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Electrochemical impedance spectroscopy (EIS) is a valuable technique to detect
the health status and aging phenomena in lithium-ion batteries (LiB). Equivalent
circuit modeling (ECM) is conventionally used when interpreting EIS data and
gaining physical insights into the aging mechanisms. However, performing ECM is
resource intensive and expert-level of knowledge is usually required to select
suitable models and fitting parameters. This article presents a quick and user-
friendly data analysis algorithm as an alternative to ECM by mathematically fitting
geometric features in Nyquist plots and obtaining the growth trends of the
features. The evolving trends in the Nyquist plots, such as chord lengths of the
arcs and interception points, are consistent with the growth of resistance
components obtained using ECM with R2 values from 0.67 to 0.99, and
therefore can be used as indicators of battery aging. Our results show that the
quick-fitting approach is suitable for analyzing a series of EIS data acquired during
battery cycling and identifying the underlying aging mechanisms.
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Introduction

Electrochemical impedance spectroscopy (EIS) is a fast and non-invasive
characterization technique for understanding chemical and electrochemical phenomena
occurring in electrochemical devices, such as Li-ion batteries (LiBs) (Meddings et al., 2020)
and fuel cells (Tang et al., 2020). In EIS analysis, a current or voltage perturbation is applied
to a cell across a wide range of frequencies from mHz to MHz, in which the corresponding
response of voltage (or current) across the frequency range establishes the impedance
spectrum (Choi et al., 2020). These impedance responses are the basis of isolating various
conduction and transport phenomena at specific time scales in a cell, including charge
transfer, diffusion, and molecule absorption (Park et al., 2010; Wang et al., 2021; Vivier and
Orazem, 2022). In recent years, EIS has been recognized as a powerful tool for probing the
health status in LiBs and solid-state electrolyte batteries (Gordon et al., 2016; Zhang et al.,
2017; Frankenberger et al., 2019; Zhang et al., 2020) because changes in impedance are the
direct consequences of degradation in the cells, such as electrode particle cracking and
interlayer formation that slow down the charge transfer and diffusion processes (Westerhoff
et al., 2016; Tatara et al., 2019; Iurilli et al., 2021; Vadhva et al., 2021). As battery lifetime and
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operational safety are heavily emphasized in electric vehicles and
stationary storage systems, real-time EIS analysis will be
advantageous to be integrated into battery management systems
and detect degradation early, therefore ensures reliable and safe
operations over extended lifespans (Pastor-Fernandez et al., 2016;
Din et al., 2017). Rapid EIS measurement tools (Tanim et al., 2020;
Hill et al., 2021) have also become available for scanning over broad
ranges of frequencies within minutes to acquire EIS data promptly
for real-time measurements.

While EIS data can be obtained fast, the interpretation of the
data might not be as swift. Equivalent circuit modeling (ECM) is
traditionally used to analyze and interpret EIS data. In ECM
analysis, a LiB cell and all the electrochemical phenomena
occurring within are converted into electrical circuits that consist
of resistors, capacitors, and other circuit elements (Westerhoff et al.,
2016). Constructing such an ECM is a resource- and time-intensive
process. Depending on the battery architecture and use conditions,
the ECM could vary from a simple resistor–capacitor (RC) circuit
model to complex combinations of circuit components in series
(Westerhoff et al., 2016; Choi et al., 2020). Multiple model
candidates will usually need to be screened based on the cell’s
physics, followed by mathematical fitting procedures to
determine the optimized model and circuit parameters.
Ambiguity may arise during the fitting process when multiple
ECMs fit the data non-uniquely, adding uncertainties in data
interpretation (Buteau and Dahn, 2019). For the reasons stated
above, equivalent circuit analysis could be tedious and time-
consuming. Experienced researchers and special software
packages are usually involved in selecting reasonable fitting
parameters and interpret the data unambiguously.

