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Owing to the degradation of an echelon-use lithium-ion battery (EULIB), the
Ohmic internal resistance (OIR) and actual capacity (AE) have both changed
greatly, and the state of energy (SOE) can more accurately represent the state
of a EULIB than the state of charge (SOC) because of the working voltage. To
improve the accuracy and adaptability of SOE estimation, in the paper, we study
the energy state estimation of a EULIB. First, the four-order resistor–capacitance
equivalent model of a EULIB is established, and an unscented transformation is
introduced to further improve the estimation accuracy of the SOE. Second, a
EULIB’s SOE is estimated based on adaptive unscented Kalman filter (AUKF), and
the OIR and AE of a EULIB are estimated based on the AUKF. Third, a
Takagi–Sugeno fuzzy model is introduced to optimize the OIR and AE of the
EULIB, and the SOE estimation method is established based on an adaptive dual
unscented Kalman filter (ADUKF). Through simulation experiments, verification,
and comparison, energy decayed to 80%, 60%, and 40% of the rated energy,
respectively, even with a large initial error; with the initial value of the SOE starting
at 100%, 60%, or 20%, the estimated SOE can track the actual value. It can be seen
that the method has a strong adaptive ability, and the estimation accuracy error is
less than 1.0%, indicating that the algorithm has high accuracy. The method
presented in this paper provides a new perspective for SOE estimation of EULIBs.
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1 Introduction

An echelon-use lithium-ion battery (EULIB) refers to a power lithium battery with less
than 80% capacity, which can be used as a backup power supply and on other occasions.
Owing to the attenuation of EULIB performance, the working voltage consistency of a
lithium battery is poor, so the use of the state of charge (SOC) cannot accurately represent the
state of a lithium battery. Therefore, considering the influence of real-time working voltage,
the state of energy (SOE) is used to represent the state of the lithium battery.

To ensure the safe, reliable, and efficient operation of a lithium-ion battery (LIB), the
battery management system (BMS) plays an important role in monitoring the running
process of a LIB and providing system status (Wang et al., 2022; Tran et al., 2022). At the
same time, the BMS accurately estimated key parameters of LIBs, such as estimating the SOC
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(Hu et al., 2018; Hossain et al., 2022), the state of health (SOH) (Hu
et al., 2018), SOE (Hou et al., 2022), and the remaining useful life
(RUL) (Wang et al., 2023) of LIBs. The SOE is an important
parameter of a BMS, which is the ratio of the remaining available
energy to the maximum available energy (Xu et al., 2019; Hou et al.,
2022; Qiao et al., 2022), and is one of the most critical parameters in
a BMS. To improve the performance of electric vehicle BMSs, a high-
precision SOE estimation algorithm is needed (Xu et al., 2019). SOE
estimation methods for LIBs are generally divided into four
categories (as shown in Figure 1): power integral, data-driven,
model-based, and hybrid methods (Yong et al., 2021).

A general SOE estimation method is the power integral method
(detailed in Mamadou et al. (2012)), in which a new indicator of the
energetic reserve, SOE, is proposed to deal with modern BMSs. An
improved scheme to estimate the SOE by mapping the relationship
between discharge power, remaining energy, and SOE was proposed
in Barai et al. (2016). Although this method is advanced to some
extent, it needs calibration and is time consuming and expensive.

With the advancements in machine learning methods, the data-
driven method has been gaining popularity (Gao and Lu, 2021).
Generally, machine learning methods, for example, the genetic
algorithm (Hu et al., 2016), neural network (NN) (Hossain et al.,
2020), deep neural networks (DNNs) (Hossain et al., 2020), and
support vector regression (SVR) (Hu et al., 2014), are widely used for
SOE estimation. In Purohit et al. (2021), a method based on a
feedforward NN is proposed for the joint estimation of the SOC,
SOE, and power loss. The method has been verified by testing, and
its prediction accuracy is high. A data-driven method is based on a
long short-term memory (LSTM) to jointly estimate the SOC and
SOE in Ma et al. (2021). The accuracy and robustness of the method
have been verified by the dynamic cycling condition. In Shrivastava
et al. (2021), two different data-driven SOE estimation methods, that
is, using the DNN and SVR, are compared. The SOE estimation
results demonstrate the high accuracy of the DNN over SVR under
the same dynamic operating conditions. He et al. (2022) proposed a
method based on a radial basis function (RBF) neural network to
estimate the energy recovered and the actual energy released when
the battery current direction changes. The results show that this
method can effectively improve SOE estimation accuracy.

