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Introduction: Incipient faults of distribution networks, if not detected at an early
stage, could evolve into permanent faults and result in significant economic
losses. It is necessary to detect incipient faults to improve power grid security.
However, due to the short duration and unapparent waveform distortion,
incipient faults are difficult to identify. In addition, incipient faults usually have
a small data volume, which compromises their pattern recognition.
Methods: In this paper, an incipient fault identification method is proposed
to address these problems. First, a Waveform Split-Recognition Framework
(WSRF) is proposed to provide a two-step process: 1) split waveform into several
segments according to cycles, and 2) recognize incipient faults through the
similarity of decomposed segments. Second, we design a Similarity Comparison
Network (SCN) to learn the waveform by sharing the weights of two Convolution
Neural Networks (CNNs), and then calculate the gap between them through
a non-linear function in high-dimensional space. Last, disassembled filters are
devised to extract features from the waveform.
Results: The method of initializing weights can improve the speed and Accuracy
of training, and some existing datasets like MNIST consisting of 250 handwritten
numbers from different people are able to provide initial weights to disassembled
filters through the adaptive data distribution method. This paper uses field data
and simulation data to verify the performance of SCN and WSRF.
Discussion: WSRF can achieve more than 95% Accuracy in identifying incipient
faults, which is much higher than three other methods in literature. And this
method can achieve good results at different fault locations and different fault
times. Which compromises their pattern recognition.

KEYWORDS

incipient faults identification, one-shot learning, similarity comparison network,
waveform split-recognition framework, disassembled filters

1 Introduction

Detection of faults is a crucial problem for distribution networks. The economic losses
caused by power failures can be avoided by detecting the faults immediately. In recent
years, with the development of fault detection equipment, the rate of fault occurrence in
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distribution networks is decreasing. However, it has been observed
that 10 to 15 percent of cable faults are preceded by incipient
faults Kasztenny et al. (Cui et al., 2008); Kim et al. (2013). Incipient
faults in underground cables fundamentally result from moisture,
watering trees, or tracking (or electrical treeing) Kulkarni et al.
(Kulkarni et al., 2010). They are self-clearing faults accompanied
by electric arcs. Therefore, incipient faults are usually detected as
a faulty phenomenon with a comparatively lower fault current
and shorter fault time about 1/4 cycle to 4 cycles. So, these
current changes are not detectable by common protection schemes
Jannati et al. (2019). Over the past decades, extensive research has
been conducted on incipient faults detection Stringer and Kojovic
(2001); Moghe et al. (Moghe et al., 2009); Kulkarni et al. (2014).
However, detection of incipient faults is still a challenging task.

Methods to detect incipient faults are mainly mathematical
models which extract features from the waveform and then make
decisions based on these features. Features can be extracted from
the time domain and frequency domain. Sarlak and Shahrtash.
(2013) is implemented in the time domain by utilizing waveform
data collected from power quality monitors and relays to estimate
the distance to the fault in terms of the line impedance. Kim
and Bialek (Kim and Bialek, 2011) proposes a new time domain
approach for locating the sub-cycle incipient failure. Sidhu and
Xu (2010) is based on superimposing fault current and negative
sequence current in the time domain. After the decomposition
by wavelet analysis, two detection rules are proposed according
to different frequency bands, and three classification rules are
accomplished by Root Mean Square (RMS) value and maximum
and minimum value. In the frequency domain, Zhang et al. (2017)
adopts Fast Fourier Transform (FFT) to analyze the fault point
voltage and calculate the voltage total harmonic distortion (THD).
Radojevic et al. (2013) followed the frequency domain harmonic
analysis and detailed frequency domain fault equations are built to
estimate fault resistance for arcing fault detection. Inter harmonics
have been used for fault detection Tao Cui et al. (Kasztenny et al.,
2008). A large number of approaches in the literature are based
on wavelet technique Ghaderi et al. (2015); Zhou et al. (Zhou et al.,
2015); Elkalashy et al. (2008); Xiong et al. (2020); Mousavi and
Butler-Purry (2010); Sedighi et al. (2005). The wavelet analysis can
analyze the physical situations where signals contain discontinuities,
abrupt changes, and sharp spikes, and then separate different
frequency components into different frequency bands. The wavelet-
based high-impedance fault (HIF) detector proposed by Michalik
et al. utilizes the phase displacement between wavelet coefficients
Michalik et al. (2006). An arcing fault is claimed when themeasured
voltage and current signals match the arcing fault model better
than the non-arcing disturbance model Zhang et al. (2016). Most
of the above methods to extract electric features ignore some
higher harmonics, which will result in the loss of information
transmitted by waveform. The better way is to retain all information
through image recognition Song and Chang (2009); Simonyan and
Zisserman (2015); Li (2015).