To lower the barrier and minimize uncertainties in EIS data
analysis, computer- and machine learning-based methodologies
have emerged in recent years (Buteau and Dahn, 2019; Zhu
et al., 2019; Bredar et al., 2020; Murbach et al., 2020; Zhang
et al., 2020; Babaeiyazdi et al., 2021; Huang et al., 2021;
Bongiorno et al., 2022). These methods automate the equivalent
circuit parameter search, make ECM screening efficient, and relieve
the burden of human judgments for making initial guesses and data
processing for non-experts (Buteau and Dahn, 2019; Zhu et al., 2019;
Murbach et al., 2020). However, large datasets are usually required
for establishing computer-based EIS analysis methodologies. Most
of the computational methods involve data featurization, such as
converting the Nyquist plots to mathematical features (Zhang et al.,
2020; Babaeiyazdi et al., 2021; Jones et al., 2022), which allows
computers to select fitting parameters based on the features.
Hundreds to thousands of Nyquist plots and their corresponding
ECMs will be required to accommodate various battery designs and
gain reliability in the analysis (Buteau and Dahn, 2019; Zhang et al.,
2020). Furthermore, the mathematical features recognized are
usually not identifiable by humans and do not necessarily carry
physical meanings, posing a challenge in linking the features in EIS
data to specific aging phenomena.

In this work, we combine the advantages of ECM and computer-
based methods to construct a non-expert-friendly approach to
analyzing EIS data without involving extensive ECM fittings or
large datasets. A least-square fitting approach is used to quickly
capture geometric features that are related to battery aging in a
Nyquist plot, such as intersection, radius, and chord lengths of the

depressed semi-arcs. This quick-fitting method was demonstrated
on a set of graphite/NMC532 single layer pouch cells, in which two
distinctive aging behaviors exist, namely loss of active materials in
the cathodes (LAMPE) and loss of Li inventory (LLI) (Birkl et al.,
2017; Tanim et al., 2021a; Tanim et al., 2022). The quick-fitting
algorithm shows that the intersections and chord lengths of the
semi-arcs in the Nyquist plots are consistent with the growth trend
of resistances, and that an increased chord length can serve as an
indicator for distinguishing LAMPE from LLI.

Our quick-fitting algorithm complements the conventional
ECM by quickly surveying the progression of series of EIS
curves without extensive modeling efforts, therefore reducing
the time consumption and complexity in evaluating larger sets
of EIS data. The method will be advantageous for online battery
management systems to perform automated data analysis during
battery cycling. Moving forward, the quick-fitting algorithm has
the potential to be combined with fast EIS data acquisition
techniques (Tanim et al., 2020; Tanim et al., 2021b; Hill et al.,
2021) and coupled with other machine learning-based aging-
detection frameworks (Dubarry et al., 2017; Severson et al.,
2019; Zhang et al., 2020; Chen et al., 2021; Kim et al., 2022) to
aid the diagnosis of battery degradation and unraveling the
underlying aging mechanisms.

Materials and methods

Cell fabrication and aging cycles

The cells are built using Graphite (1506T) and NMC532 (Toda
America), fabricated at the Cell Analysis, Modeling, and Prototyping
(CAMP) Facility at Argonne National Laboratory. The cells were
designed using two different electrode active material loadings
(denoted as Lmoderate and Llow), and were tested under various
charge profiles. More details about the cell materials, designs,
numberings, and charge profiles can be found in Supplementary
Tables S1–S3 in Supporting Information 1.

The cells were tested using a MACCOR series 4000 Automated
Test System at 30°C ± 1°C. During each life cycle, the cells were
charged between 10 and 15 min with different charging protocols.
All the cells were charged to 4.1 V, except in 2 cells lower cut-off
voltages of 3.78 or 3.66 V were applied. Reference performance tests
(RPTs) were conducted every 25–50 cycles initially, and every
100–125 cycles in the later stages over the course of aging. An
RPT test includes a C/20 charge-discharge test between 3.0 and 4.1 V
separated by 1 h rest time, followed by EIS measurement at selected
RPTs. Before the EIS test, cells were charged to 3.8 V at C/1 and
rested for 15 min. EIS was measured with an AC voltage amplitude
of 10 mV over a frequency range of 500 kHz to 0.01 Hz. A Solartron
1287 potentiostat and analyzer (Model 1260) were used for EIS
measurements. The cells were subjected to different numbers of
aging cycles. The Lmoderate cells were cycled to 450 cycles. The Llow
cells went up to 600 cycles, except two of them were charged to a
lower cut-off voltage and cycled to 1000 cycles. Selected cells were
disassembled for secondary post-testing characterizations to
determine predominant aging modes. Detailed information about
charging protocols can be referred to Supplementary Table S2 in
Supporting Information 1.
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Equivalent circuit modeling and fitting