The model-based method uses a resistor–capacitance equivalent
circuit model (Zhai et al., 2017; Li et al., 2018; Qin et al., 2019; Wang
et al., 2019; Xu et al., 2019), which mainly includes particle filter and
Kalman filter families. An unscented particle filter (PF) is used in
Chang et al. (2020) to solve the non-linear and noise problems of the

system. The experimental results show that the error of the SOE is
less than 1.8%. In Zhang et al. (2021), to ensure a precise estimate of
the SOE, dual adaptive particle filters are proposed based on the
third-order resistor–capacitance equivalent model (TRCEM).
Through the dynamic stress test and supplemental federal test,
the feasibility and effectiveness of the method are verified. In
Hou et al. (2022), using the second-order resistor–capacitance
equivalent model (SRCEM), the SOE is estimated based on an
adaptive unscented Kalman filter (AUKF) algorithm. The
simulation results indicate that the proposed method is adaptive,
regardless of whether the initial SOE value is consistent with the real
value, and shows high accuracy. A joint estimation method of the
maximum available energy and SOE that adopted the Kalman filter
algorithm is proposed in Zhang, S., et al. (2021) and Zhang, S.;
Zhang, X (2021). The experimental results show that the method has
good accuracy and robustness. In Zhou et al. (2021), a method
based on a fifth-order simplex square radius cubature Kalman
filter is developed to achieve SOE estimation accuracy and
robustness. The error of SOE estimation is less than 3%. In
Shrivastava et al. (2022), a multiple timescale dual-extended
Kalman filter is used to simultaneously estimate the SOC, SOE,
state of power (SOP), and SOH, and the experimental results
show that the errors of the estimated SOC and SOE are all less
than 1%.

It can be seen from the aforementioned literature that a single
method has a limited effect on improving the accuracy of SOE
estimation, and increasingly more scholars are trying hybrid
methods. In Fan et al. (2022), the LSTM combined with an
AUKF method is proposed to estimate the SOC and SOE
simultaneously. The test results show that the proposed method
can effectively estimate the SOC and SOE of LIBs with high accuracy
and low complexity. In Lai et al. (2021), the SOE method based on a
particle filter and an extended Kalman filter is presented. The
experimental results show that the maximum error of SOE
estimation is less than 3%. In Chen et al. (2021), an approach for
battery SOE prediction is proposed based on an adaptive square root
unscented Kalman filter. Owing to the strong non-linear
characteristics of LIBs, even with a 20% initial SOE error, the
predicted SOE can converge to the actual value. The estimation
error of LIB’s SOE is less than 2%. A method based on the extended
Kalman filter algorithm and Markov chain model was advanced in
An et al. (2022) to predict the future output power, as well as SOE.
The results show that this method has high precision and good
robustness.

FIGURE 1
SOE estimation method.
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Researchers have not only worked to improve the SOE
estimation accuracy but have also studied the adaptability of SOE
estimation. In Rahimifard et al. (2021), an online adaptive
estimation method is proposed that can achieve a high-precision
estimation of the SOC, SOH, and SOP. The effectiveness and
accuracy of this method have been verified in a BMS. In Li et al.
(2021), an adaptive SOE estimation method based on a cubature
Kalman filter applied to series-connected LIB packs is proposed.
Even if the initial error is large, in this method, it can be adjusted
quickly and has high accuracy; in other words, the root mean square
error is less than 2.2%. Both the single SOE (Zhang, S., et al., 2021;
Zhang, S.; Zhang, X.; 2021; Fan et al., 2022; Hou et al., 2022) and
hybrid SOE estimation methods (Chen et al., 2021) enhance the
adaptability and accuracy of the algorithm.

Owing to the performance attenuation of a EULIB, both the Ohmic
internal resistance (OIR) and actual energy (AE) have different
variations. Accurate estimation is needed to ensure accurate SOE
estimation. At the same time, when an error occurs between the
actual and initial energy, the estimation method should be able to
quickly adjust, track the actual SOE, and have self-adaptability.

To improve the accuracy and adaptability of SOE estimation, in the
paper, we study the energy state estimation of a EULIB. First, the four-
order resistor–capacitance equivalent model of a EULIB is established,
and an unscented transformation is introduced to further improve the
estimation accuracy of SOE. Second, a EULIB’s SOE is estimated based
on an AUKF, and the OIR and AE of a EULIB are estimated based on
the AUKF. Third, a Takagi–Sugeno (TS) fuzzy model is introduced to
optimize theOIR andAE of the EULIB, and the SOE estimationmethod
is established based on an adaptive dual unscented Kalman filter
(ADUKF). Finally, the accuracy and adaptability of the algorithm are
verified and compared in simulation experiments.

The objective of the present study is to propose an SOE
estimation method for EULIBs and verify the superiority of the
ADUKF. The original contributions of this paper are as follows.

1) The accuracy of SOE estimation is improved, and a four-order
resistor–capacitance equivalent model (FRCEM) of a EULIB is
established.

2) The TS fuzzy model is introduced to optimize the OIR and AE of
the EULIB and to improve the accuracy of SOE estimation.

3) The unscented transformation (UT) is introduced to establish the
SOE estimationmethod based on the ADUKF, and the EULIB’s SOE
is estimated based on the AUKF, as is its OIR and AE.

2 Estimation model of the state of
energy

2.1 State of energy

Compared with the SOC, the estimation of the SOE increases the
influence of the working voltage, which is of great significance in the
safety evaluation of EULIBs. The SOE of a EULIB is defined as the
ratio of the remaining energy to the maximum available energy and
is a direct expression of the remaining available mileage of a EULIB,
which can be derived as follows:

Sek+1 � Sek − UkΔt
E

ik, (1)

where Sek and Sek+1 are the SOE of EULIB at k and k + 1 time in a
discrete state, respectively; E is the energy of a EULIB; ik and Uk are
the current and working voltage of a EULIB at k time in a discrete
state; and Δt is the sampling period.

