
Optimal defense strategy for AC/
DC hybrid power grid cascading
failures based on game theory and
deep reinforcement learning

Xiangli Deng1, Shirui Wang1*, Wei Wang2, Pengfei Yu3 and
Xiaofu Xiong3

1School of Electric Power Engineering,Shanghai University of Electric Power, Shanghai, China, 2State Grid
Wenzhou Power Supply Company, Wenzhou, Zhejiang Province, China, 3School of Electric Power
Engineering, Chongqing University, Chongqing, China

This paper proposes a two-person multi-stage zero-sum game model
considering the confrontation between cascading failures and control
strategies in an AC/DC hybrid system to solve the blocking problem of DC
systems caused by successive failures at the receiving end of an AC/DC
system. A game model is established between an attacker (power grid failure)
and a defender (dispatch side). From the attacker’s perspective, this study mainly
investigates the problem of system line failures caused by AC or DC blockages.
From the perspective of dispatch-side defense, the multiple-feed short-circuit
ratio constraint method, output adjustment measures of the energy storage
system, sensitivity control, and distance third-segment protection adjustment
are used as strategies to reduce system losses. Using as many line return data as
possible as samples, the deep Q-network (DQN), a deep reinforcement learning
algorithm, is used to obtain the Nash equilibrium of the game model. The
corresponding optimal dispatch and defense strategies are also obtained while
obtaining the optimal sequence of tripping failures for AC/DC hybrid system
cascading failures. Using the improved IEEE 39-node system as an example, the
simulation results verify the appropriateness of the two-stage dynamic zero-sum
game model to schedule online defense strategies and the effectiveness and
superiority of the energy storage system participating in defense adjustment.
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1 Introduction

Recently, there have been major outages caused by interlocking faults around the world.
To analyze these incidents, the principles of interlocking fault propagation have been studied
extensively (Ding et al., 2017; Fang., 2014). Currently, related research is still mainly focused
on the conventional AC grid, for example, complex systems theory (Cao et al., 2012; Cao
et al., 2011), particularly complex network theory (Fan et al., 2018; Dey et al., 2016; Xu et al.,
2010), has been used to study the chain fault dynamics and evolution form in terms of
complex network topology, but without considering the specific system fault risk. Moreover,
based on the research perspective of tidal current calculation and stability analysis, the chain
fault development process has been expressed. In the paper (Wang et al., 2019), the residual
load rate and chain fault propagation distance metrics are used to quantify the impact of
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vulnerable lines on the depth and breadth of chain fault propagation;
in the paper (Zhang et al., 2017), a branch fault percolation
probability model was constructed to identify vulnerable
branches of the grid under normal operation and predict the
faulty branches of the grid after a fault occurs.

When a chain fault occurs in an AC system, it will easily lead to a
DC lockout owing to a decrease in the support capacity of the AC
system to the DC system, which will in turn lead to a larger-scale
tidal shift and increase the probability of a major power outage in the
grid. The existing N-k fault scheduling strategy requires a large
amount of data calculation to determine chain faults, which
consumes considerable time and cannot meet the actual needs.
Therefore, studying a fast identification method for fault-tripping
sequences and an optimal regulation strategy for tripping sequences
in the chain fault evolution of hybrid AC/DC systems is necessary.

The chain of faults in the evolution process will continuously
trigger the tripping and decommissioning of grid lines. The
regulation strategy can simultaneously control the system to cut
off the propagation path of the chain of faults, which can be
considered as a multi-stage dynamic game between two people.
Hence, game theory can be applied to the chain fault sequence
search process. For example, the paper (Zhang et al., 2020) studied
the contribution of various fault chains to grid losses by constructing
a cooperative game framework for grid branches. Paper (Ding et al.,
2016) analyzed the coordination between preventive control and
blocking control of cascading failures, and a coordinated control
model based on risk assessment is proposed for power system
cascading failures in terms of reducing the risk of blackout.