The EIS data collected are processed using the ECM approach as
a comparison to the mathematical quick-fitting approach that will
be discussed later in this article. An basic ECM contains electrical
components, i.e., resistors and capacitors, to simulate bulk, surface-
interphase, and diffusion behaviors (Westerhoff et al., 2016). The
model used in this article, as shown in Figure 1A is based on the
most widely-accepted LiB system with minimized circuit elements
for practical impedance analysis (Choi et al., 2020; Iurilli et al., 2021).
The bulk resistance (ROhm) is a combined resistant effect from
current collector, electrode, electrolyte, and separator. The constant

phase elements (CPEs) are used to simulate non-ideal capacitances
of LiBs to make the model more accurate. The CPESEI and CPEDL
represent the capacitances of solid electrolyte interface (SEI) layer
and double layer, respectively. RSEI and RCT represent the resistances
of SEI layer and charge-transfer process, respectively. Warburg
impedance describes diffusional effects of lithium-ion on the host
material. Figure 1B shows a comparison between an experimental
Nyquist plot from one of the graphite/NMC532 cells at 600 cycle
and the fitting results. The result shows good match between
measured data and fitted data. More discussion about the fitting
approach, mathematical expressions, and quality of fitting can be
found in Supporting Information 2.

FIGURE 1
Equivalent circuit model and fitting results demonstration. (A) The equivalent circuit model used in this study. (B) A demonstration of the fitting
results of a cell at the 600th cycle (P492 Cell 42), showing good consistency between raw data (dot) and fitted data (solid line).

FIGURE 2
An example of quick EIS fitting. The raw EIS data is shown in the
grey dots. The red and blue circles are the least square fitting results of
the first and second arc, respectively. On each of the circles, the red
and blue dots represent the range of fitting. Three geometry
features of interest, Z′-intersection and chord length of 1st and 2nd arc,
are marked accordingly in the diagram.

FIGURE 3
Scattering plot showing the amount of LLI and LAMPE at the end
of cycling life of represented cells with different charge protocols.
LAMPE is more significant in Llow designs, while LLI is prominent in the
Lmoderate cells. CC-CV, 2 step, and MS5 represent various charge
protocols, which is described in and Supporting Information 1. All the
cells are charged to 4.1 V except for 2 cells are charged to 3.78 and
3.66 V, respectively (marked with “low V” in the legend). More details
about the cell’s behavior can be found in previous publications (Paul
et al., 2021a; Paul et al., 2021b; Chen et al., 2021; Chinnam et al., 2021).
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Construction of quick EIS fitting algorithms

A typical Nyquist plot of the graphite/NMC532 cells in this
study is shown in Figure 2. The Nyquist plot consists of two arcs
located at higher (frequency range 105—103 Hz, referred as the first
arc) and lower frequency domains (frequency range 103–1 Hz,
referred as the second arc), followed by a tail. This type of EIS
curve is common in LiBs (Choi et al., 2020; Iurilli et al., 2021). The
impedance arc at higher frequency comes from the solid electrolyte
interface (SEI) layer (RSEI), which is related to the resistance of
anode materials and SEI layer. The arc at lower frequency is the
response from charge transfer (RCT), which is linked to the kinetics
of electrochemical reactions. RCT is heavily dependent on material
properties such as phase transition, bandgap structure, particle
integrity and size, and surface coating, making it an effective
indicator to interpret reaction mechanisms in a cell. The longer
tail following the arcs originates from Warburg diffusional effects.