2.2 State of energy estimation model based
on the FRCEM

Owing to the complex non-linear system of a EULIB, in order to
simulate the characteristics of a EULIB more accurately, a higher-
order battery equivalent model is required.

The FRCEM not only fully considers the influence of the
polarization impedance of the EULIB on the performance, but also
can reflect the state information of the EULIB in timely and accurate
manner. The model has high accuracy and is easy to implement.
However, the higher-order resistor–capacitance (RC) model is highly
complex and has high requirements on the system, so it is difficult to
apply. On the premise of considering accuracy, complexity, and practical
value, the FRCEM is adopted in this article.

In Figure 2,Uoc is the open-circuit voltage (OCV) of the battery;UL

is the working voltage of the EULIB;R0,U is the ohmic internal resistance
of the EULIB; R1, R2, R3, and R4 are the polarization resistance;
C1, C2, C3, and C4 are the polarization capacitance; U1, U2, U3, and
U4 are the voltages at both ends of capacitors C1, C2, C3, and C4,
respectively; iL is the charge/discharge current; and τ1 � R1C1,
τ2 � R2C2, τ3 � R3C3, and τ4 � R4C4 are time constants.

FIGURE 2
FRCEM of SOE estimation.
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According to Figure 2, the discrete state equation of EULIB’s
FRCEM is as follows:

Sek+1
UR1C1

k+1
UR2C2

k+1
UR3C3

k+1
UR4C4

k+1
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· ik + qk.

(2)
According to Figure 2, the discrete observation equation of

EULIB’s FRCEM is as follows:
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of R1, R2, R3, and R4 at k time in a discrete state, respectively; UR1C1
k+1

UR2C2
k+1 , UR3C3

k+1 , and UR4C4
k+1 are the estimated voltage values of R1, R2,

R3, and R4 at k+1 time in a discrete state, respectively; qk, γk are
independent system noises; Uoc(Se) is the OCV of a EULIB
corresponding to the SOE value of a EULIB at k time in a
discrete state.

2.3 Model parameter identification

The working voltage UL, charge/discharge current iL, and the
OCV UOC of the EULIB are collected through the charge/discharge
test. Model parameter identification based on the least square
method is not repeated in this article because the method is
described in detail in Hou, et al. (2014) and Hou, et al. (2017).
Both UOC and R0,U adopt the off-line identification method (Hou
et al., 2021; Hou et al., 2022).

3 SOE estimation of the EULIB

In this paper, UT is introduced and the ADUKF algorithm is
used to estimate the SOE and OIR and AE, respectively, which are
optimized by the TS fuzzy model. The estimation accuracy and
adaptability characteristics are compared and analyzed (Ma et al.,
2022; Hou, E., et al., 2022).

3.1 UT

UT is the core technology of the unscented Kalman filter (UKF).
The UT’s idea is to approximate the distribution of a probability
density function through a set of carefully selected sample points
and the corresponding weights of the sample points. A certain
number of sigma points are selected from the prior distribution,
according to a certain strategy, and non-linear transformation is
performed on each sigma point to obtain the corresponding
transformed sampling points. In addition, the posterior mean
and variance are calculated by weighting these sample points.
The sample points obtained by UT are neither linearized nor
have lost their higher-order terms, so the accuracy of UT is
higher than that of the extended Kalman filter algorithm (Hou,
et al., 2022).

For any non-linear function y � g(x), around the
n-dimensional state variable x with the mean value of �x and
variance of Px, 2n +1 sigma points χi and corresponding weights
ωi can be selected by the following UT process:

χi � �x i � 0

χi � �x + ��������
n + λ( )Px

√( )
i

i � 1, . . . , n

χi � �x − ��������
n + λ( )Px

√( )
i−n i � n + 1, . . . , 2n (6)

ωm
0 � ωc

0 �
λ

n + λ
i � 0
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ωm
i � ωc

i �
λ

2n + λ
i � 1, . . . , 2n

In the aforementioned formula, ( ��������(n + λ)Px

√ )i is the i column
or row of the square root of (n + λ)Px. λ is the scale factor used to
represent the range of sampling points around equilibrium value
points, and ωm

i is the weight of the corresponding sample points. In
this paper, λ � 0.1, i � 4.

From χi, the sample point with non-linear transformation can be
obtained:

yi � f χi( ). (7)

Then, statistical characteristics of the output sampling points
can be obtained by weighted approximation:

TABLE 2 Fuzzy optimization decision table for AE.

ΔE/E ΔEL ΔEM ΔEH

EL fE1 � ΔE*μΔEL
+ E*μEL

fE2 � ΔE*μΔEM
+ E*μEL

fE3 � ΔE*μΔEH
+ E*μEL

EM fE4 � ΔE*μΔEL
+ E*μEM

fE5 � ΔE*μΔEM
+ E*μEM

fE6 � ΔE*μΔEH
+ E*μEM

EH fE7 � ΔE*μΔEL
+ E*μEH

fE8 � ΔE*μΔEM
+ E*μEH

fE9 � ΔE*μΔEH
+ E*μEH

FIGURE 3
SOE estimation flow chart.

