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Background: The day-ahead power market is an important part of the spot
market. In the day-ahead market, participants make short-term forecasts of
the load and output to propose the bidding curve more precisely. As energy
aggregators that have regulatory resources, virtual power plants (VPPs) need to
consider the uncertainty of distributed renewable energy output when
participating in power market transactions.

Methods: This paper analyzes the uncertainty and built an optimization model for
VPP in day-ahead powermarket considering the uncertainty from both inner parts
and the market environment. To verify the model, a simulation study is ran.

Results: And the study results show the following: 1) the forecastingmodel ismore
efficient than the traditional algorithm in terms of accuracy, and 2) the confidence
levels are not fully positive with the benefit of VPPs.

Discussion: Improving the confidence level could reduce the uncertainty brought
by renewable energy, but could also cause conservative trading behavior and
affect the consumption of renewable energy.
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1 Introduction

In response to the call for low-carbon development, clean energy has gradually become
the focus of energy transformation. As control carriers for aggregating distributed energy
and energy storage, virtual power plants (VPPs) can improve energy utilization efficiency
and reduce clean energy curtailment through flexible regulation (Tan and Yang, 2019). In
market transactions, VPPs can further allot power resources in another way. Considering the
fluctuating generation of renewable energy, the uncertainty of power sources should be
overcome at the outset (Zhou et al., 2017).

The uncertainty and volatility of renewable energy output will cause deviations in the
spot market, leading to power curtailment or load loss. Many researches have been made to
solve the uncertainty of renewable energy output. Multiple correction of bidding power in
the day-ahead market based on the Spanish power market mechanism was proposed,
realizing an accurate match between generation bidding and real-time load
(JafariZareipourSchellenberg and Amjady, 2014). It was noted that the uncertainty of
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renewable energy output is key to realizing stable operation of the
spot market (Meibom et al., 2011). A mixed-integer programming
scheduling model of VPP was proposed considering wind power
output, electric vehicles (EVs), and electricity price fluctuations in
the day-ahead market by using the point estimation method
(Shayegan-Rad et al., 2017). The randomness and fluctuation of
wind power and photovoltaic (PV) output using the kernel density
estimation method were considered (Bai et al., 2018), generating a
large number of wind and PV processing scenes and forming an
economic power system dispatching model with improved
forecasting. The output of a wind turbine in combination with
stochastic programming theory was simulated (HeydarianForushani
et al., 2014), realizing effective control of the uncertainty of wind
power in market transactions. Due to the uncertainty of distributed
wind power and PV power generation, it is necessary to consider
methods to overcome the uncertainty in transaction optimization.
Commonly used methods include scenario reduction (Wu et al.,
2019; Sun et al., 2021) and intelligent algorithm prediction n (Kong
et al., 2015; Shu et al., 2020). Using the Monte Carlo method,
literature (Dong et al., 2018) forecasted the EV load considering
demand response (DR) management. Using the random forest
method, literature (Niu et al., 2020) improved the intelligent
algorithm and selected typical climate days as examples for
analysis. An optimal bidding model based on short-term
probability forecasting for wind power was constructed in
(Pinson et al., 2007).

In addition, market participants often consider the balance
between risk and profit when conducting market transactions.
Therefore, the CVaR method is introduced to measure the
relevant returns under a set credit level. Based on the load
aggregator and using the CVaR method, literature (Zhang et al.,
2020) proposed bidding decisions in power market transactions.
Based on data of the PJM power market and the risk of price
fluctuation, literature (Liu et al., 2020) used the CVaR method to
measure the risk. Using CVaR risk measurement, aiming at
minimizing the loss of power purchasers and considering the
factors of peak–valley time of use (TOU) and price, an optimal
combination was proposed in (Zhu and Xie, 2015).

In the day-ahead power market, it is also necessary to consider
price uncertainty and load change trend in the market in
combination with the market mechanism. The literature (Jadfari
et al., 2014) analyzed the intraday market mechanism and put
forward an intraday trading mechanism of wind power dynamic
output correction. In literature (Riveraion et al., 2015), the
maximum expected return of VPP market transactions is taken
as the objective function, constructed a short-term VPP power
transaction optimization model, and used the scenario simulation
method to reflect price uncertainty in the day-ahead market.
Literature (Zamani et al., 2016) used the optimal allocation and
market price factors in VPP and proposed an optimal day-ahead
scheduling model of VPP electric and thermal energy. Literature
(Fan et al., 2015; Duan et al., 2016) constrained the uncertainty of
wind and PV output in VPP and constructed an optimal two-level
scheduling model.