Considering the random changes in network structure,
line parameters, load, and noise, these methods have difficulty
identifying incipient faults. A good way to handle randomness
and uncertainty associated with incipient faults is data-driven
methods Guo et al. (2018); Liu and Huang (2018). Following the
development of information science and hardware devices, using

FIGURE 1
Waveform from a single-phase incipient fault in underground cable.
(A) Voltage wave form of fault phase, (B) current wave form of fault
phase. Q14

big data to model and analyze complex problems has become
a worldwide trend. Compared to the traditional model-based
methods, data-driven methods can extract features and knowledge
from an unknown system without the help of domain experts.
However, traditional data-driven methods require a large amount
of historical data to conduct data mining and eigenvalue analysis,
but incipient faults obviously do not have such conditions. Xu.
(2018) provides a single-phase incipient fault in underground cable
originating from an incipient failure of an XLPE cable. It can be seen
from Figure 1 that the voltage of the fault phase does not increase
significantly, and the current of the fault phase only lasts for a one-
half cycle. Incipient faults do not trigger protective devices due to
the short duration and low fault current magnitude. So, the fault has
great difficulty detecting the equipment. Therefore, maintenance
personnel is usually not aware of their occurrence. This makes it
difficult to collect incipient faults data, making incipient faults a
small sample problem.

One-shot learning can discover much information about a
category from one or several images. Neural networks are very good
at extracting features from high-dimensional data. However, this
advantage of neural networks becomes a major obstacle to their
small sample learning. It is easy for humans to learn a class of
features from a single sample because we have been observing and
learning from similar objects all our lives. It is not fair to compare
a randomly initialized neural network with a human network that
spends a lifetime identifying objects and symbols, because the
randomly initialized neural network lacks a prior knowledge for
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the data mapping structure. Thus, we adopt knowledge transfer
methods from other tasks. Therefore, this paper proposes an
incipient fault detection method based on one-shot learning. The
three contributions of this paper are summarized as follows:

• A WSRF is proposed to identify the incipient faults in
distribution networks. Split the waveform into several segments
according to cycles and make a decision that the possibility of
incipient faults is calculated by the similarity of each segment.
• We design SCN to compare the similarity of two waveforms

by combining two CNNs and sharing weights. Calculate the
difference between two inputs through a non-linear function
that can deal with the similarity in the range of 0 to 1.
• Disassembled filters with initial weights is devised to extract

features that represent the deformation of a waveform. The
initial weights are shown to be effective if acquired from the
training of classical image datasets.

The outline of the paper is presented as follows: Section 2 gives a
description ofWSRF to identify the incipient faults. Section 3 brings
an introduction to SCN to calculate the similarity of the waveform
in the power grid. Based on the proposed method, Section 4
suggests an idea that uses disassembled filters with initial weights to
extract feature maps. Section 5 demonstrates the numerical results
of WSRF and compares it with other classifiers. The conclusion is in
Section 6.

2 Waveform split-recognition
framework

Waveform split-recognition is inspired by the human perception
of the waveform. When observing a waveform, humans tend to
divide it into several segments. Features of segments are both
perceived by humans to help them distinguish different waveforms
and even understand the electrical processes behind them. Due
to the waveform of incipient faults lasting between a quarter
and four cycles, it is impossible to set the length of a unit
of time. A comparison of waveforms is needed to ensure that
the two images of each waveform are conducted in the same
period. Otherwise, the comparison has no effect on incipient
faults identification. Therefore, WSRF is proposed to decompose
waveform into several segments, as shown in Figure 2. General
shape w1,w2,w3,w4,w5,…,wn are the components of the waveform,
which are called primitives in the WSRF. Instead of being described
directly, waveform described by primitives can be much easier and
has a better performance Lake. (2014).

The type of abnormal events in the distribution system depends
on the occurrence of the fault, and the type of fault can be seen from
the waveform. The waveform of different event types is different.
In this paper, based on WSRF, the fault phase waveform of event
ψ is decomposed by several periodic waveforms ψ1,ψ2,…,ψn. So,
the possibility of failure is obtained by comparing the similarity of
these periodic waveforms. Abnormal events of the same type may
have different behaviors in voltage and current waveform, which are
written as event cases ψ1,ψ2,…,ψk. Compare an unknown event to
each case of a certain event and identify the event by the case which
is the highest similarity. The probability of an unknown event θ to

FIGURE 2
An illustration of WSRF: the current of a faulted phase in a cable
incipient fault is split into several segments.

be a certain event ψ can be written as:

P (θ|ψ) =max(
n

∏
i=1

P(θi|ψ1
i ) ,

n

∏
i=1

P(θi|ψ2
i ) ,…,

n

∏
i=1

P(θi|ψ
k
i )), (1)

where n is the number of cycles recorded for an event, k is the
number of cases for event ψ. θi is the ith periodic waveform in an
unknown event case θ, and ψ1

i is the ith periodic waveform of case 1
in event ψ.