TABLE 1 Fuzzy optimization decision table for the OIR.

ΔR/R ΔRL ΔRM ΔRH

RL fR1 � ΔR*μΔRL
+ R*μRL

fR2 � ΔR*μΔRM
+ R*μRL

fR3 � ΔR*μΔRH
+ R*μRL

RM fR4 � ΔR*μΔRL
+ R*μRM

fR5 � ΔR*μΔRM
+ R*μRM

fR6 � ΔR*μΔRH
+ R*μRM

RH fR7 � ΔR*μΔRL
+ R*μRH

fR8 � ΔR*μΔRM
+ R*μRH

fR9 � ΔR*μΔRH
+ R*μRH
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y � ∑2n
i

ωm
i yi, (8)

Py � ∑2n
i

ωc
i yi − y( ) yi − y( )T. (9)

3.2 State of energy estimation based on the
AUKF

From Eqs 04 and 05, the variable of a EULIB system is the SOE.
The state and observation are as follows:

xk+1,U � f xk,U, uk,U, θk,U( ) + qk,U, (10)
yk+1,U � g xk,U, uk,U, θk,U( ) + γk,U, (11)

where θk,u is the state variable OIR and AE, θk,u � [R0,k,u, Ek,u], xk,U

is the system state variable of a EULIB; uk,U and yk,U are the input
and observation variables of the system, which are the current and
the working voltages of a EULIB, respectively; qk,U and γk,U are the
zero-mean Gaussian white noise, the error covariance matrices of
qk,U and γk,U are Qk,UandRk,U.

The AUKF algorithm is as follows:

Step 1: Initialize xk,U:

x̂0,U � E x0,U( ), (12)
P̂0,U � E[ x0,U − x̂0,U( ) x0,U − x̂0,U( )T. (13)

Step 2: Generating sigma points:

χi,U � �x, �x + ��������
n + λ( )Px

√( )
i
, �x − ��������

n + λ( )Px

√( )
i−n[ ]. (14)

Step 3: Time update of xk,U:

χi.k,U � f χi.k−1,U( ), (15)

xk,U � ∑2n
i�0

ωm
i χi.k,U + qk,U, (16)

Pk,U � ∑2n
i�0

ωc
i χi.k,U − xk,U[ ] χi.k,U − xk,U[ ]T + Qk,U, (17)

yi,k,U � g χi.k−1,U( ), (18)

yk,U � ∑2n
i�0

ωm
i yi.k,U + γk,U, (19)

Py,k,U � ∑2n
i�0

ωc
i yi.k,U − yk,U[ ] yi.k,U − yk,U[ ]T + Rk,U, (20)

Pxy,k,U � ∑2n
i�0

ωc
i χi.k,U − xk,U[ ] yi.k,U − yk,U[ ]T. (21)

Step 4: Status update of xk,U:
The Kalman gain can be expressed as follows:

Kk,U � Pxy,k,UP
−1
y,k,U. (22)

The optimal estimation of the state variable can be expressed as
follows:

x̂k,U � xk,U +Kk,U yk,U − ŷk,U[ ]. (23)

The optimal estimate of the covariance is as follows:

FIGURE 4
Battery testing system. (A) Lithium-ion battery. (B) Charge/discharge experiment (BTS20).

TABLE 3 Parameters of the battery.

Item Parameter Remark (A)

Nominal discharge capacity 60 A h 60

Nominal voltage 3.2 V

Working voltage 2.5 V–3.65 V

Standard charging time 3 h 20

Charging temperature 25°C

Discharging temperature 25°C

Rated power 192 W
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P̂k,U � Pk,U −Kk,UPy,k,UK
T
k,U. (24)

Step 5: Process noise covariance equation:

Qk,U � 1 − dk,U( )Qk−1,U + dk,U[Kk,U ŷk,U − yk,U( ) ŷk,U − yk,U( )TKT
k,U

+Pk,U − Ak−1,UP̂k−1,UAT
k−1,U]. (25)

Step 6: Observation noise covariance equation:

Rk,U � 1 − dk,U( )Rk−1,U

+ dk,U ŷk,U − yk,U( ) ŷk,U − yk,U( )T − Ck,UPk,UC
T
k,U[ ], (26)

where dk,U � 1−bU
1−bkU

, k � 1, 2,/, n, bU is the forgetting factor, 0<
bU <1; xk,U and x̂k,U are the estimation and optimal estimation of

the state variable at k time, respectively; yk,U and ŷk,U are the
estimated value and actual observation value at k time,
respectively; Pk,U andP̂k,U are, respectively, the estimation and
optimal estimation of the error covariance at k time. The
subscript U in the formula represents the algorithm formula
of the AUKF.

According to equations 2, 3, and 23,

x̂k,U �

Ŝek,U
Û

R1C1

k,U

Û
R2C2

k,U

Û
R3C3

k,U

Û
R4C4

k,U

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (27)

where Ŝek,U is the optimal value of the SOE based on the AUKF.

FIGURE 5
Simulation comparative validation curve when energy decays to 80% and the SOE starts at 100%. (A) Estimation and error curves of the SOE. (B)
Observation noise covariance R and process noise covariance Q.