In our approach, the arcs in the EIS data (x, y files) are fitted
directly to partial circles as a mathematical proxy to describe the
shape of the Nyquist plot. The fitting algorithm is built using Python.
We referenced an optimized least squares approach under the scipy
package (Virtanen et al., 2020) to search the least square circle fit for
the data. The input data range is changed along with the datapoints
in the arc to determine the best fits and uncertainties. Detailed
information regarding the fitting process and methods are discussed

in Supporting Information 3. There are several mathematical
features that can be extracted from the least square circle fitting,
including the chord lengths of the semi-arcs, and intersection point
with -Z′′ = 0. The chord length, determined by the radius and center
of the fitted circle, will be an approximation for RSEI (chord length 1)
and RCT (chord length 2). The -Z″ intersection represent the ROhm.
In the following demonstrations, the chord length will be compared
to the resistance obtained using ECM fitting.

Results and discussion

Lifetime behavior of the cells

Themajor aging modes of the cells in this study align with loss of
Li inventory (LLI) and loss of active materials in the cathode
(LAMPE). The aging behaviors were previously identified using
various non-destructive (e.g., incremental capacity (IC) analysis)
and destructive methods (e.g., optical and electron microscopy, ex
situ X-ray scattering) (Paul et al., 2021a; Tanim et al., 2021a;
Chinnam et al., 2021; Tanim et al., 2022). LLI is confirmed using
both incremental capacity (IC) analysis (Dubarry et al., 2012) and
disassembly of cell at the end of lifetime. The diagnosis of LAMPE is
based on SEM images showing secondary particle cracking and on
half-cells assembled from cathodes harvested after cycling, as well as

TABLE 1 Percentage of LAMPE and LLI of the cells in Figure 4 obtained using IC analysis.

1C Llow 9C Llow 9C Llow −3.78 V 4C Lmoderate 6C Lmoderate

LAMPE (%) 26.0 17.0 10.0 3.96 8.1

LLI (%) 9.4 12.1 6.9 8.46 19.5

FIGURE 4
EIS trends for representative cell aging behaviors. (A, B) LAMPE dominant case cycled at 1C and 9C, (C) lower LAMPE cycled at 9C but with a lower
cutoff voltage, (D) SEI-growth case at 4C with low LLI and LAM, and (E) Li plated case with heavy LLI but less LAM, cycled at 6C. In the LAMPE dominant
cases (A, B), the second arc increases significantly at 600 cycles, as indicated by the arrows. The inserted optical images in (D, E) show the condition of the
anodes at the end of 450 lifecycles. The metallic gray area is the plated Li.
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IC analysis (Tanim et al., 2021a). Loss of active materials in the
anode (LAMNE) was not included in the discussion because aging in
the anode is minor.

IC analysis was performed to quantify the amounts of LLI and
LAMPE of representative Lmoderate and Llow cells at the end of cycling
life, and the amounts of LAMPE and LLI are summarized in Figure 3.
The primary aging behavior can be correlated with the design of the
cells and charging rates. In the Llow cases, cathode cracking induced

LAMPE is the most significant aging mode (Tanim et al., 2021a)
because of its higher charge acceptance and cathode utilization,
causing more stress during cycling. When the charging cutoff
voltage is reduced to 3.78 or 3.66 V, the amount of cracking and
thus LAMPE is reduced even at 9C rate. In contrast, the Lmoderate

series, in which the anode loading is higher, the dominant aging
behavior becomes higher in LLI with less amount of LAMPE

(Chinnam et al., 2021). For Lmoderate cells cycled with greater

FIGURE 5
Comparison between representative results from the quick EIS fitting and conventional equivalent circuit fitting. The chord lengths were obtained
using the quick EIS fitting method. The RSEI, RCT, and ROhm values were the fitting results using ECM. The %LAM and %LLI were obtained using IC analysis
and half-cell tests. The growth trend between the chord length and resistance are consistent with each other. This trend is also in harmony with the %LLI
and %LAMPE obtained from IC analysis and half-cell tests. The experimental LAMPE data points (light blue triangles) were based on half-cell test
results using cathode materials retrieved from used pouch cells. Note that the second chord length (Chord 2) of 4C, Lmoderate and 6C, Lmoderate at the
beginning of life (cycle 0) are not shown due to not-converged fitting results.