Here the order of phases in an event is adjusted. It should be
noted that the fault phase does not affect the event type. For example,
an incipient fault happening in Phase A and another happening
in Phase B with the same root cause are considered the same
type. Incipient faults severity is closely related to the current pulse
magnitude. So, the cycle order starts from the cycle with the highest
current pulse magnitude.

3 Similarity Comparison Network

SCN can acquire feature maps that enable the model to
generalize successfully from a few examples. The detailed
architecture is shown in Figure 3. It is a conjoined neural network,
which is reflected by sharing weights to measure the similarity of
two inputs. Two inputs (w1 and w2) are fed into neural networks
(Network1 and Network2). These two neural networks map the
inputs to the new space respectively, forming the representation
of the inputs in the new space. Through the calculation of distance
in high-dimensional space, the similarity between the two inputs is
calculated by a non-linear function.

3.1 Structure of model

This model is structurally divided into two steps: feature maps
learning and similarity calculation. The waveform of the power
grid is processed by WSRF into several images, and the size of
each image is 105× 105. The feature maps learning section has two
convolutional neural networks each with L layers. One layer has Nl
units and hl hidden vectors. Each convolution layer uses a single
channel with filters of different sizes and a fixed step size of 1 to
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FIGURE 3
Architecture of SCN: Convolutional Neural Network architecture followed by non-linear layers to convert embeddings into the probabilistic output of
possible categories.

capture the unapparent distortion of the waveformmore completely.
At the same time, the number of convolution filters is specified
as a multiple of 16 to optimize performance in extracting feature
maps from the waveform. The network applies Rectified Linear
Unit (ReLU) activation function to the output feature map of the
waveform. For pooling mode, max-pooling is selected. Considering
the specification of the waveform and the number of convolution
layers,max-poolingwith a step size of 2 is adopted.Therefore, the kth
feature map in each convolutional pooling layer is in the following
form:

a(k)l =max− pool(max(0,W(k)l ⊗ hl + bl) ,2) , (2)

where Wl is the 3-dimensional tensor representing the feature
maps for layer l. We take ⊗ to be the convolutional operation
corresponding to those output units which are the result of the
complete overlap between each convolutional filter and the input
feature maps. bl is the correction factor in layer l.

In a similar calculation step, the units from the final
convolutional-pooling layer are flattened into a single vector. This
convolutional layer is followed by a fully connected layer. In the fully
connected layer, the activation function is ReLU which chooses
feature maps for the following similarity comparison. One more
layer computing the induced distancemetric between siamese twins,
which is given to a non-linear function output unit. More precisely,
the prediction vector is given as follows:

S (w1,w2) =
1

1+ exp(−∑n
i=1

βi | f
i
1 − f

i
2|)
, (3)

where βi is the additional parameter learned when the model
measures the distance during training. This defines a final fully
connected layer for the network which joins the two siamese twins.
fi1 represents the ith feature map from Network1, f

i
2 represents the

ith feature map from Network2.

3.2 Loss function

Since there are two cases of labels input by SCN, the loss function
should also be discussed in different situations. The loss function

adopted in this model is inspired by contrastive loss, It is shown in
the following equation.

L (w1,w2) =
{{{{
{{{{
{

Dw
2 y = 0,

max(0,Dw −m)
2 y = 1,

(4)

where Dw is the distance between two waveforms in high-
dimensional space. y = 1 means that the two waveforms are from
the same incipient fault, and y = 0 is the opposite. For the same
waveform, we want its loss function to be as small as possible, but
it cannot be completely zero for the waveform in a power grid. We
give a threshold value of m. For different input pairs, the larger the
difference, the more irrelevant are the two inputs.

3.3 Optimization criteria

The optimization in this paper is based on the back-propagation
algorithm. Since Network1 and Network2 share weight, the gradient
is additive. We fix the learning rate, momentum, and regularization
weight, so the optimization criterion of the Tth epoch is as follows:

W(T)kj (w
(i)
1 ,w
(i)
2 ) =W

(T)
kj
+△W(T)kj (w

(i)
1 ,w
(i)
2 ) + 2λj|Wkj|,

△W(T)kj (X
(i)
1 ,X
(i)
2 ) = −ηj▽W

(T)
kj
+ μj△W

(T−1)
kj
,

(5)

where ▽Wkj is the partial derivative with respect to the weight
between the jth neuron in one layer and the kth neuron in the
successive layer.

3.4 Learning schedule

We allow each layer to have different learning rates, but the
attenuation of learning rates is consistent throughout the network.
We find that by annealing learning, the network can converge to
the local minimum more easily without getting stuck in the error
surface. Our momentum in each layer starts from 0.9 and increases
linearly in each period until it reaches the value μj. We train each
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FIGURE 4
Schematic diagram of disassembled filters with initial weights: pre-trained weights from MNIST are used as the initial weights in disassembled filters.

network for amaximum of 100 epochs and set the action of delaying
the learning rates uniformly across the network by 50 percent per
epoch when there are 5 epochs and the performance of the past
model still does not improve, that is η(T)j = 0.5η

(T−1)
j . If validation

errors continue to decrease throughout the learning plan, we save
the final state of the model generated by this process.