Frontiers in Energy Research frontiersin.org07

Hou et al. 10.3389/fenrg.2023.1137358

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1137358


3.3 OIR and AE estimation based on the
AUKF

The state and observation formulas of the system with the newly
added state parameters are as follows:

θk+1,u � θk,u + qθ,k,u, (28)
Dk+1,u � g xk,u, uk,u, θk,u( ) + γθ,k,u, (29)

where qθ,k,u is the noise on the input variable, and it is the zero-mean
Gaussian white noise; γθ,k,u is the noise on the output variable, and it
is the zero-mean Gaussian white noise; the error covariance matrices
of qθ,k,u and γθ,k,u are Qθ,k,u and Rθ,k,u, respectively; the state variable
θk,u is estimated based on the AUKF algorithm, and the estimated
values of the EULIB’s OIR and AE are calculated. In order to
improve the accuracy, the error between the actual value and the
estimated value of the working voltage is optimized.

The AUKF algorithm flow is as follows:

Step 1: Initialize xk,U:

θ̂0,u � E θ0,u( ), (30)
Pθ,0,u � E x0,u − x̂0,u( ) x0,u − x̂0,u( )T[ ]. (31)

Step 2: Generating sigma points:

χθi,u � �x, �x +
���������
n + λ( )Pθ,u

√( )
i
, �x −

���������
n + λ( )Pθ,u

√( )
i−n

[ ]. (32)

Step 3: Time update of xk,U:

χθi.k,u � f χθi.k−1,u( ), (33)

θk.u � ∑2n
i�0

ωm
θiχθi.k,u + qθ,k,u, (34)

Pθ,k,u � P̂θ,k−1,u + Qθ,k,u, (35)
yθi,k,u � g χθi.k−1,u( ), (36)

yθ,k,u � ∑2n
i�0

ωm
θiyθi.k,u + γθ,k,u, (37)

Pθy,k,u � ∑2n
i�0

ωc
θi yθi.k − yθ,k[ ] yθi.k − yθ,k[ ]T + Rθ,k,u, (38)

Pθxy,k,u � ∑2n
i�0

ωc
θi χθi.k,u − θk.u[ ] yθi.k,u − yθ,k,u[ ]T. (39)

Step 4: Status update of xk,U:
The Kalman gain is as follows:

Kθ,k,u � Pθxy,k,uP
−1
θy,k,u. (40)

The optimal estimation of the state variable is as follows:

θ̂k,u � θk,u + Kθ,k,u yk,u − ŷk,u[ ]. (41)

The optimal estimate of the covariance is as follows:

P̂θ,k,u � Pθ,k,u −Kθ,k,uPθy,k,uK
T
θ,k,u. (42)

Step 5: Process noise covariance equation:

qθ,k,u � 1 − dθ,k,u( )qθ,k−1,u + dθ,k,u θ̂k,u −∑2n
i�0

ωm
θif χθi.k−1,u, uk,u, θk, u( )⎡⎣ ⎤⎦,

(43)
Qθ,k,u � 1 − dθ,k,u( )Qθ,k−1,u + dθ,k,u[Kθ,k,u ŷk,u − yk,u( ) ŷk,u − yk,u( )TKT

θ,k,u

+Pθ,k,u − Ak−1,uP̂θ,k−1,uAT
k−1,u]. (44)

Step 6: Observation of the noise covariance equation:

γθ,k,u � 1 − dθ,k,u( )γθ,k−1,u + dθ,k,u yθ,k,u −∑2n
i�0

ωm
θig χθi.k−1( )⎡⎣ ⎤⎦, (45)

Rθ,k,u � 1 − dθ,k,u( )Rθ,k−1,u

+ dθ,k,u ŷk,u − yk,u( ) ŷk,u − yk,u( )T − Ck,uPθ,k,uC
T
k,u[ ], (46)

where dθ,k,u � 1−bθ,u
1−bk

θ,u

, and bθ is the forgetting factor of θ, 0 < bθ,k,u < 1 ,
k � 1, 2,/, n.

3.4 OIR based on TS fuzzy optimization

In order to further improve the estimation accuracy of the SOE,
this paper adopts the TS fuzzy model to the OIR and AE in the
Kalman filter process (Hou, E., et al., 2022).

The OIR R0,U theory domain: [1 3].
The OIR R0,U fuzzy language variables: RL, RM, and RH.
The OIR R0,U membership function expression:

μRL
� exp − s − 1( )2

2*22
( ), (47)

μRM
� exp − s − 2( )2

2*22
( ), (48)

μRH
� exp − s − 3( )2

2*22
( ). (49)

TABLE 4 Estimation error of the EULIB’s SOE.