Among the previous research, few studies focused on decision-
making for VPPs in the day-ahead market considering uncertainty
from both inner VPP and market trading sides. In this paper, the

uncertainty of VPPs participating in market trading is divided into
two aspects, intrinsic and extrinsic factors, including the generation
uncertainty of wind power and PV, and the risk preference of
decision-makers. Then, a combined forecasting method, the
EEMD-CS-ELM forecasting model, is proposed to reduce the
generation uncertainty of wind power and PV units. And CVaR
theory is introduced to analyze the external uncertainty of VPPs in
market trading environment. Finally, a case study is examined to
verify both the rationality of the EEMD-CS-ELM model and the
application of CVaR theory in this situation.

2 Uncertainty of virtual power plant
under day-ahead transaction

2.1 Uncertainty modeling of virtual power
plants

2.1.1 Uncertainty of wind power and photovoltaic
output

In the context of market-oriented reform, distributed wind
power and PV generally cannot participate in market
transactions directly due to their small capacity. VPP can
participate in market transactions through the aggregation of
distributed energy. With its own flexible regulation ability and
the introduction of energy storage and other components, the
utilization efficiency of distributed energy can be improved. In
addition, the incoming wind power is affected by geographical
location and time period, and photovoltaic is affected by the
time-period distribution of weather and radiation intensity. Their
generation curves have strong volatility and randomness. Therefore,
in day-ahead market transactions, the internal uncertainty from
wind and PV output should be considered at the outset.

2.1.2 Modeling of uncertain output of wind power
plant

The output uncertainty of a wind power plant (WPP) depends
on the random characteristics of wind speed, which can usually be
described by the Weibull distribution (Zhang et al., 2015). The wind
speed calculation model is as follows:

f v( ) � k

c
( ) · v

c
( )k−1

· e− v
c( )k (1)

where v is the wind speed, c is the scale parameter of the Weibull
distribution, and k is the state parameter. Based on Eq. 1, the
relationship between the real-time output of a wind turbine and
the real-time wind speed can be expressed as follows:

PWT
t �

0 v<Vin, v>Vout

0.5CpρAwv
3 Vin < v<Vrated

PWT
rated Vrated < v<Vout

⎧⎪⎨⎪⎩ (2)

where PWT
t is the output of the wind turbine at time t, Cp is the wind

power utilization parameter, ρ is the air density, Aw is the vertical
projected area of the wind on the swept area of the blade, PWT

rated is the
rated output of the WPP, and Vin, Vrated, and Vout are the cut-in,
rated, and cut-out wind speed, respectively.
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2.1.3 Modeling of uncertain output of PV
The uncertainty of PV comes from the stochastic characteristics

of solar radiation intensity, which is usually described by beta
distribution (JuTanYuan et al., 2016). The solar radiation
intensity model is as follows:

fPV t( ) � Γ α + β( )
Γ α( ) + Γ β( ) r

r max
( )α−1

1 − r

r max
( )β−1

(3)

where r is the solar irradiance, rmax is the maximum radiation, and α
and β are the shape parameters of beta distribution, which will lead
to changes in the shape of its probability density curve. α and β can
be calculated by expectation μ and variance δ:

α � μ
μ 1 − μ( )

δ2
− 1[ ] (4)

β � 1 − μ( ) μ 1 − μ( )
δ2

− 1[ ] (5)

Based on the calculation of solar radiation intensity, the PV
output model is obtained:

PPV
t � χPVρPVθt (6)

where χPV is the transmission efficiency, ρPV is the total area of PV
devices, and θt is the radiation intensity at time t.

2.2 Comprehensive uncertainty analysis of
day-ahead market with CVaR

In actual operation, there is a deviation between the actual
generation curve of the market entity and the forecasted generation
curve reported by the entity. When a VPP participates in market
transactions, to improve the consumption amount of distributed
wind and PV power, thermal units and energy storage devices will
assume the function of flexible standby regulation, which shows that
the deviation is mainly caused by wind and PV output. This can be
described by introducing the conditional value at risk (CVaR)
method, and the basic VaR can be expressed as follows:

P X<VaR( ) � a (7)
where P is the possibility that the loss value is less than the VaR,X is
the loss value of the assets, and a is the confidence interval.

The confidence level of the basic VaR method does not obey the
regular distribution, and changes in the confidence level will have a
great impact on the VaR. Therefore, CVaR is introduced to increase
conditionality based on the principle of VaR to reflect the additional
risk distribution (Li et al., 2021):

CVaR � E X|X≥CVaR( ) (8)
CVaRa X( ) � E X VaRa| X( )[ ] � 1

1 − a
∫VaR

−∞
xf x( )dx (9)

where VaRa(X) is the VaR when the confidence level is a and
CVaRa(X) is the expectation value when the loss is over
VaR1−a(X), VaR is the a quantile of X, and f(x) is the
probability distribution, which is not defined as an absolute
continuous function. Considering that the probability density
function of the actual output of wind power and PV obeys

normal distribution, we performed further analysis of a VPP
participating in the day-ahead power market based on generation
uncertainty.