4 Disassembled filters with initial
weights

4.1 Disassembled filters

The selection of filters has an important impact on feature
extraction which is the basis of identification. The filter with a
large specification is selected at the beginning due to the sparsity
of the waveform pixel matrix. However, large filters may lead to
an excessive parameter calculation and take up a lot of time and
resources. At the same time, according to Simonyan and Zisserman.
(2015), the depth of the neural network is directly related to the
performance of the network: the deeper the depth, the better the
network performance. Based on the above two points, we propose
disassembled filters to extract features of the waveform as shown in
Figure 4. It not only avoids the use of large filters but also increases
the depth of the convolution network. In addition, the filter also
reduces the number of weights that need to be calculated iteratively
and reduces the computational burden. The convolution formula is
as follows:

Eo = Ei ⊗ F1
d ⊗⋯⊗ F

k
d, (6)

where ⊗ represents convolutional operation.

Eo =

[[[[[[[[[[[[[[[[

[

O11 O12 ⋯ O1n

O21 O22 ⋯ O2n

⋮ ⋮ ⋱ ⋮

Om1 Om2 ⋯ Omn

]]]]]]]]]]]]]]]]

]

and Ei =

[[[[[[[[[[[[[[[[

[

I11 I12 ⋯ I1n

I21 I22 ⋯ I2n

⋮ ⋮ ⋱ ⋮

Im1 Im2 ⋯ Imn

]]]]]]]]]]]]]]]]

]
are the output matrix and input matrix of the convolution

layer respectively. While F1
d =

[[[[[[[[[[[[[[[[

[

D(1)11 D(1)12 ⋯ D(1)1q

D(1)21 D(1)22 ⋯ D(1)2q

⋮ ⋮ ⋱ ⋮

D(1)p1 D(1)p2 ⋯ D(1)pq

]]]]]]]]]]]]]]]]

]

and

Fkd =

[[[[[[[[[[[[[[[[

[

D(k)11 D(k)12 ⋯ D(k)1q

D(k)21 D(k)22 ⋯ D(k)2q

⋮ ⋮ ⋱ ⋮

D(k)p1 D(k)p2 ⋯ D(k)pq

]]]]]]]]]]]]]]]]

]

are the disassembled filters.
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FIGURE 5
Accuracy of SCN with different initial weights.

4.2 Weight initialization

The incipient fault detection of distribution networks usually
cannot obtain a large amount of relevant data, and the random
initialization parameters may lead to over-fitting and unsatisfactory
results. Initializing the neural network with appropriate weights has
a positive effect on the training and optimization of the network.
The tasks of each layer of the neural network for image recognition
are different. The low layers extract features of the image (such as
edge detection and color detection), which are general for many
tasks and the high layers extract features related to specific categories
Zeiler and Fergus. (2013). Therefore, we use fine-tuning method to
initialize the disassembled filter. As shown in Figure 4: only weights
of low layers are obtained by MNIST, and that of the high layers is
initialized randomly.

MNIST and fault data have some same characteristics, such as
white background, black line, and sparse pixel matrix. Simulation
data and fault data are all waveform data and have a lot of
same characteristics.Therefore,We use three initializationmethods:
initialized by MNIST, initialized by simulation data, and random
initialization.The results of threemethods are presented in Figure 5.
The Accuracy of random initialization is lower than the other two.
Although the simulation data initialization has a good start, the final
result is not as good as MNIST initialization. Therefore, it is a good
choice to useMNIST to initialize theweights. Learningweights from
a dataset with different data distribution by fine-tuning like this has
been evidenced by Yosinski et al. (2014) and has been applied in
medical image recognition Morid et al. (2021).

5 Numerical results

After discussing the classification of incipient faults, this section
proposes some metrics to evaluate the methods. This section
demonstrates the performance of disassembled filters with initial
weights in SCN by using filed data. After comparing WSRF with
other methods, a discussion of WSRF is provided.

FIGURE 6
The current waveform of fault phase in sub-cycle incipient fault and
multi-cycle incipient fault from cable. (A) Sub-cycle incipient fault, (B)
multi-cycle incipient fault.