Estimation error SOE error of ADUKF

Decay to 80% SOE = 100% −0%–0.84%

SOE = 60% −0.90%–0.96%

SOE = 20% −0.92%–0.97%

Decay to 60% SOE = 100% −0%–0.88%

SOE = 60% −0.91%–0.97%

SOE = 20% −0.94%–0.99%

Decay to 40% SOE = 100% −0%–0.90%

SOE = 60% −0.93%–0.99%

SOE = 20% −0.95%–1.00%
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Definition:
ΔR0,k,U � R0,k,U − R0,k−1,U. (50)

The change rate of the OIR ΔR0,k,U theory domain: [−0.3 0.6].
The change rate of OIR ΔR0,k,U fuzzy language variables: ΔRL,

ΔRM, and ΔRH.
The change rate of OIR ΔR0,k,U membership function expression:

μΔRL
� exp − s + 0.3( )2

2*0.62
( ), (51)

μΔRM
� exp − s − 0.1( )2

2*0.62
( ), (52)

μΔRH
� exp − s − 0.4( )2

2*0.62
( ). (53)

According to Table 1, the optimal updated value of OIR is as
follows:

R̂0,k,U � ∑9
i�1μ

ifRi∑9
i�1μi

, (54)

where n � 9 is the number of fuzzy rules, fRi is the conclusion
equation from rule i, and μi represents the membership degree of
rule i corresponding to this generalized input vector.

3.5 AE based on TS fuzzy optimization
The AE E0,U theory domain: [44 66].
The AE E0,U fuzzy language variables: EL, EM, and EH.
The AE E0,U membership function expression:

FIGURE 6
Simulation comparative validation curve when energy decays to 80% and the SOE starts at 60%. (A) Estimation and error curves of the SOE. (B)
Observation noise covariance R and process noise covariance Q.
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μEL
� exp − s − 45( )2

2*102
( ), (55)

μEM
� exp − s − 55( )2

2*102
( ), (56)

μEH
� exp − s − 60( )2

2*102
( ), (57)

ΔE0,k,U � E0,k,U − E0,k−1,U. (58)
The change rate of the AE ΔE0,k,U theory domain: [−30 50].
The change rate of AE ΔE0,k,U fuzzy language variables: ΔEL,

ΔEM, and ΔEH.
The change rate of AE ΔE0,k,U membership function expression:

μΔEL
� exp − s + 20( )2

2*102
( ), (59)

μΔEM
� exp − s − 10( )2

2*202
( ), (60)

μΔEH
� exp − s − 40( )2

2*102
( ). (61)

According to Table 2, the optimal updated value of AE is as
follows:

Ê0,k,U � ∑9
i�1μ

ifEi∑9
i�1μi

, (62)

FIGURE 7
Simulation comparative validation curve when energy decays to 80% and the SOE starts at 20%. (A) Estimation and error curves of the SOE. (B)
Observation noise covariance R and process noise covariance Q.
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where n � 9 is the number of fuzzy rules, fEi is the conclusion
equation from rule i, and μi represents the membership degree of
rule i corresponding to this generalized input vector.

3.6 SOE estimation based on the ADUKF

The SOE estimation flow chart of the EULIB based on the
ADUKF is shown in Figure 3.

4 Simulation and discussion

4.1 Experiment

According to Figure 4 and Table 3, the EULIB is selected to
conduct the charge–discharge experiment using test equipment

(BTS20) at room temperature. In order to simulate the working
conditions, the fully charged EULIB was discharged several
times. Different discharge currents were used each time for
simulation, verification, and analysis based on MATLAB
R2022a.

In order to verify the adaptive characteristics of the ADUKF
algorithm, a test experiment was carried out on a fully charged
EULIB, starting from an SOE of 100% to ending at an SOE of 25%.
In the paper, selected battery energy decays to 80%, 60%, and 40%
separately of rated energy, and the initial SOE values were changed
to 100%, 60%, and 20% separately, and the adaptive and error curves
were observed and analyzed.

In the process of simulation and verification, the estimated value
of the SOE was calculated based on the ADUKF algorithm, and the
actual value was acquired by BTS20.

According to Eq. 27, the formula for error is as follows:
The SOE error of the ADUKF formula is as follows:

FIGURE 8
Simulation comparative validation curve when energy decays to 60% and the SOE starts at 100%. (A) Estimation and error curves of the SOE. (B)
Observation noise covariance R and process noise covariance Q.
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OE error ofADUKF � Ŝek,U − Sactual, (63)

where Sactual is the value acquired by a piece of test equipment.

4.2 Energy decays to 80% and the SOE starts
at 100%

The simulation comparative verification curve when energy
decays to 80% and the SOE starts at 100% is shown in Figure 5.

The SOE estimation curves of the EULIB are shown in
Figure 5A. The bottom graph is the SOE error curve, and the top
graph is the SOE adaptive estimation curve. As shown in Table 4 and
Figure 5, the SOE error is 0%–0.84% based on the ADUKF with TS
fuzzy optimization.

The observation noise covariance and process noise covariance
curves of a EULIB are shown in Figure 5B. The bottom graph is the
process noise covariance curve, and the top graph is the observation
noise covariance curve.

According to the variation trend of observation and process
noise covariance curves, the method is convergent.

4.3 Energy decays to 80% and SOE starts
at 60%

The simulation comparative verification curve when energy
decays to 80% and the SOE starts at 60% is shown in Figure 6.