3 Optimization model of VPP in day-
ahead market based on EEMD-CS-ELM
and CVaR

3.1 Processing internal uncertainty of VPPs

3.1.1 Methods
3.1.1.1 Ensemble empirical mode decomposition (EEMD)

Ensemble empirical mode decomposition is a new self-
adaptive sequence analysis technique that is based on and
overcomes the mode mixing problem of traditional empirical
mode decomposition (EMD). EEDM adds a series of Gaussian
white noise signals to the original power signal. Combining the
statistical features of spectrum equalization distribution, EEMD
filters the trends with different features in the original sequence
and forms intrinsic modal function (IMF) clustering with features.
Finally, the mode mixing problem of EMD is solved by
counteracting the Gaussian white noise in each function but
retaining the original characteristics of the power sequence. The
implementation of EEDM is as follows:

(1) Add Gaussian white noise signals κ(t) to the power signal P(t)
to get a new power signal P′(t):

P′ t( ) � P t( ) + κ t( ) (10)

(2) Using the EMD method, calculate P′(t) as

P′ t( ) � rn t( ) + ∑n
i�1
Ii t( ) (11)

In the formula, rn(t) refers to the remnant after decomposition and
Ii(t) refers to the IMF of layer i (i � 1, 2, ..., n), which is arranged
from high to low in order of frequency.

(3) Add Gaussian white noise signals j times to P(t), and repeat the
above steps to obtain

Pj′ t( ) � P t( ) + κj t( ) � rj,n t( ) + ∑n
i�1
Iji t( ) (12)

In the formula, Iji(t) refers to the IMF weight of layer i after adding
Gaussian white noise signals j times.

(4) Combined with the statistical mean of the uncorrelated random
sequences of an EMD of 0, the whole is averaged to counteract
the effect of multiple additive white Gaussian noise on the power
signal, and the IMF can be expressed as follows.

Ii t( ) � 1
N

∑N
j�1
Iji t( ) (13)

During the processing of EEMD, the Gaussian white noise signal
should satisfy the condition εn � ε��

N
√ , where ε refers to the amplitude
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of the Gaussian white noise signal and N refers to the overall average
times the signal is added, and when N in the range of 100–300, the
signal standard deviation is 0.001–0.5 times; and εn refers to the
error value of the original power signal and the power signal after
EEMD processing.

3.1.1.2 Cuckoo search
Cuckoo search (CS) is a kind of nature-inspired heuristic

algorithm that was developed in 2009 by XinShe Yang and Suash
Deb at Cambridge University. CS is based on the parasitic brooding
behavior of cuckoos. The cuckoo lays its eggs in the nest of a host
and removes the host’s eggs. Some cuckoo eggs that look like the
host’s eggs will have the opportunity to be nurtured. In other cases,
the eggs may be recognized and thrown away by the host bird, or the
host leaves the nest to look for somewhere else to build a new nest.
Then all of the eggs are abandoned. Each egg in the nest represents a
solution, and each cuckoo egg represents a new solution. CS replaces
the less-than-good solutions in nesting with new and possibly better
solutions.

CS works as follows: The cuckoo lays one egg each time in a
random nest. The nest in which the egg (solution) with the highest
quality is placed will continue to the next-generation. The number of
nests in which the cuckoo will put its eggs is fixed, and the
probability that the host bird will pick out the cuckoo’s egg is
pa ∈ [0, 1].

If the host bird discovers the cuckoo’s egg, it may throw out the
egg or find another place to build a nest. If the egg is not discovered,
it will successfully hatch and find a new location by Lévy flight.
Considering the features of Lévy flight in the process of a cuckoo
looking for a nest, we suppose there are n eggs in the d-dimensional
search space and the position of the ith egg in the kth iteration is xk

i ,
and the new position xk+1

i can be expressed as follows:

xk+1
i � xk

i + δi (14)
δi � α × si ⊕ xk

i − xbest( ) (15)

where α refers to the step size, which is greater than zero and
determined by the size of the problem, δi refers to the required
position variation, and ⊕ refers to matrix multiplication.

The random step size is generated by the Lévy distribution:

si � u

v| |1/β (16)

where u(u1, u2,/, ud) and v(v1, v2,/, vd) are the vectors of
d-dimensional space, and β � 3/2. Each component of u and v
obeys the normal distribution as follows:

u ~ N 0, σ2u( ), v ~ N 0, σ2v( ) (17)

σu ~
Γ 1 + β( ) · sin π · β/2( )

Γ 1 + β( )/2( ) · β · 2 β−1( )/2⎛⎝ ⎞⎠1/β

, σv � 1 (18)

The Lévy flight consists of a linear motion sequence with
random orientation and no characteristic scale, and the step size
of each sequence satisfies the heavy-tailed distribution. The
relatively short linear motion that occurs frequently is
intermittently replaced by a motion with longer step size that
occurs infrequently. The Lévy flight ensures that the entire space

is searched, so the cuckoo can search the space more efficiently than
the standard random Gaussian process.