FIGURE 6
Correlations between the fitted geometric features and resistance components obtained using equivalent circuit fitting as (A) ROhm, (B) RSEI, and (C)
RCT. The charge protocols and individual cells are marked by different colors and shapes, respectively. The Zʹ-intersect and first chord length progresses
proportionally with ROhm and RSEI. For RCT, the correlation between the second chord length is not as obvious when RCT < 0.4 Ω. When RCT > 0.4 Ω, the
proportional relationship becomes apparent. The outliers, which are data points from early stages of aging (0 or 25 cycles), are marked by the black
arrow.
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than 4.5C protocol, the cells suffer from Li plating, a severe form of
LLI; whereas those cycled at 4C only exhibit minor LLI caused by SEI
growth (Paul et al., 2021a; Paul et al., 2021b). This phenomenon is
attributed to more severe electrolyte depletion at the anode during
high C-rate, causing sluggish Li ion transport.

EIS trends and primary aging behaviors

EIS data of five representative cells are selected based on their
dominant aging modes (LLI or LAMPE) and the percentage of
LAMPE and LLI are listed in Table 1. The cells and aging
behaviors include:

• LAMPE dominated (Llow 1C and 9C)
• Mild aging due to a lower voltage cut-off during charging (Llow
9C-3.78 V)

• LLI dominated, in the form SEI-formation (Lmoderate 4C)
• LLI dominated, in the form of Li plating (Lmoderate 6C)

The EIS as a function of cycle numbers are presented in Figure 4.
Across the two electrode loadings and various cycling conditions,
one common feature is that the first arc grows steadily over the
course of aging, while the second arc evolves distinctively with
higher or lower amount of LAMPE. As shown in Figures 4A, B,
which are the high LAMPE cases, the second arc not only moves to
the right, but the size also grows significantly at 600 cycles (as
marked by the arrows). In contrast, when a lower cutoff voltage of
(3.78 V) instead of 4.1 V is applied to the cell during charging, the
second arc does not grow obviously even after 1000 cycles
(Figure 4C). The link between growth of the second arc and
LAMPE can be further rationalized by the behavior in Figures
4D, E. Both cells exhibit low amount of LAMPE and higher LLI,
and the latter is caused by two different mechanisms, namely SEI-
growth and Li plating. 4(d) ages through SEI-growth, a mild form of
LLI, in which the capacity fade remains below 10%. The case in 4(e)
suffered from heavy Li plating due to the interplay between a higher
C-rate and greater anode thickness. In this case, Li plating
causes ~15% of capacity fade in the initial 100 cycles and close
to ~20% at the end of 450 cycles. Whether LLI is severe or not, the
second arc in Figures 4D, E evolve similarly and does not exhibit
significant growth at later stages of aging. Therefore, the growth of
the second arc can be exclusively attributed to LAMPE instead of LLI.
From an angle of electrochemical reactions, as LAMPE occurs in the
form of cathode cracking, the overpotential for charge transfer
reactions increases and therefore leads to an increased RCT For
this reason, RCT is concluded to be exclusively correlated to LAMPE.

Quick EIS fitting results

To validate our EIS fitting approach’s capability in catching the
trend of aging, the fitting results are compared against the resistance
values obtained using ECM. In the quick-fitting approach, the Zʹ-
intersection and chord lengths are used as a proxy of resistances, as
shown in Figure 5. The progression of Zʹ-intersection and cord
lengths of the first and the second arc are consistent with the growth
trend of ROhm, RSEI and RCT, respectively. Whether the cells are low

or high in LAMPE, the first chord length and RSEI grows steadily
along with aging cycles (red trends). In the high LAMPE cases, the
second chord length and RCT stay around the same level before
225 cycles but increase almost by four times from 225 to 600 cycles
(blue trends). In contrast, for the LAMPE cells, the chord length or
RCT does not exhibit very significant growth trends. The trends in
the 1st and 2nd chord lengths are also consistent with the percentages
of LLI and LAMPE, respectively (Chinnam et al., 2021).