Deep reinforcement learning algorithms have a broad
application scenario for solving the Nash equilibrium of a
two-person multi-stage game model and can be solved quickly
and accurately. Since Minh et al. proposed the concept of deep
Q-networks (DQN) in 2015, the application scenario and scope
of the DQN algorithm have been continuously expanded. DQN is
a novel deep reinforcement learning algorithm combining deep
learning with reinforcement learning (Mnih et al., 2015; Van
Hasselt et al., 2016); in particular, it combines the Q-learning
reinforcement learning algorithm and convolutional neural
network. This causes shorter convergence time and training
time than the Q-learning algorithm and more convenient
processing for increasing the data dimension of the AC/DC
hybrid system trend. The introduction of deep learning in
reinforcement learning strengthens the generalization ability
of the algorithm.

As the grid is added to the DC transmission line, the
corresponding novel energy-generating units will also be
integrated into the system operation, along with the continuous
development and progress of energy storage technology. The
excellent power characteristics of the storage system can be
triggered in the event of a fault on the AC side of the grid
initiating DC side voltage fluctuations by quickly releasing or
absorbing the stored power of the storage system to maintain the
system’s normal operation. There has been further improvement in
the fault ride-through capability of new energy units (Li et al., 2022).
In the paper (Duan et al., 2019), a reinforcement-learning-based
online optimal (RL-OPT) control method is proposed for the hybrid
energy storage system (HESS) in ac–dc microgrids involving
photovoltaic systems and diesel generators (DGs). The paper

(Ying et al., 2023) proposes an online energy management
strategy (OEMS) based on long short-term memory (LSTM)
network and deep deterministic policy gradient (DDPG)
algorithm to counteract the effects of these real-time fluctuations,
and the proposed OEMS has the advantages of small tracking error,
model-free control, and continuous action control. This paper (Yang
et al., 2022) combined with the deep reinforcement learning
algorithm, the Markov multi-energy interaction model is
established with distributed structure, and the problem of
continuous action in the model is solved, and finally the energy
profit of the local energy market (LEM) in Energy Internet (EI) is
maximized.

Therefore, energy storage system adjustment can be used as one
of the control strategies employed in AC/DC hybrid systems to cope
with chain failures; therefore, the capacity configuration of the
storage system needs to be studied. Paper (Liu et al., 2016)
proposed a control strategy using energy storage devices to
improve the injection current characteristics of wind farms to
ensure the smooth operation of the system; the capacity
requirements of the storage system were studied by simulation.
Studies (Yan et al., 2020; Dai et al., 2016; Song et al., 2018) have
proposed an energy storage power control strategy to adjust the
output based on the battery’s state of charge (SOC); they used
simulation analysis to obtain the battery capacity requirements. In
paper (Liu et al., 2022), an optimal configuration model of the
energy storage double layer was established based on the effective
use of energy storage for the load margin of the integrated energy
system, thus achieving an effective balance of the load margin in the
integrated energy system.

In summary, this study first constructs a two-person multi-
stage zero-sum game model to consider the process of mutual
confrontation between interlocking faults and regulation
strategies in AC/DC hybrid systems. From the attacker (power
grid failure)’s point of view, this study studied the problem of
continuous fault decommissioning caused by AC disturbance or
DC blocking from the defender (dispatch side)’s point of view.
This study used sensitivity control, distance III protection
adjustment, the multi-feeder short-circuits ratio constraint
method, and energy storage system capacity adjustment
measures as defense strategies to reduce system losses. With as
many lines decommissioning data as possible as samples, the
DQN deep reinforcement learning algorithm was used to find the
Nash equilibrium of the game model and obtain the optimal fault
tripping sequence of the AC/DC hybrid system chain fault while
obtaining the corresponding optimal dispatching defense
strategy.

2 AC/DC system interlocking fault and
its defense model

2.1 AC/DC system fault evaluation index

2.1.1 Line return risk
AC/DC interlocking faults are analyzed in two main aspects:

first, the tidal current transfer and hidden faults of protection are the
main factors; second, the phase change failure of the DC system is
the main factor triggering the DC system. Therefore, this study uses
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the risk factor as an evaluation index to further assess the impact of
the subsequent decommissioning of the line.

The probability of grid line decommissioning is affected by the
state of the grid after the occurrence of the previous fault; the
corresponding Markov chain fault probability model is shown in
Equation 1.

Pn t( ) �

1 F≥Fmax

1 − μ1( )F + μ1Fmax − F n
max

Fmax − F n
max

F n
max ≤F<Fmax

μ1 F n
min <F<F n

max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

where μ1 is the historical outage statistical probability of the branch,
and F is the tide on the branch after the last fault removal.
F n

min , F
n
max is the lowest and highest tide value for the normal

operation of the branch, and Fmax is the tide limit of the branch.
According to the definition of risk, the AC system risk indicator can
be obtained as shown in Equation 2.