3.1.1.3 Extreme learning machine
Extreme learning machine (ELM) is a fast and efficient single-layer

feedforward neural network algorithm that was proposed by Guangbin
Huang in 2004. The essence of ELM is an intelligent algorithm that
calculates the output weight based on the linear parameter model.
Because the input weight and hidden layer thresholds are given
randomly, the number of hidden layer nodes has a great influence
on the performance of the model. For the single hidden layer
feedforward neural network (SLFN), ELM greatly reduces training
time and computational complexity by using hidden layers for
network training. The main idea of ELM is that the weights of the
network are set randomly to get the inverse output matrix of the hidden
layer. Compared with other learning models, ELM has faster operation
speed and higher accuracy, and it is widely used in many fields. In an
actual extreme learning exercise, ELM just needs to determine the
number of neurons in the hidden layer. In this way, the hidden layer
output weight matrix can be calculated without adjusting the
connection weight between the input layer and hidden layer
neurons and the bias of the latter.

Setting the initial training set of N group as (xi, tt), the input
layer as xi � [xi1, xi2, ...xin]T ∈ Rn, the target output layer as
ti � [t1i, t2i, ...tmi]T ∈ Rm, and the hidden layer containing L
nodes, the activation function g(x) will be expressed as follows:

∑L
i�1
βigi xi( ) � ∑L

i�1
βig wi · xj + bi( ) � yj j � 1, 2, ...N (19)

where yj is the output vector of the ELM model, βi is the weight
vector connecting the hidden layer with the output layer, wi is the
weight vector connecting the hidden layer with the input layer, and
bi and g(wi · xj + bi) are the threshold and output value of hidden
node i, respectively.

The aim of ELM is to find a suitable set of β, ω, and b to
approximate all training sample pairs with zero error:

∑N
j�1

tj − yj

���� ���� � ∑N
j�1

tj − ∑L
i�1
βig wixj + bi( )���������

��������� � 0 (20)

which can also be expressed as:

Hβ � T (21)

H �
g w1x1b1( )g w2x1b2( ) · · · g wLx1bL( )
g w1x2b1( )g w2x2b2( ) · · · g wLx2bL( )

· · ·
g w1xNb1( )g w2xNb2( ) · · · g wLxNbL( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×L

(22)

β � β1, β2, ...βL[ ]−1L × 1, T � t1, t2, ...tL[ ]−1L × 1 (23)

where H is the output matrix of hidden layer, β is the weight vector
connecting the hidden layer node with the output layer neurons, and
T is the target output.

When the activation function is infinitely differentiable, ELM
can output the solution of the hidden layer by searching for the least
squares solution of the least norm in the linear equation.

Hβ̂ − T
����� ����� � min

β
Hβ − T

���� ���� (24)
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Hβ � T (25)
β̂ � HTT (26)

In the formula, HT is the Moore–Penrose generalized inverse
matrix of the hidden layer matrix.

3.1.2 Forecasting model of wind and PV power
based on EEMD-CS-ELM

In the ELM model, when the number of hidden layer nodes is
determined, randomly determining the input weights and hidden
layer deviations of network structure will affect the stability of the
model itself. After improving the ELM algorithm with CS, we
selected the number of hidden layer nodes and the input weights
and thresholds of the ELMmodel adaptively. The flowchart is shown
in Figure 1.

(1) Set the CS algorithm parameters. Set the probability parameter
pa, which refers to the nest being discovered, generate N initial
nest locations nest0 � [x0

1, x
0
2, . . . , x

0
N], which can be N different

values of ELM hidden layer nodes after rounding up to an
integer. Input the sample and calculate the root mean square
error (RMSE) of the data as the most appropriate fitness value
F0, and the maximum number of iterations is max it.

(2) Select the optimal nest location xi in the last time, search for nest
location j according to the mechanism of Lévy flight, and round
up the number of nest locations as the number of ELM hidden
layer nodes. Calculate the number of Fj and compare with Fi,
preserving the optimal fitness.

(3) Compare random number pr with pa. If pr >pa, then choose
the nest location randomly and replace the worst nest location;
otherwise, make no change.