The SOE estimation curves of EULIB are shown in Figure 6A.
The bottom graph is SOE error curve, and the top graph is the

FIGURE 9
Simulation comparative validation curve when energy decays to 60% and the SOE starts at 60%. (A) Estimation and error curves of the SOE. (B)
Observation noise covariance R and process noise covariance Q.
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SOE adaptive estimation curve. As shown in Table 4 and
Figure 6, the SOE error is −0.90%–0.96% (maximum and
minimum errors in the SOE error curve) based on the
ADUKF with TS fuzzy optimization.

The observation noise covariance and process noise covariance
curves of a EULIB are shown in Figure 6B. The bottom graph is the
process noise covariance curve, and the top graph is observation
noise covariance curve.

According to the variation trend of observation and process
noise covariance curves, the method is convergent. The change in
observation noise covariance is small, but the change in process
noise covariance is large, compared with that when SOE is 100%.
Since the initial value is different, the algorithm is adjusted and the
actual value is tracked very high in the end.

4.4 Energy decays to 80% and the SOE starts
at 20%

The simulation comparative verification curve when energy
decays to 80% and the SOE starts at 20% is shown in Figure 7.

The SOE estimation curves of a EULIB are shown in Figure 7A. The
bottom graph is the SOE error curve, and the top graph is the SOE
adaptive estimation curve. As shown in Table 4 and Figure 7, the SOE
error is −0.92%–0.97% (maximum and minimum errors in the SOE
error curve) based on the ADUKF with TS fuzzy optimization.

The observation noise covariance and process noise covariance
curves of a EULIB are shown in Figure 7B The bottom graph is
process noise covariance curve, and the top graph is the observation
noise covariance curve.

FIGURE 10
Simulation comparative validation curve when energy decays to 60% and the SOE starts at 20%. (A) Estimation and error curves of the SOE. (B)
Observation noise covariance R and process noise covariance Q.
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According to the variation trend of observation and process
noise covariance curves, the method is convergent. The changes in
observation and process noise covariance are both increased,
compared with that when the SOE is 60%. Since the initial value
is different, the algorithm is adjusted and the actual value is tracked
very high in the end.

4.5 Energy decays to 60% and SOE starts
at 100%

The simulation comparative verification curve when energy
decays to 60% and the SOE starts at 100% is shown in Figure 8.

The SOE estimation curves of a EULIB are shown in
Figure 8A. The bottom graph is the SOE error curve, and the
top graph is the SOE adaptive estimation curve. As shown in
Table 4 and Figure 8, the SOE error is 0%–0.88% (maximum and

minimum errors in the SOE error curve) based on the ADUKF
with TS fuzzy optimization.

The observation noise covariance and process noise covariance
curves of a EULIB are shown in Figure 8B. The bottom graph is
process noise covariance curve, and the top graph is the observation
noise covariance curve.

According to the variation trend of observation and process
noise covariance curves, the method is convergent. As the energy
decays more, the algorithm needs stronger adjustment ability and
the error is larger than that before the decays.

4.6 Energy decays to 60% and the SOE starts
at 60%

The simulation comparative verification curve when energy
decays to 60% and the SOE starts at 60% is shown in Figure 9.

FIGURE 11
Simulation comparative validation curve when energy decays to 40% and the SOE starts at 100%. (A) Estimation and error curves of the SOE. (B)
Observation noise covariance R and process noise covariance Q.
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The SOE estimation curves of a EULIB are shown in
Figure 9A The bottom graph is the SOE error curve, and the
top graph is the SOE adaptive estimation curve. As shown in
Table 4 and Figure 9, the SOE error is −0.91%–0.97% (maximum
and minimum errors in the SOE error curve) based on the
ADUKF with TS fuzzy optimization.

The observation noise covariance and process noise covariance
curves of a EULIB are shown in Figure 9B. The bottom graph is the
process noise covariance curve, and the top graph is the observation
noise covariance curve.

According to the variation trend of observation and process noise
covariance curves, the method is convergent.With the intensification of
energy attenuation, the algorithm needs stronger adjustment ability and
the error is larger than that of energy attenuation to 80%. However,
tracking the actual value is good.

4.7 Energy decays to 60% and the SOE starts
at 20%

The simulation comparative verification curve when energy
decays to 60% and the SOE starts at 20% is shown in Figure 10.

The SOE estimation curves of a EULIB are shown in Figure 10A
The bottom graph is the SOE error curve, and the top graph is the
SOE adaptive estimation curve. As shown in Table 4 and Figure 10,
the SOE error is −0.94%–0.99% (maximum and minimum errors in
the SOE error curve) based on the ADUKF with TS fuzzy
optimization.

The observation noise covariance and process noise covariance
curves of a EULIB are shown in Figure 10B The bottom graph is the
process noise covariance curve, and the top graph is the observation
noise covariance curve.

FIGURE 12
Simulation comparative validation curve when energy decays to 40% and the SOE starts at 60%. (A) Estimation and error curves of the SOE. (B)
Observation noise covariance R and process noise covariance Q.
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FIGURE 13
Simulation comparative validation curve when energy decays to 40% and the SOE starts at 20%. (A) Estimation and error curves of the SOE. (B)
Observation noise covariance R and process noise covariance Q.

TABLE 5 Comparison of optimization methods.