5.1 Data source

According to the filed data collected from Xu. (2018) and
Mohsenian-Rad. (2022), we have a deep understanding of various
grid faults.Throughwaveform analysis and field identification, three
categories of abnormal events are found: incipient faults, permanent
faults, and transient disturbances. At the same time, we also find
many cases of the same fault type under different circumstances.
Take incipient faults as an example.The incipient faults occurring on
different equipment can be different cases of incipient faults, such as
cable incipient faults, overhead line incipient faults, switch incipient
faults, etc. Furthermore, there are two types of incipient faults in the
same equipment according to the duration of the arc: sub-cycle and
multi-cycle. The sub-cycle incipient fault and multi-cycle incipient
fault that occurred on the cable are shown in Figure 6.

5.2 Evaluation metrics

To evaluate performance and understand machine learning
models, we propose a series of evaluation indicators. Accuracy
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is introduced as a measure of model performance. A good
performance is related to high Accuracy. Accuracy is an excellent
measure onlywhenwe have symmetric datasets where false positives
and false negatives are almost the same. Therefore, the F1 is usually
more useful than Accuracy, especially if we have an uneven class
distribution. The F1 is the weighted average of precision and recall.
Therefore, this score takes both false positives and false negatives
into account. So, to summarize, the idea is that: Accuracy works best
if false positives and false negatives have similar costs. If the cost of
false positives and false negatives is very different, it’s better to look at
the F1. The formula of Accuracy, Precision, Recall, and F1 are given
as:

Accuracy =
tp + tn

tp + tn + fp + fn
, (7)

Precision =
tp

tp + fp
, (8)

Recall =
tp

tp + fn
, (9)

F1 = 2∗ Precision∗Recall
Precision+Recall

, (10)

where tp: true positive (the predicted type and actual type are all 1),
fp: false positive (the predicted type is 0, but the actual type is 1), tn:
true negative (the predicted type and actual type are all 0), fn: false
negative (the predicted type is not 0, while the actual type is 0).

5.3 Comparison between SCN and
convolutional neural network

In this subsection, we focus on evaluating the performance of
disassembled filters with initial weights in SCN. To improve the
applicability of this model, we adopt images from incipient faults in
four types of electrical equipment: cable, overhead line, transformer,
and switch. 20 sub-types are defined and 40 cases are generated for
each sub-type under different external environmental conditions.
The event type distribution is presented in Table 1. Specifically, the
datasets contain 800 abnormal data, of which 560 data are selected
as the training set. Two images are randomly selected as the input
of SCN, and the result is compared with the input label. The results
of fault image similarity comparison between CNN, SCN, and SCN
with initial weights are shown in Figure 7.

From Figure 7 we can find that: due to loss of initial weights,
their initial Accuracy is not high. With continuous iterative
optimization, CNNwith normal filters obtains anAccuracy of 0.902.
SCN with disassembled filters can achieve higher Accuracy than
CNN.The initial Accuracy of SCN is only 0.511, but the performance
of optimization is good. SCN finally achieves an Accuracy of 0.931
after optimization iterations. Figure 7 shows a comparison between
SCN and SCN with initial weights. SCN with initial weights has a
relatively higher initial Accuracy of 0.790, and an Accuracy of 0.998
is obtained. Through analysis, SCN with initial weights has better
results in Accuracy than CNN.

TABLE 1 Event number distribution of each dataset.

If PF TD

Training 448 56 56

Test 192 24 24

Total 640 80 80

IF, PF, and TD, represent incipient faults, permanent faults, and transient disturbances
respectively.

FIGURE 7
Training process of CNN, SCN, and SCN with initial weights. (A)
Comparison between CNN and SCN, (B) comparison between SCN
and SCN with initial weights.

5.4 Performance analysis of SCN

5.4.1 Identification of incipient faults in field data
This subsection shows the practicability of SCN in different filed

data from Xu. (2018); Mohsenian-Rad. (2022). First, we discuss the
performance of SCN in data from Xu. (2018). Performance of SCN
in different electrical equipment is shown in Figure 8. Each device
has 648 inputs (324 same inputs and 324 different inputs). From
Figure 8 we can see that when the input pairs are the same among
the output of cable waveform, all results are between 0.5 and 0.7.
Of the results, 283 of the overhead line are between 0.6 and 0.8,
while 251 of the result of the transformer is between 0.5 and 0.6.
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FIGURE 8
Performance of SCN in different electrical equipment. (A) Input image
pair is the same, (B) input image pair is different.

263 results of the switch are more than 0.5, while 61 results are less
than 0.5. According to the above information, when the input pairs
are the same, the waveform comparison results of the four electrical
equipment have a concentrated distribution between 0.5 and 0.7.
The results of different input pairs are shown in Figure 8. Of the
results, the 280 results of the cable are less than 0.1. Similarly, 280
results of the overhead line are between 0 and 0.1, and 278 results
of the transformer are less than 0.1. 259 results of the switch are
less than 0.1. The remaining results are scattered between 0.1 and
1. It can be seen that when the input pairs are different, the results
of SCN are concentrated between 0 and 0.1. In order to show the
performance of SCN more intuitively, set the threshold to 0.5. The
Accuracy, Precision, Recall, and F1 of SCN on the four types of
equipment are presented in Table 2. We can see that the Accuracy
of cable, overhead line, and transformer waveform images are more
than 0.94, and F1 of them are more than 0.94. Only the Accuracy
on the switch is relatively low, but it is also as high as 0.85, and F1
is 0.845. In this way, the SCN model has a very good classification
performance on waveform images.