(4) Stop the search after the number of iterations is satisfied.
(5) Select the point with the least fitness as the number of hidden

layer nodes M for ELM, and output the corresponding W, b,
and β

3.2 Optimization model of VPP in day-ahead
trading considering CVaR

The CVaR value can be improved according to the deviation
between the forecasted and actual output of wind and PV power.
The deviation of output of wind power can be expressed as follows:

gwpp
′ � gwpp − gf

wpp (27)

If the forecasted deviation of output of wind power obeys the
normal distribution, the probability density function will satisfy:

f gwpp
′( ) � 1���

2π
√

σwpp
e
− g′2wpp
2σ2wpp (28)

The PV output is the same:

f gpv
′( ) � 1���

2π
√

σpv
e
− g′2pv
2σ2pv (29)

Considering that both wind and PV units are necessary
components for the VPP, the output curve can be regarded as
the common output, and to simplify model calculation, the
deviation of the common output can be expressed as follows:

φwpp,pv � gwpp,pv
* t( ) − E gwpp,pv

* t( ) gwpp,pv
* t( )≤VaRα

∣∣∣∣ gwpp,pv
* t( )( )[ ]

(30)
where φwpp,pv is the forecasted deviation of combined wind and PV
output.

At this point, since there is no connection between the output
characteristics of wind and PV, according to the convolution formula,
the probability density distribution of gwpp,pv

* is shown as follows:

f z( ) � f gwpp,pv
*( ) � 1���

2π
√ ���������

σ2wpp + σ2pv
√( )*e

− gwpp′+gpv′( )2
2 σ2wpp+σ2pv( ) (31)

FIGURE 1
Calculation process of EEMD-CS-ELM.
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and,

CVaRα �
���������
σ2wpp + σ2pv

√
α

f c α( )( ) (32)

where c(α) is the percentile of standard normal distribution α.
Considering that the main purpose of the VPP’s

participation in the day-ahead market is to increase the
proportion of distributed energy (such as wind power, PV) in
power market, a demand response (DR) mechanism and a
controllable burden, such as energy storage system (ESS), are
introduced into the VPP to balance the generation fluctuation.
In VPP, wind power plant (WPP) PV units and micro-turbine
(MT) form a larger power resource, which reaches the power
market access standard. When the generation side of the
distributed renewable energy generating unit is connected to
ESS, it will combine with the flexibility of the storage system,
which charges when the load is low and discharges when the load
reaches the peak, thus reducing the positive deviation power in
the bid of the VPP. It will also reduce the penalty cost of
electricity deviation in the settlement of the day-ahead
market by using the energy storage units and interruptible
load mechanism to sell power and transfer part of the load
when there is minus deviation in the bidding (Figure 2).

Considering the trading rules of the day-ahead market, the VPP
declares its generation plan the day before the operation day. The
capacity of the VPP is small, and its market competitiveness is weak,
which leads to a “price acceptor” in the market. Therefore, the
market only needs to consider the declaration of the VPP when
analyzing the day-ahead declaration behavior.

Based on the composition of the VPP in Figure 2 and the
transaction flowchart of taking part in the day-ahead market in
Figure 3, to realize the integration and scheduling of distributed
energy, the absorption level of renewable energy in the VPP is
considered, as well as the benefits. As the market price acceptor,

the VPP can reduce operating costs to obtain more market benefits.
After declaring a power generation plan, the ISO integrates and
optimizes all quoted prices/numbers in the market to form a new
power generation plan. Combined with the power generation plan
given by the ISO, the VPP adjusts its power generation operation
according to the target. The flow of VPP taking part in the day-ahead
market is shown in Figure 3.

Combined with the trading demand of VPP in the day-ahead
market, the objective function can be expressed as:

FDA
1 � max QDA

WPP + QDA
PV( ) (33)

FDA
2 � minCDA

VPP (34)
CVPP � CESS + CWPP + CPV + CDR + CMT (35)

CWPP � ∑T
t�1
CWPP

t,o + CWPP
z + gWPP

′ · pWPP (36)

CPV � ∑T
t�1
CPV

t,o + CPV
z + gPV

′ · pPV (37)

CMT � ∑T
t�1

aMTP
2
MT,t + bMTPMT,t + cMT( ) (38)

CESS � ∑T
t�1

pD,ESS
t * Qchar

t + CESS
t,o( ) (39)

Here, CWPP
t,o and CPV

t,o refer to the operation cost of wind and PV
units in period t, respectively; CWPP

z and CPV
z refer to the

depreciation cost of wind and PV units, respectively; gWPP
′ · pWPP

and gPV
′ · pPV refer to the deviation cost of wind and PV units,

respectively; aMT, bMT, and cMT refer to the cost parameters of Mt

units; pD,ESS
t refers to the ESS power price at time t;Qchar

t refers to the
amount of ESS purchasing power at time t; and CESS

t,o refers to the
operating cost of energy storage at time t.

In the process of solving the model, constraints such as the
balance of market supply and demand and unit operation are
considered, as follows:

FIGURE 2
Structure of VPP.
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3.2.1 Constraints on power supply and demand
balance in the day-ahead market

D � QD
WPP + QD

PV + QD
ESS (40)

Here, D is the load demand,QD
WPP refers to the actual contribution

of wind units, QD
PV refers to the actual contribution of photovoltaic

units, and QD
ESS refers to the contribution of ESS in the day-ahead

market. Because of the demand response, the power price will change
and the capacity will shift, but the capacity will not actually change.