δ1 � Pn t( ) × Lloss t( ) (2)
where Pn(t) is the probability of decommissioning of the branch n
and Lloss(t) is the load loss rate at t , i.e., the ratio of the load loss to
the total system load. Therefore, the risk indicator δ1 can be used to
assess the risk of AC system decommissioning.

2.1.2 AC bus multi-feeder voltage support
capability

In mixed-connection systems, the main focus is on assessing the
voltage support capability of the AC system and the phase-change
bus voltage. To evaluate the voltage stability of the hybrid system, a
multi-feeder short-circuit ratio was used to reflect the system’s grid
strength and voltage support capacity (Lin et al., 2008).

The multi-feeder short-circuit ratio indicator is defined as
shown in Equation 3.

MISCRi � Saci
Pdeqi

� Saci

PdNi + ∑n
j�1,j ≠ i

MIIFji · PdNj

(3)

where is the short-circuit capacity of the converter bus; is the
equivalent DC power after considering other DC effects, is the
rated DC power of the DC, respectively, and is the multi-feed
influence factor between branches. Therefore, the short-circuit
ratio variation is established as an indicator to assess the voltage
support capability of the receiving system, as shown in Equation 4.

δ2 � ∑n
i�1

MISCRi,s+1 −MISCRi,s

∣∣∣∣ ∣∣∣∣ (4)

Short-circuit capacity decline is mainly triggered by the fault line
opening, which leads to changes in the system structure, causing the system
impedance to become larger, and the AC toDC system support capacity is
reduced, increasing the possibility of system voltage fluctuations. Thus, the
multi-feed short-circuit ratio index can effectively reflect the impact of line
opening on the system voltage support capacity.

2.1.3 Risk of DC phase change failure
The action criterion of phase-change failure protection is that

the DC line’s bus voltage on the inverter side is lower than the

threshold voltage and exceeds a certain time; then, the protection
will be activated, and the DC line will be blocked. When the overrun
arc extinguishing angle γ is smaller than the limit arc extinguishing
angle γmin , AC disturbance will occur on the inverter side, which will
cause a DC phase-change failure fault. Thus, the phase change
failure is evaluated by determining the limit arc extinguishing angle
when the phase change fails. The minimum arc-extinguishing angle
at phase-change failure is obtained, as shown in Equation 5.

γmin � arccos

�
2

√
kLcI*d
U*

L

+ cos β*( ) (5)

where I*d is the DC at the time of phase-change failure, U*
L is the

voltage at the time of phase-change failure, and β* is the inverter
override trigger angle at the time of phase-change failure. The
commutation bus voltage evaluation index can be established
from this, as shown in Equation 6.

δ3 � ω1
U*

L

UL
+ ω2

I*d
Id

+ ω3
β*
β (6)

where UL denotes the rated voltage of the line; Id denotes the rated
current of the DC line, and β denotes the rated override trigger angle
of the inverter.

2.2 Evaluation of interlocking faults in AC/
DC transmission systems

Based on the basic structure of the AC/DC hybrid system and
the possible risk of safety failure, this study compiles the evolution
form of the chain failure of the AC/DC hybrid system, as shown in
Figure 1.

The AC system risk indicator δ1 was used to assess the possible
overload decommissioning of AC system lines owing to frequency
and power angle problems in the AC system. The short-circuit ratio
variation in δ2 was used to assess the grid’s support capability. The
converter bus voltage assessment indicator δ3 was used to assess the
converter bus low-voltage situation, reflecting the voltage support
capability of the converter side.

The analysis of the AC/DC hybrid system chain fault
characteristics and assessment indexes shows that the
evolution form of chain faults mainly lies in their mutual
coupling on the AC/DC side of the development of changes
and then continuously expands the scale and coverage of chain
faults. Combined with the above chain fault mechanism analysis,
the final establishment of line disconnection risk assessment
indicators is shown in Eq. 7.

R � λ1δ1 + λ2δ2 + λ3δ3 (7)
where λ1, λ2, λ3 is the scale factor corresponding to each evaluation
index.