To investigate the mathematical correlation between the
geometric metrices and resistances, ROhm, RSEI, and RCT are
plotted against their corresponding features for all of the EIS
data (16 cells in total) taken at different cycle numbers. As
shown in Figures 6A, B, The Zʹ -intersection and ROhm exhibits a
proportional trend (R2 = 0.949), as indicated by the regression
results (see Supplementary Figure S6 in Supporting information
4). Similar relationship exists between the 1st chord length and RSEI

(R2 = 0.989). However, the correlation between 2nd chord length and
RCT in Figure 6C is not as obvious (R2 = 0.667), especially when 2nd

chord length or RCT < 0.6 Ω cm2. This is due to the ill-defined
second arcs especially at early stages of aging (less than 125 cycles),
where the arcs are relatively flat due to insignificant LAMPE. Most of
the fitted chord lengths fall in a range between 0.3 and 0.5Ω cm2

compared to the corresponding RCT ranges roughly at the same scale
between 0.2 and 0.4Ω cm2. There also exists a few outliers as marked
by black arrows in Figure 6C from early stages of aging at 0 or
25 cycles, where the shape of second arc is not yet well developed. As
the arcs developed more defined shapes in later stages of aging
(chord length >0.5Ω cm2 or RCT > 0.4 Ω cm2) the linear correlation
between the chord length and RCT can be seen more clearly. The
consistency between the trends of geometric metrics and the
resistances allows our EIS-fitting algorithm to quickly gauge the
growth trend of resistance without the need of sophisticated ECM
analysis. As discussed above, whether the arc is well-defined or not
will be a limitation of the quick-fitting approach estimating the
resistance values.

Conclusion

This work presents an approach to quickly analyzing EIS data by
capturing the evolving trend of Nyquist plots during battery aging
without using ECM extensively. This quick-fitting approach uses
least square methods to fit the semi-arcs in the Nyquist plots and
correlate the geometric features, such as chord lengths and
intersects, to the resistance components (ROhm, RSEI, and RCT).
The trend of geometric feature evolution captured by the quick-
fitting approach is consistent with the resistance growth obtained
using ECM, and therefore serves the purpose of aging mechanism
diagnosis. For example, a significant growth in the low-frequency
chord length is a sign of increased RCT and indicates LAMPE.

The quality of fitting will depend on the shape of the semi-arcs.
In the cases that the semi-arcs are poorly defined, such as being flat
due to multiple overlapped arcs, the fitting results will be
accompanied with greater uncertainties or even fail to converge.
Decoupling highly overlapped arcs can be challenging for both the
quick-fitting algorithm and conventional ECM. Additional
algorithms such as distribution of relaxation times (Dierickx
et al., 2020) will be needed to decouple the overlapped semi-arcs.
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Because ECM is not extensively involved in our quick-fitting
algorithm, human engagement in data analysis is greatly reduced,
allowing the quick-EIS fitting to become beginner-friendly and
capable of expeditiously surveying large quantities of datasets
generated during battery testing. The shape of Nyquist plots will
serve as strong indicators for degradation mechanisms, because
different aging mechanisms will impact specific frequency regions
in the Nyquist plot and induce unique shape evolution during aging
(Zhang et al., 2017; Frankenberger et al., 2019; Iurilli et al., 2021;
Jones et al., 2022). Ultimately, this type of quick-EIS analysis
algorithm has the potential to be combined with machine-
learning-based battery lifetime prediction algorithms and
degradation identification methodologies (Severson et al., 2019;
Dubarry and Beck, 2020; Chen et al., 2021; Kim et al., 2022), as
well as measurement tools for fast data acquisition (Tanim et al.,
2020; Hill et al., 2021) to create a framework that automatically and
quickly identify battery aging mechanisms.
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