3.2.2 Unit operation constraint
Given that the energy supply cannot exceed the maximum

allowable capacity of the generating units, the operating units of
the power producers still need to meet the following constraints:

(1) Wind power generation constraints

0≤Pt,WPP ≤Pt,WPP
max (41)

Here, Pt,WPP
max is the maximum generation of WPP at time t.

(2) PV power generation constraint

0≤Pt,PV ≤Pt,PV
max (42)

Here, Pt,PV
max is the upper limit of PV units.

(3) MT unit constraint

For MT units, the main considerations are the output power and
ramp constraints:

PMT,t
min ≤PMT,i ≤PMT,t

max (43)
Pdown
MT ≤PMT,t+1 − PMT,t ≤Pup

MT (44)
where PMT,t

min and PMT,t
max are the lower and upper limit of MT at

time t, respectively, and Pdown
MT and Pup

MT are the uphill and downhill
climbing power.

(4) ESS constraints

0≤PESS,char
t ≤ δsP ESS,char

max (45)
0≤PESS,dis

t ≤ 1 − δs( )P ESS,dis
max (46)

E min ≤Et ≤E max (47)
Here, Ps char

max is the maximum charging efficiency and
Ps dis

max is the maximum discharging efficiency of ESS; δs refers
to the running status of ESS, and the charging and discharging
situation cannot happen at the same time; Emin and Emax refer to
the minimum and maximum of ESS, respectively; and Et after

s is the
power storage after and Et before

s is the power storage before a
dispatching cycle.

3.3 Solution of multi-objective optimization
model based on ant colony optimization

The optimal transaction model of the VPP in the day-ahead
market includes the goals of minimizing cost and maximizing
renewable energy absorption. Given the constraints of unit
technology, operation, and electric quantity, it is difficult to
work out by a general calculation method. Ant colony
optimization is a biomimetic algorithm based on the natural
foraging behavior of ant colonies. In ant colony optimization,
the path that an ant traverses represents a feasible solution to
the problem, and all existing paths constitute the feasible solution
space for the optimization problem. Ants with shorter paths
can release more pheromones, and then more ants will choose
those paths. After a few iterations, it will filter out a global
optimal path. In the foraging behavior of an ant colony, the
communication factor comprises only the pheromone
concentration, which gives ant colony optimization strong global
search ability, and it is a distributed parallel optimization.
Consequently, the global search ability of ant colony optimization
can be better used to solve the multi-objective trade optimization
problem of a virtual power plant.

FIGURE 3
Trading process of VPP participating in day-ahead market.
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When ant colony optimization is used to solve the multi-
objective optimal transaction model of a virtual power plant, the
main parameters are the probability of individual state transition of
ants and the updating rules of pheromones.

3.3.1 Probability of state transition
During the foraging process of an ant colony, the behavior of

ants is influenced by the pheromone concentration, and their path
choice will change accordingly. The probability of ant a moving
from node i to node j can be expressed as:

Pa
ij t( ) �

ταij t( )ηβij t( )∑
s∈Sca

ταij t( )ηβij t( ), j ∈ Sca t( )

0 otherwise

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (48)

where τij(t) is the pheromones on the path on which ant a is
moving from node i to node j at time t; ηij(t) refers to
the expectation that the ant will choose to move from node i to
node j, and the longer the path, the cheaper the optimal
solution, which means the smaller the expectation; and Sca(t)
refers to the distances that ant a can reach when moving from
node i to node j.

3.3.2 Pheromone update rules
When each ant reaches the food point, it will leave pheromones on

the path it travels, that is, the pheromone concentration on this path
increases; the change in pheromones on this path can be expressed as
follows:

τ′ a( ) � α1Δτj a( ) + 1 − α1( )τ a( ), τj > τi
1 − α1( )τ a( ), τj ≤ τi

{ (49)

where τ′(a) is the pheromone concentration of ant a at the
latest position, α1 is the volatility coefficient of the original
pheromones on the path, Δτj(a) is the pheromones left by the ant
choosing the optimal path in the current iteration, and τ(a) is the
pheromones left by the ant choosing the optimal path in the last iteration.

The process of solving the day-ahead market trade optimization
model of a virtual power plant by ant colony optimization is shown
in Figure 4.

4 Study analysis

4.1 Forecast of wind and rain output based
on EEMD-CS-ELM

For wind power sampling, the data of a 10 MW wind power
station in northwest China from July 2019 was used as the training
set, and the wind power output on 2 August 2019, was selected as the
test set. The sampling of PV power units was based on data collected
from June to July 2019 by the local PV power stations with a total
capacity of 5 MW, and August 3 was chosen as the forecast date.

