and specification, we adopt the same
method as the previous data. Based on this, we designed the same
load forecasting method: use the data of the first 7 days to forecast
the load value of the next hour and 4 h respectively.

Figures 10, 11 show the results curves of the different methods
using the data series {yt−167,yt−166,…,yt−1,yt} of 7 days to predict
the subsequent 4 h {yt+1,yt+2,yt+3,yt+4} and 1 h {yt+1} load values,
respectively. It can be seen that the accuracy of different methods
in forecasting 1-h load is significantly better than that of forecasting
4-h loads. However, in the comparison between the forecasting
curves and the real curves, it is obvious that the curves of the
proposed method are closer to them. Both Figures 9, 11 show
the results of the load forecast for the next sampling point,
however the forecast curve in Figure 9 is more consistent with

the true load trajectory. This suggests that increasing the length
of the history series can improve the accuracy of load forecasting.
Moreover, the proposed method achieves the best results in both
experiments.

Table 4 show the results of the indicators for the different
methods for forecasting the load values for the next hour and
4 h. The same proposed method achieves the best values for all
four indicators. This explains that at longer series lengths, the
proposed method is better able to extract information from the
historical data and to forecasting subsequent load values more
accurately.

5.3 Experimental summary

It can be seen through the above three experiments that the
proposed method produced good forecasting results, and it also
demonstrated remarkable competitiveness in terms of qualitative
indicators. This can completely illustrate the use of multi-layer
dilated LSTM as the Encoder structure, which can extract rich non-
linear dependencies and multidimensional information from the
original long time series. By emphasizing the information on the key
historical time point and reducing the loss of historical information,
the attention mechanism effectively improved the accuracy of load
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TABLE 4 Index values of four and one sampling points forecast using
another reagional 7-day series by different methods.

Model Type MAPE/% RMSE MAE MSE

LSTM Four points 0.1700 164.4669 133.0854 27,049.3626

Seq2Seq Four points 0.1650 164.6371 132.4192 27,105.3800

Proposed Four points 0.15833 156.0762 124.3963 24,359.8472

LSTM One point 0.1253 138.9565 97.2932 19,308.8993

Seq2Seq One point 0.1280 140.7282 98.2395 19,804.4366

Proposed One point 0.1227 136.6944 95.2397 18,685.3657

The best value for each index is labeled in bold.

forecasting. It can be seen through experiments 1 and 2 that the
longer the prediction time is concerned, the error will increase.
Comparing experiments 1 and 3, the proposedmethod still produces
more accurate predictions for the same length when the historical
series is longer. Supplementary experiments show that when the
length of the time series is reduced, the proposedmodel is still able to
forecast short-term loadswell butwith a reduced accuracy compared
to long series. This provides evidence that the proposed method can
effectively handle the long series load forecasting problem.

6 Conclusion

Load forecasting is an important factor for the power system
management. In this paper, we developed a load forecasting model
based on multilayered dilated LSTM and attentional mechanism in
the Seq2Seq framework. We first processed two actual experimental
data, including feature selection, exception judgment, data filling,
as well as other operations. Second, we normalized the data and
divided them into various datasets in accordancewith the training of
neural networks. In this paper, a three-layer dilated LSTM model
was established as an Encoder layer to extract the dependence
from the original load series, and the context vectors focusing on
key information are extracted through the attention layer. In the
Decoder layer, LSTMwas used for the decoding process, and a linear
layer was used to output the forecast results. We then trained the
proposed model and forecasted future values using the different
datasets.

Our proposed model alleviated the limitation of information
loss in long series information extraction of the conventional LSTM
and excellently completed the task of using longer time series for
more accurate load forecasting. On each of the two datasets in
the experiment, we used historical series of different lengths to
forecast future load values. The experimental results demonstrated
that the proposed model not only outperforms the comparison
methods in terms of load forecasting curves, but also shows
stronger competitiveness in quantitative indicators. Therefore, the
proposed model can effectively complete the tasks of information
extraction from a long time series and prediction of future
changes.
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