2.3 Chain fault regulation strategy

2.3.1 Response to chain failure power adjustment
strategy
(1) Generator and load sensitivity control strategies
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The branch’s overload due to the branch’s disconnection can
be adjusted by the method of generator output and load control
using sensitivity coefficient pairing. The sensitivity pairing
method comprising generator and load pairing using a
correlation matrix is simpler and quicker to control.
Therefore, priority is given to controlling nodes with large
power sensitivity to minimize system losses. Eq. 8 shows the
power sensitivity ηi−j between node pairs i, j.

ηi−j � βn,i − βn,j (8)

Therefore, the sensitivity control strategy is used to obtain the
branch generator set output and the load power is to be adjusted, as
shown in Eq. 9.

ΔPL1 � ∑m
n�1

PLn − PLn max( )/ηLi−Lj
ΔPG1 � ∑m

n�1
PGn − PGnmax( )/ηGi−Gj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(9)

where Pn is the actual power of branch n ; Pnmax is the power limit of
branch; and m is the total number of branches.

(2) Multi-feed short-circuit ratio constraint

For a grid containing multi-feeder DC systems, each DC system’s
multi-feeder short-circuit ratio index needs to be controlled within the
normal range to ensure that the AC system strength can match the
transmission capacity of theDC system constrained, as shown in Eq. 10.

FIGURE 1
Evolution form of cascading failures in AC/DC hybrid system.
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KMISCRi ≥KMISCR,min i � 1, 2,/Ndc (10)
whereKMISCRi represents the multi-feed-in short-circuit ratio of the
inverter side of the DC system i ; KMISCR,min is the multi-feed-in
short-circuit ratio limit used in the hybrid system.

Therefore, the corresponding multi-feed-in short-circuit ratio
parameters are calculated from the generator unit output at node
ΔPG2 and the load power at node ΔPL2. The above constraints are
applied to these multi-feed-in short-circuit ratio parameters to
control the voltage support capability of the AC to DC system,
which can ensure the avoidance of phase-change failure of the DC
system.

(3) Prevention of phase-change failure commutation bus voltage
adjustment strategy

In the AC/DC hybrid system, the converter transformer ratio,
DC operating current, converter phase reactance, converter bus
voltage, and overrun trigger angle affect the magnitude of the arc
extinguishing angle. The reactive power adjustment value of the
inverter-side converter to be adjusted in the DC transmission system
is obtained using the control strategy, as shown in Eq. 11.

ΔQdc � 2μ + sin 2γ( ) − sin 2 γ + μ( )( )
2 cos γ − cos γ + μ( )( ) IdUd (11)

where μ is the phase change angle; γ is the arc extinguishing angle; Id
is the DC-side current, and Ud is the ideal no-load DC voltage.

Therefore, the corresponding reactive power adjustment is
calculated using the converter bus voltage evaluation index δ3,
and the adjustment is incorporated into the subsequent overall
adjustment strategy of the hybrid grid to realize the adjustment
of the system.

2.3.2 Scheduling and adjustment methods of
storage, source, network, and load of the AC/DC
hybrid grid

By adjusting the storage source and network load scheduling for
each phase of the interlocking fault, the interlocking fault is cut off
before expanding further. Here, the defensive measures for chain
faults are mainly the multi-feeder short-circuit ratio constraint
method, energy storage system adjustment, matching distance III
protection action adjustment strategy (Yang et al., 2011; Lin et al.,
2011) and sensitivity control (Xu et al., 2017) for auxiliary control of
the AC side. The line adjustments for the tidal overload are as
follows.

1) When the line is overloaded, the distance protection sectionⅢ is
adjusted so that it does not misfire. The action characteristic
angle of the distance protection section Ⅲ is first adjusted, and
the energy storage system output near the branch is adjusted.

2) After ensuring that the distance protection section III does not
misfire and that the energy storage system is involved in the
adjustment, sensitivity control and multi-feeder short-circuit
ratio constraint are used to complete the control of the line tide.

3) After ensuring that the system tide can operate normally, the
power output of each energy storage system of the entire AC/DC
system is calculated to restore the system’s balance.