EEMD was used to decompose the power signal sequence of the
selected wind power and PV output. Due to the poor stability of the
photovoltaic power generation power sequence in rainy and snowy
or cloudy weather, in order to fully reflect the objectivity of the
scheduling characteristics of the virtual power plant in the day ahead
market, take the wind power output in normal weather as an
example, input the EEMD model, and a total of 12 components
and a residual component are decomposed. After the PV sequence
was decomposed, 10 IMF components and a residual component R
were obtained. The decomposition results of wind power and
photovoltaic output power series are shown in Figures 5, 6.

To verify the feasibility of the method proposed in this
paper, BPNN, SVM, and CS-ELM forecasting models were
selected for comparison, as shown in Figure 7. Among them,
Back Propagation Neutral Network (BPNN) is a multilayer
feed-forward network trained using an error back propagation
algorithm, and is one of the most widely used networks at present.
BPNN can learn and store a large amount of input-output
mapping relationships without revealing mathematical
equations in advance. The learning rule is to use the steepest
descent method to continuously adjust the network weight and

FIGURE 4
Process of solving ant colony optimization.
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intrusion value through back propagation. The output value
corresponding to the smallest mean square deviation of the
network is the forecasted value. Support Vector Machine (SVM)
uses correlation learning algorithm to transform them into high-
dimensional feature space sample data when dealing with
nonlinear problems. And then SVM carries out secondary
classification to solve the segmentation hyperplane that
maximizes the separation distance.

After the results were obtained, the mean average percentage
error (MAPE), root mean square error (RMSE), and
determination coefficient (R2) were used as indicators to
evaluate the effect of the forecasting model, and the
forecasting results were tested. MAPE can reflect the overall
level of error and RMSE can reflect the dispersion of error.
MAPE and RMSE are expressed as follows:

RMSE �
������������
1
n
∑n
i�1

xi − x′
i( )2√

(50)

MAPE � 1
n
∑N
i�1

x′
i − xi

xi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ × 100% (51)

R2 �
∑n
i�1

p′
i − pi( )2

∑n
i�1

pi − pi( )2 (52)

where xi is the actual power output, x′
i is the forecasted power

output, and n is the data volume. The RMSE, MAPE, and R2 values
for each method are shown in Tables 1, 2.

It can be seen from Tables 1, 2 that the proposed CS-ELM
performs well in the three error test indicators. Its forecasting

FIGURE 5
Decomposition sequence of wind power output.

FIGURE 6
Decomposition sequence of PV output.
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accuracy is higher than the other models, and its error indicators are
smaller, further proving the effectiveness of the model.

4.2 Analysis of day-ahead transaction results
of VPP

When the VPP participates in day-aheadmarket transactions, its
internal wind and PV power output needs to meet the optimal
overall economic benefits, effectively realizing the goal of
maximizing the benefits. Therefore, combined with the CVaR
risk value theory, considering the penalty factor brought by the
risk in the objective function, objective function 2 of VPP can be
written as follows:

FD
2 � max CVPP + φwpp,pv · λ( ) (53)

where λ is the penalty factor in the risk penalty item when
considering the risk of wind power output deviation.

Combined with the forecasting results, a 10 MW energy storage
device and 10 WMmicro gas turbine were connected to analyze the
day-ahead trading behavior of the VPP considering the uncertainty
risk, and the day-ahead trading results of the VPP were calculated
with confidence levels of 0.92, 0.95, and 0.98. The energy
consumption parameters of the MT unit are RMB 2.5/MW2,
RMB 30/MW, and RMB 0, respectively, the climbing rate is
3 MW/h, and the failure rate is 0.5% (Gao, 2019). The price of
wind power is about RMB 234/MWh, the price of photovoltaic is
RMB 276/MWh, the initial capacity of the energy storage device is
1.5 MWh, and the charging and discharging efficiency is 0.95. The
time scale of the wind forecast is 15 min in the day-ahead market
transaction, and further analysis was carried out based on the
average forecast output of wind point and PV within 1 h, as
shown in Figure 8.

Due to the small capacity of distributed generation, the VPP has
a small volume in the power market transaction, which has little
impact on the market clearing. It is often used as a “price receiver” in
the market. Therefore, the bidding behavior of the VPP in the day-
ahead market is only considered through the reported volume.

The clearing price of the day-ahead market is based on the
market operation results of the Nordic market on a certain day in
April 2020. The load forecast of the VPP for the next day’s market
and the power generation plan after ISO adjustment are shown in
Figure 9.

The VPP declares its output according to the load forecasting
results of the day-ahead market. Its internal operation is scheduled
according to the double objective function of minimizing cost and
maximizing renewable energy consumption. The declaration of
various units is shown in Figure 10.

After the declaration, the market ISO makes a collective
adjustment in combination with the declared output and

FIGURE 7
Forecasting results of wind power and PV output under different methods (MWh).