Besides, we use the data from Mohsenian-Rad. (2022) to prove
the practicability of this method. 1,000 validation results (500
negative samples and 500 positive samples) are presented inTable 3.

TABLE 2 Identification results of SCN from Xu. (2018).

Equipment Accuracy Precision Recall F1

Cable 0.961 1.000 0.938 0.968

Overhead Line 0.969 0.942 1.000 0.970

Transformer 0.941 0.947 0.935 0.941

Switch 0.850 0.880 0.812 0.845

TABLE 3 Identification results of SCN fromMohsenian-Rad. (2022).

Data source Accuracy Precision Recall F1

Field data 0.839 0.829 0.854 0.841

Accuracy, Precision, Recall, and F1 achieve good results, with the
smallest pPrecision of 0.829. The most important evaluation index
F1 also reached 0.841. Therefore, we can draw the conclusion
that this method is practical for incipient faults identification in
distribution networks from the real world.

5.4.2 Factors affecting identification
This subsection takes the cable line as an example to analyze the

influence of various factors on the incipient faults identification of
SCN. We refer to one of our authors Cui et al. (2019) to establish
the benchmark system which can be found in Figure 9. The system
configuration under different distributed energy resource (DER)
technologies is presented in Table 4. The wind farm is Type 4 and
rated at 575 V, 6.6 MVA. According to IEEE Standard 1,547, the
wind farm adopts constant power control with LVRT capability. The
maximum fault current is limited to 1.5 pu.

We evaluate the performance of SCN in cable lines in terms of
different fault locations, fault occurrence time, and fault impedance.
The performance of SCN is presented in Table 5:

• Fault location: The three fault locations are shown in Figure 9.
Location 1 near bus B-3, location 2 near bus B-11, and location
3 near bus B-19. From Table 5, we find that SCN can achieve
good results in three locations. Accuracy and F1 at location 1
are 0.945 and 0.893 respectively. Although the result obtained at
location 2 is not as good as that at location 1, this does notmean
that the performance of SCN is affected, because the Accuracy
and F1 at location 3 also achieve a high score, both of which
greater than 0.9.
• Fault occurrence time: The step module is used to control the

fault occurrence time to simulate many incipient faults in cable
lines occurring at different times. We trigger incipient faults
at the beginning of simulation, 0.2 s after the beginning of
simulation and 0.4 s after the beginning of simulation. From
Table 5, we find that SCN can achieve very good results in three
occurrence times. The Accuracy of the three occurrence times
is between 0.825 and 0.858, and F1 is between 0.834 and 0.868.
The time of fault occurrence has a little direct relationship with
the Accuracy of the identification.
• Fault impedance: By adjusting the resistance value of incipient

faults in cable line, the influence of resistance change on
incipient faults identification is analyzed in Table 5. We find
that changing the resistance affects the recognition of SCN.
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FIGURE 9
Single line diagram of distribution feeder.

TABLE 4 System configuration under different DER technologies.

System type Location A Location B

Synchronous machine-based system SG N/A

Inverter-based system WF N/A

Hybrid system SG WF

SG, WF, and N/A represent synchronous generator, wind farm, and not available
respectively.

When the resistance value is 20, the Accuracy and F1 are as high
as 0.882 and 0.885 respectively. However, when the resistance
value is 10, the Accuracy and F1 are 0.722 and 0.676.This shows
that the change of resistance has an impact on the Accuracy of
SCN identification.

According to the previous analysis, for incipient faults of cable,
the location and time of fault occurrence have no great impact on
the Accuracy of identification. Because changing the location of the
fault will not change the fault waveform. The same is true for the
time of failure. However, changing the fault resistance value will
affect the waveform change and will have some negative effects on
the Accuracy.

5.4.3 Identification of arc faults
An arc fault is one of the incipient faults most likely to occur

in the distribution network. Generally, the fault arc contains many
complex characteristics with non-linear changes, which will affect
the performance of incipient faults identification. It is necessary
to analyze the influence of fault arc on the discussed algorithm.
So, we refer to one of our authors Cui et al. (2019) to model the
fault arc. As shown in Figure 10: This model connects one phase
of the power line to the ground. Two variable resistors are both
changing randomly and model the dynamic arcing resistance. Two
sets of diodes and DC sources are connected in an anti-parallel
configuration. The two DC sources are randomly varying as well,
which models the asymmetric nature of arc faults.