Reference Accuracy of estimation (%) Adaptability Method

Method of this paper 1 Yes TS fuzzy optimized ADUKF

Chang et al. (2020) 1.8 No Unscented particle filter

Chen et al. (2021) 2 Yes Adaptive square root unscented Kalman filter

Zhou et al. (2021) 3 No Particle swarm optimization and the cubature Kalman filter

Lai et al. (2021) 3 Yes Particle filter and the extended Kalman filter

Hou et al. (2022) 2.34 Yes ADUKF

Shrivastava et al. (2022) 1 No Multi-time scale dual-extended Kalman filter
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According to the variation trend of observation and process
noise covariance curves, the method is convergent. With the
intensification of energy attenuation, the algorithm needs
stronger adjustment ability and the error is larger than that
of energy attenuation to 80%. However, tracking the actual value
is good.

4.8 Energy decays to 40% and the SOE starts
at 100%

The simulation comparative verification curve when energy
decays to 40% and the SOE starts at 100% is shown in Figure 11.

The SOE estimation curves of a EULIB are shown in
Figure 11A. The bottom graph is the SOE error curve, and
the top graph is the SOE adaptive estimation curve. As shown
in Table 4 and Figure 11, the SOE error is 0%–0.90% (maximum
and minimum errors in the SOE error curve) based on ADUKF
with TS fuzzy optimization.

The observation noise covariance and process noise covariance
curves of a EULIB are shown in Figure 11B The bottom graph is the
process noise covariance curve, and the top graph is the observation
noise covariance curve.

According to the variation trend of observation and process
noise covariance curves, the method is convergent. As the energy
decays more, the algorithm needs stronger adjustment ability
and the error is larger than that before the decays.

4.9 Energy decays to 40% and the SOE starts
at 60%

The simulation comparative verification curve when energy
decays to 40% and the SOE starts at 60% is shown in Figure 12.

The SOE estimation curves of a EULIB are shown in
Figure 12A, The bottom graph is the SOE error curve, and
the top graph is the SOE adaptive estimation curve. As shown
in Table 4 and Figure 12, the SOE error is −0.93%–0.99%
(maximum and minimum errors in the SOE error curve)
based on the ADUKF with TS fuzzy optimization.

The observation noise covariance and process noise covariance
curves of a EULIB are shown in Figure 12B The bottom graph is the
process noise covariance curve, and the top graph is the observation
noise covariance curve.

According to the variation trend of observation and process noise
covariance curves, the method is convergent. With the intensification of
energy attenuation, the algorithm needs stronger adjustment ability and
the error is larger than that of energy attenuation to 60%. However,
tracking the actual value is good.

4.10 Energy decays to 40% and the SOE
starts at 20%

The simulation comparative verification curve when energy
decays to 40% and the SOE starts at 20% is shown in Figure 13.

The SOE estimation curves of a EULIB are shown in Figure 13A
The bottom graph is the SOE error curve, and the top graph is the
SOE adaptive estimation curve. As shown in Table 4 and Figure 13,
the SOE error is −0.95%–1.00% (maximum and minimum errors in
the SOE error curve) based on the ADUKF with TS fuzzy
optimization.

The observation noise covariance and process noise covariance
curves of a EULIB are shown in Figure 13B. The bottom graph is the
process noise covariance curve, and the top graph is the observation
noise covariance curve.

According to the variation trend of observation and process
noise covariance curves, the method is convergent. With the
intensification of energy attenuation, the algorithm needs
stronger adjustment ability and the error is larger than that of
energy attenuation to 60%. However, tracking the actual value
is good.

4.11 Discussion

The simulation results show that the estimation accuracy
error of the EULIB’s SOE is less than 1.00% based on a TS
fuzzy-optimized ADUKF. With the continuous attenuation of
energy, the algorithm is required to have increasingly more
adaptive ability, and although the error also increases, the
maximum error is less than 1%. As shown in Table 5,
compared with the SOE estimation accuracy of 1.8% in
Chang et al. (2020), 2% in Chen et al. (2021), 3% in Zhou
et al. (2021) and Lai et al. (2021), 2.34% in Hou et al. (2022),
and 1% in Shrivastava et al. (2022), the method proposed in this
paper has higher accuracy. Furthermore, the proposed method
is adaptive, regardless of whether the initial SOE value is
consistent with the actual value.

5 Conclusion

In this paper, the SOE estimation method based on a TS
fuzzy optimization ADUKF is established of a EULIB. To
improve the accuracy of SOE estimation, the four-order
resistor–capacitance equivalent model is used to estimate the
SOE, OIR, and AE based on an adaptive dual unscented Kalman
filter. To improve the accuracy of the estimation model, the OIR
and AE have been optimized based on the TS fuzzy model. To
enhance the adaptive ability, the process error and the
observation error are estimated. Through simulation, energy
decayed to 80%, 60%, and 40% of the rated energy; with the
initial value of the SOE starting at 100%, 60%, or 20%, the
estimated SOE can track the actual value. The estimation
accuracy error of the EULIB’s SOE is less than 1.00% based
on a TS fuzzy optimization ADUKF, and the algorithm has
higher accuracy.

Also, positive results have been achieved in this paper, both in
accuracy and adaptability. However, due to the high-order
equivalent model, compared with the low-order model, the
calculation amount is larger.
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