TABLE 1 Wind power forecast error test.

Error category Method

CS-ELM BPNN SVM

MAPE 8.42% 34.20% 21.56%

RMSE 9.4 11.21 17.33

R2 0.92 0.76 1.18

TABLE 2 PV forecast error test.

Error category Method

CS-ELM BPNN SVM

MAPE 7.68% 16.7% 18.77%

RMSE 16.13 19.62 23.82

R2 0.95 0.82 1.33
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power plan of each power producer and releases the updated output
plan. The virtual power plant adjusts the output arrangement of each
unit in combination with the updated output plan and objective
function. At this time, the overall declaration curve tends to be
smoother. The final output arrangement is shown in Figure 11.

According to Figures 9–11, when the virtual power plant adjusts
the generation plan, the curves of MT units and ESS changes the
most, which is also due to the uncertainty related to wind and solar
output and the characteristics of rapid adjustment of the MT units

and energy storage devices. In addition, in combination with Figures
8, 9, it can be seen that the declared output of WPP is somewhat
different from the available output when VPP is declaring the power
generation plan. And the PV generation curve changes the least.
This is because the cost of wind turbine units is higher than that of
MT units, and the related standby cost to overcome the uncertainty
of wind turbine units is also considered. At this time, the total
operating cost of the reported generation plan of the virtual power
plant is RMB 50,846.65.

FIGURE 8
WPP and PV output forecast (MWh).

FIGURE 9
Load forecast of day-ahead market (MWh).
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4.3 Influence of confidence levels on
optimization results of day-ahead VPP
transactions

In addition, considering the risk preference of the VPP,
scenarios were set at different confidence levels to analyze the

FIGURE 10
Output arrangement of VPP in day-ahead market (MWh).

FIGURE 11
Final output arrangement of VPP in day-ahead market (MWh).

TABLE 3 Wind power and PV output distribution.

WPP PV WPP + PV

Variance 24.72 16.4 29.67

Average 9.434 6.71 8.072
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operating costs of the VPP. Based on the risk analysis of the VPP’s
participation in the day-ahead market, the generation deviation of
WPP and PV has a certain impact on the VPP’s day-ahead
transactions. In order to deal with the uncertainty of wind
power generation, the VPP will increase the corresponding
reserve capacity to reduce market risk. Therefore, the day-ahead
trading results of a virtual power plant with confidence levels of
0.92, 0.95, and 0.98 were selected for further analysis from Table 3.

It can be seen from Table 4 that as the confidence level
increases, the VPP provides backup services for distributed
wind power and PV output by using ESS and MT units to deal
with the uncertainty of renewable energy output, resulting in rising
costs. It can be seen from Figure 12 that as the confidence level
improves, the trading volume of distributed renewable power in
the day-ahead market decreases to a certain extent; that is, to
reduce the uncertainty and scale of wind power, the penalty cost is
further reduced by reducing the deviation between planned and
actual output. Therefore, when participating in the day-ahead
market, the VPP needs to comprehensively consider the output
and confidence level of distributed wind and power so as to further

realize coordination and balance between economic concerns and
risk avoidance.

5 Conclusion

This paper focuses on uncertainty analysis of a VPP in the day-
ahead power market. First, the sources of uncertainty were divided
into two types, and a way to reduce uncertainty was designed for
each one. Then, the inner uncertainty of the VPP was solved though
the EEMD-CS-ELM forecasting model of new energy (wind and
PV). At the same time, CVaR theory was introduced to measure the
risk of deviation between the planned power generation and the
actual load demand of the market, and a day-ahead trading
optimization model considering CVaR method was built. The ant
colony algorithm for multi-objective optimization was introduced to
solve the two-sided optimal uncertainty question. To verify the
proposed model, a case study was designed, and the results show the
following: 1) the forecasting model is more efficient than the
traditional algorithm in terms of accuracy, and 2) the confidence
levels are not fully positive with the benefit of VPPs. Improving the
confidence level could reduce the uncertainty brought by renewable
energy, but could also cause conservative trading behavior and affect
the consumption of renewable energy. Therefore, to perform better
in the day-ahead power market, VPPs should improve the
forecasting accuracy at the outset and determine the appropriate
risk preference to design a diversified quotation strategy with full
consideration of regulatory resources such as energy storage and
demand response. Based on the research results of this paper, further
research will focus on market transactions with shorter time scales,
combined with VPP’s flexible regulatory ability, to explore more

FIGURE 12
Comparison of distributed renewable energy output with different confidence levels (MWh).

TABLE 4 Operation cost analysis of VPP with different confidence levels.

Confidence level VPP operation cost (RMB)

- 50846.65

0.92 64376.17

0.95 69072.27

0.98 79508.05
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suitable spot market quotation methods and transaction categories
for VPP’s flexible power supply.
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