(1) Energy-storage regulation strategy

When the system is in normal operation, the tidal shift or
fault causes changes in the power output of the grid generating
units and load power, which further affects the grid’s tidal
fluctuation. The energy storage regulation strategy is initiated,
charging the energy storage system when the active power output
increases, and discharging the energy storage system to maintain
the normal operation of the system when the active power output
decreases or the load power is lost. Therefore, when a chain fault
occurs in the hybrid system, the energy storage system can be
used to adjust the power output of the storage unit to achieve tidal
control of the grid; the control strategy requires a high response
speed of the energy storage system. Therefore, this study mainly
uses power-type energy storage devices such as supercapacitors
in the storage unit.

The DC-side power variation during the dynamic process is
given by Equation 12.

ΔPC � PS − PG − Psc − PLg

ΔPC · Δt � 1
2
C udc + Δudc( )2 − 1

2
Cu2

dc

⎧⎪⎪⎨⎪⎪⎩ (12)

where Ps, PG, PLg is the power generated by the generator side, grid
side, and reactor of the generator set; udc is the DC-side voltage value
of the generation system during stable operation, and Δudc is the
DC-side voltage variation.

Let the energy flowing to the energy storage system during the
failure time Δt be WSC. From Equation 12, we have ΔPSC � PS −
PG − PL , and we obtain Equation 13 as follows:

WSC � ΔPSC · Δt (13)
Eq. 14 can also be obtained as follows.

WSC � 1
2
C USC − ISCReq( )2 (14)

Substituting Eq. 14 into Equation 13 yields the formula for
calculating the capacity of the energy storage unit, as shown in
Eq. 15.

C � 2ΔPSC · Δt
USC − ISC · Req( )2 (15)

where ΔPSC is the power input to the energy storage system; Δt is the
fault duration; USC is the upper voltage limit of the supercapacitor;
ISC is the charging current, and Req is the equivalent resistance of the
energy storage system.

Alternatively, after determining the power of the energy storage
system based on the tidal short-circuit calculation, the
supercapacitor capacity value (Tian et al., 2016) can be obtained
to absorb and store all the power passing through the generator-side
alternator to maintain the system voltage stability, as shown in
Eq. 16.

CSC � sTPTt

U2
scmax − U2

scnorm

(16)

where CSC is the capacitance value; PT is the output power of the
generator set under normal grid operation; sT is the speed difference
when the output power is PT; t is the fault duration; Uscmax and
Uscnorm are the maximum operating voltage and normal operating
voltage allowed for the energy storage unit, respectively. When
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considering the worst-case condition, the rated power of the unit can
be substituted in the calculation, as shown in Eq. 17.

PT � PN

sT � sN
{ (17)

The energy storage unit must store the excess power generated
by the system because of the adjustment when the fault occurs, but
not to exceed the upper limit of the storage unit. According to Eq. 16,
Eq. 17, a schematic of the supercapacitor value versus the duration of
the failure can be plotted, as shown in Figure 2.

Figure 2 shows that the length of the fault duration is
proportional to the supercapacitor value. According to the
calculation of Eq. 16 and Eq. 17, if the fault duration of the
generator set is 2 s, the required supercapacitor value is 3.06 F.

(2) Generator and load regulation strategies

According to the required adjustment amount of power
output of all generating units and the required adjustment
amount of load nodes obtained from the scheduling defense
strategy in the previous section, mainly including the total
power adjustment amount of each generating unit node side
ΔSG � ΔPG1 + ΔPG2 + ΔQdc and the load loss amount of load side
ΔSL � ΔPL1 + ΔPL2, the above adjustment amounts are calculated
using Eq. 16 and Eq. 17 to obtain the corresponding required
adjustment of energy storage system power output, to realize the
system generators and the load control strategy through the
energy storage system power output control adjustment. The
above adjustment amount is calculated using Eq. 16 and Eq. 17 to
obtain the corresponding required adjustment of the energy
storage system output.

(3) Grid section III distance protection setting adjustment strategy.

To prevent the distance protection from being triggered by the
tidal current transfer when the chain fault occurs, distance

protection control measures are used; that is, the action
characteristic angle of section III distance protection is adjusted.

Whether the distance protection takes action is determined by
identifying whether the measured impedance of the protection
position falls into the action characteristics generated by the
rectified impedance. Assuming that the measured impedance
fully exhibits the resistance characteristics, the measured
impedance is given by Eq. 18.

Zm � U2
m

Pm
(18)

where Um is the measured voltage at the line distance protection
position and Pm is the tidal power of the line where the line distance
protection position is located.