Similar to section 5.4.2, we replace the cable faults with arc
faults and evaluate the performance of SCN in arc faults in terms of

TABLE 5 Simulation results of cable incipient faults identification.

Factor Detail Accuracy Precision Recall F1

Location

Location 1 0.945 1.000 0.807 0.893

Location 2 0.895 0.769 0.830 0.798

Location 3 0.910 0.946 0.870 0.906

Time

0 0.842 0.797 0.917 0.853

0.2 0.858 0.812 0.933 0.868

0.4 0.825 0.791 0.883 0.834

Resistance

10 0.722 0.809 0.580 0.676

20 0.882 0.859 0.913 0.885

30 0.793 0.808 0.770 0.789

FIGURE 10
Arc faults model: two anti-parallel dc-source model. The positive half
cycle of arc faults current is achieved when Vph > Vp, while the
negative half cycle is when Vph < Vn. When Vn < Vph < Vp, the current
equals zero, which represents the period of arc extinction.

different fault locations, fault occurrence time, and fault impedance.
The performance of SCN is presented in Table 6:
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TABLE 6 Simulation results of arc faults identification.

Factor Detail Accuracy Precision Recall F1

Location

Location 1 0.800 0.729 0.955 0.827

Location 2 0.915 0.888 0.950 0.918

Location 3 0.735 0.851 0.570 0.683

Time

0 0.886 0.864 0.917 0.890

0.2 0.894 0.870 0.927 0.898

0.4 0.903 0.872 0.950 0.909

Rp, Rn

100–200 0.875 0.850 0.910 0.879

400–500 0.908 0.849 0.993 0.915

1,000–1,100 0.875 0.828 0.947 0.884

• Fault Location: Three fault locations are shown in Figure 9.
From Table 6, we find that Accuracy and F1 at location 1 are
0.800 and 0.827 respectively. Although the high values of 0.908
and 0.915 were obtained at location 2, unsatisfactory results of
0.735 and 0.683 were obtained at location 3. The above shows
that the location of the arc faults has an impact on the Accuracy
of recognition because the uncertainty and non-linearity of the
fault arc make it challenging to identify through images.
• Fault occurrence time: The step module is also used to control

the fault occurrence time to simulate the arc faults at different
times. We trigger arc faults at the beginning of simulation, 0.2 s
after the beginning of simulation and 0.4 s after the beginning
of simulation. From Table 6, we find that SCN can achieve very
good results in three occurrence times. The Accuracy of the
three occurrence times is 0.886, 0.893, and 0.903. F1 is 0.890,
0.898 and 0.909.Therefore, there is almost no direct relationship
between the time of arc faults occurrence and the Accuracy of
identification.
• Fault Impedance: By adjusting RP and Rn to change the

resistance value of arc faults, the influence of resistance change
on arc faults identification is analyzed. From Table 6, the
Accuracy of arc faults in different resistance is 0.875, 0.908, and
0.875. F1 also achieved a higher value of 0.879, 0.915, and 0.884.
Therefore, we find that the Accuracy of the arc faults is not
related to the resistance value. SCN achieves good results in arc
faults identification.

According to the previous analysis, for arc faults, the time of
fault occurrence and fault resistance value have no great impact
on the Accuracy of identification. Changing the time of fault
occurrence will not change the fault waveform. Due to the non-
linear characteristics of arc faults, changing the fault location will
change the waveform to a certain extent, thus affecting the Accuracy
of identification.

5.5 Compare WSRF with other methods

Presently, the popular methods in the field of image recognition
are SVM, CNN, and BP. The characteristics of Song and Chang.
(2009), Simonyan and Zisserman. (2015), Li. (2015), and WSRF in
incipient fault recognition are shown in Table 7. Song and Chang.

TABLE 7 Different characteristics of comparisonmethods.

Method Problem typeDatasetsUnlearned data

Song and Chang. (2009) Classification Large Difficult

Simonyan and Zisserman. (2015) Classification Large Difficult

Li. (2015) Classification Large Difficult

WSRF Possibility Small Easy

TABLE 8 Results for classification in different methods.

Event Method Accuracy Precision Recall F1

CIF

Song and Chang. (2009) 0.600 0.600 1.000 0.746

Simonyan and Zisserman. (2015) 0.100 0.100 1.000 0.180

Li. (2015) 0.124 0.169 0.930 0.278

WSRF 0.945 1.000 0.908 0.951

OLIF

Song and Chang. (2009) 0.400 0.400 1.000 0.566

Simonyan and Zisserman. (2015) 0.100 0.110 1.000 0.178

Li. (2015) 0.124 0.154 0.915 0.260

WSRF 0.945 0.887 1.000 0.938

CIF, and OLIF, represent cable incipient faults and overhead line incipient faults.

(2009) is a binary classification model, which maps the linear
inseparable data in the input space to the high-dimensional feature
space and then obtains the separation hyperplane with the correct
division of the datasets and the largest geometric interval. Simonyan
and Zisserman. (2015) is a feedforward neural network, which is
composed of neurons with learnable weights and bias constants.
WSRF and Simonyan and Zisserman. (2015) use the same method
to extract waveform image feature maps. Li. (2015) is a multi-
layer feedforward perceptron network, which is trained by back-
propagation to minimize the sum of squares of the network errors.
By constantly adjusting weights and thresholds, the network for
image recognition is trained, which has a strong non-linearmapping
ability. The results of the above three methods are classified results,
but it is difficult to classify correctly when facing data that has not
been learned before. WSRF can solve the problem by transforming
the classification problem into a probability problem.

Experiments were conducted on incipient faults that happened
in the distribution line. Events are selected from the database
containing 400 events, repeated 10 times, and the average value of
Accuracy, Precision, Recall, and F1 are shown in Table 8. WSRF
achieves good results in Accuracy, Precision, Recall, and F1. The
Accuracy is 0.945, farmore than the other threemethods.The lowest
Precision rate is 0.887, and the lowest Recall rate is 0.908. F1 also
achieves 0.938. Song and Chang. (2009), Simonyan and Zisserman.
(2015); Li. (2015) all achieve good results in Recall, but Precision
is lower than WSRF. Accuracy in Song and Chang. (2009) is also
lower than WSRF. F1 of the three methods is not good. They reach
0.566, 0.180, and 0.278 respectively, far lower than theWSRF’s 0.938.
Simonyan and Zisserman. (2015) and Li. (2015) are far lower than
WSRF in terms of Accuracy.
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FIGURE 11
F1 of different methods. CIF: Cable incipient fault. OLIF: Overhead line
incipient fault. [1]: The method from Song and Chang. (2009) [2]: The
method from Simonyan and Zisserman. (2015). [3]: The method from
Li. (2015).

In addition, we show the distribution of F1 in ten experiments
to comprehensively score the four methods. The results are shown
in Figure 11. The F1 obtained by Song and Chang. (2009) on cable
incipient faults is from 0.596 to 0.824 and that on overhead line
incipient faults is from 0.431 to 0.730. Simonyan and Zisserman.
(2015) scores lower than 0.3 in both two incipient faults. Li. (2015)
obtains F1 from 0.05 to 0.5 on cable incipient faults. The score on
overhead line incipient faults is from 0.17 to 0.44. WSRF is better
than the three methods in these two kinds of fault identification.
WSRF obtains the score from 0.909 to 1 on cable incipient
faults identification and from 0.889 to 1 on overhead lines. Some
conclusions aremade from the comparison. Song andChang. (2009)
misclassifies some incipient fault events, but its performance is not
bad. Simonyan and Zisserman. (2015) and Li. (2015) misclassify
many incipient fault events so that they can not be used to identify
incipient faults in the distribution network. In contrast, WSRF has
better performance in the identification of incipient faults.

WSRF can learn image features in high-dimensional space to
compare the similarity of waveforms, rather than learn features
corresponding to the label as traditional machine learning. This
method can provide a positive result when facing a fault image
that has high similarity with an incipient fault. At the same time,
it also shows that the possibility of an incipient failure is large. In
this way, few samples should be used to support incipient faults
classification. Similarly, Song and Chang. (2009) also learns image
features in high-dimensional space and classifies them according
to these features. For the fault that has been learned before, Song
and Chang. (2009) performs well. Unlike WSRF, Song and Chang.
(2009) performs poorly on those images that have not been learned
in the training set, and the result of the classification function of
such images mapped to high-dimensional space is no recognition.
Simonyan and Zisserman. (2015) searches features of the waveform
from raw data and needs numerous examples to determine network

weights. When Simonyan and Zisserman. (2015) is trained with
small amounts of data, the result is relatively poor. The same is
for Simonyan and Zisserman. (2015), Li. (2015) extracts common
features through a large amount of data training. Due to its strong
self-adaptive and mapping ability, it has the shortcomings of fast
convergence speed and is easy to fall into local optimum in itself.
Therefore, the performance of classification is very inferior.

6 Conclusion

This paper proposes WSRF to identify incipient faults in
distribution networks. Results illustrate that we can have a feature
matrix through feature extraction and calculate the similarity by
searching the feature space. The proposed disassembled filters
method not only has a good influence on feature extraction but
also demonstrates the possibility of using the initial weights to help
the comparison with high Accuracy. After learning to compare
the similarity of the waveform, we develop a method to split
the waveform into several segments. We recognize incipient faults
through the similarity of segments and the relation between each
other. The results show that WSRF has higher Accuracy than
previous methods in identifying incipient faults.

Experiments show that WSRF outperforms the other three
classifiers for this task. However, SCN still needs hundreds of data
for training and testing. It is a challenge to obtain the high Accuracy
of the model with an extremely small training set.
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