When the line is identified as having a tidal shift, the action
characteristic of section III distance protection is adjusted to make
Zm avoid the action range of section III of distance protection by
reducing the range of action characteristics. The adjusted action-
angle characteristic is given by Eq. 19.

90° + θ< arg Zset − Zm

Zm
< 270° − θ (19)

where θ is the action characteristic adjustment angle, according to
Eq. 19, can be obtained from the adjustment angle θ, as shown in
Eq. 20.

θ � arg
Zset − Zm

Zm
− 90° (20)

3 Optimal defense strategy for chain
failures based on game DQN model

3.1 Multi-stage zero-sum game-based chain
failure model

The above demonstrates that the goal of the chain fault is to
cause damage to the power system, whereas the goal of the scheduler
is to interrupt the development of the chain fault and reduce the loss
of the power system. Therefore, the chain fault and scheduling
adjustment can be regarded as an attacker and defender against the
power system, respectively, and the interaction between them can be
expressed as a game between them.

When a chain fault occurs, the state of the grid under each stage
evolves; hence, the state of the grid at stage t is defined as st �
s1,t, s2,t,/sN,t{ } ; where sn,t is the state of the branch line n and takes
the value sn,t ∈ 0, 1{ } to indicate whether the branch line n operates
normally at stage t . Then, the attacker’s strategy a1t ∈ 1, 2,/, N{ } is
defined, mainly selecting the branch number to take an attack action
to decommission the line. The defender’s strategy a2t is defined to
represent the above-mentioned scheduling adjustment measures
based on the decommissioned line, and the set of actions taken
by both games is defined as π.

Using the risk factor as a function of the gains of the attacker and
defender at each stage of the fault development process subsequently
allows for evaluating the losses triggered by the attacker. Therefore,

FIGURE 2
Relationship between super capacitance value and failure
duration.
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the gains for both sides are given by Eq. 21 based on the assumptions
above.

V1 � ∑T
t�0
γt−1r1t � ∑T

t�0
Ψn t( )

V2 � −V1

⎧⎪⎪⎨⎪⎪⎩ (21)

where γ is the discount factor; T is the number of gaming stages.
By analyzing the payoff function, we find that the payoff of the

multi-stage zero-sum game pays more attention to the overall payoff
generated by one game considering the single-stage payoff. When
the defender considers the optimal adjustment strategy, the optimal
attack strategy of the attacker can be sought as the Nash equilibrium
of the game model, i.e., only the optimal gain of the attacker needs to
be considered.

Therefore, both attackers and defenders must adopt the optimal
strategy of π* to maximize their gains, which is expressed as shown
in Eq. 22.

V1 a1π*1 , a1π*2 ,/a1π*T( )≥V1 a1π1 , a1π2 ,/, a1πT( )
V2 a2π*1 , a2π*2 ,/a2π*T( )≥V2 a2π1 , a2π2 ,/, a2πT( ){ (22)

where V1 is the gain for the attacker; V2 is the gain for the defender,
and a1π*t , a2π*t represents the action strategies of both sides of the
game if the optimal strategy π* is used in the t phase.

3.2 Nash equilibrium solution method for
chain failure game model based on DQN
algorithm

3.2.1 Q-learning reinforcement learning algorithm
A Markov decision process is typically used to solve a problem

using reinforcement learning. It is mainly represented by
< S, A, P, R> , which contains a set of grid states S, a set of trip
sequences A, state transfer probabilities P(s, a, s, s*), and a reward
function R(s, a, s, s*) in the search model for the optimal tripping

FIGURE 3
Q-Learning algorithm calculation flowchart.

FIGURE 4
Structural diagram of Q value calculation for DQN algorithm.
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sequence of interlocking faults in AC/DC hybrid systems.
Q-learning algorithm, as a common reinforcement learning
algorithm, has Q(s, a) as the expectation that an action a can be
taken at a state s at a certain time to obtain a gain, and then the
environment is based on the agent’s action r. Finally, the algorithm
constructs the state s and the action a into a Q-table to store the
Q-value, and selects the action that can obtain the maximum benefit
according to the Q-value. The main advantage of the Q-learning
algorithm is the use of the Bellman equation to determine the
optimal policy for the Markov process. The Bellman equation
used by the algorithm is shown in Eq. 23 and Eq. 24:

Vπ s( ) � ∑
a

π s, a( )∑
s′
Pa
ss′ R

a
ss′ + γVe s′( )[ ] (23)

Qπ s, a( ) � ∑
s

Pa Ra
ss′ + γ∑

a′
Qπ s′, a′( )⎡⎢⎣ ⎤⎥⎦ (24)

where Qπ(s, a) denotes the cumulative return obtained when state s
and action a both adopt the optimal strategy π . Vπ(s) denotes the
cumulative return obtained when the state s adopts the optimal
strategy π .

The Q-learning algorithm is updated as shown in Eq. 25.

Q s, a( ) ← Q s, a( ) + α r + γQmax s′, a′( ) − Q s, a( )[ ] (25)
The formation process of the Q-table and its parameters during

the calculation of the Q-learning algorithm are shown in Figure 3.

3.2.2 Q-learning algorithm based on deep learning
Q-function

However, maintaining and updating Q-table tables in the
Q-learning algorithm requires a lot of computing resources and
computing time, and there is a dimensional explosion problem.
Therefore, a non-linear function approximator can be used to
approximate Q. Neural network is a commonly used non-linear
function approximator, and a Q-learning algorithm that uses a deep
learning network as a Q function approximator is the DQN
algorithm.

The DQN algorithm focuses on two main aspects: constructing
the target network and introducing an experience-replay
mechanism.

(1) Construction of the target network

The DQN algorithm continues to consider the task of agent-
environment interaction in sequences of actions, observations, and
rewards. In each stage, the agent selects an action at from the action
set A � 1, . . . , K{ }, after which the environment modifies its state
and receives a reward.

The agent aims to interact with the network by selecting actions
that maximize future returns. Similarly, the depreciation factor γ

needs to be set to define the future depreciation return at time t, as
shown in Eq. 26.

Rt � ∑T
t′�t

γt′−trt′ (26)

For the original Q-learning algorithm, the Bellman equation,
i.e., linear function approximator is used as an iterative update to
estimate the action-value function. While the DQN algorithm uses a
non-linear function approximator, i.e., a neural network for
estimation, we refer to the neural network function approximator
with weights Li(θi) � Es,a~ρ(·)[(yi − Q(s, a; θi))2] as Q-network.
The Q-network can be trained by minimizing the loss function,
as shown in Eq. 27.

Li θi( ) � Es,a~ρ ·( ) yi − Q s, a; θi( )( )2[ ] (27)

where yi � Es′~ε[r + γmax a′ Q(s′, a′; θi−1)|s, a] .
For this neural network, we can use the stochastic gradient

descent to minimize the loss function such that the parameters of the
neural network can be updated to the maximum extent, and the
gradient of the loss function is shown in Eq. 28.

∇θiLi θi( ) � Es,a~ρ ·( );s′~ε r + γmax a′ Q s′, a′; θi−1( ) − Q s, a; θi( )( )∇θiQ s, a; θi( )[ ]
(28)

FIGURE 5
Flowchart of DQN algorithm calculation.
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Hence, the DQN algorithm updates the formula as shown in
Eq. 29.

Q st, at( ) ← Q st, at( ) + α rt + γ maxat+1 Q st+1, at+1( ) − Q st, at( )[ ]
(29)

(2) Experience-replay mechanism

The interaction information between the agent and environment at
each decision moment can be represented as one experience �
(st, at, rt, st+1) . All experiences are stored in the sequence D �
e1, e2, . . . , eN{ } to establish the experience recall mechanism. DQN
modifies the Q-learning algorithm in two main aspects: DQN uses a
deep convolutional neural network to approximate the Q-value
function, and DQN utilizes the experience playback mechanism to
train the learning process of reinforcement learning. The operation
structure of the specific algorithm is shown in Figure 4.

Here, we adopted the ε − greed algorithm to modify the
algorithm action probability, as shown in Eq. 30.

Pss′ at � a*
∣∣∣∣st( ) � 1 − ε

Pss′ at ≠ a*
∣∣∣∣st( ) � ε

A| | − 1

⎧⎪⎪⎨⎪⎪⎩ (30)

where |A| indicates the number of actions that can be selected.
As the algorithm interacts with the environment, it is possible to

make ε decrease over time using the step size Δε , all the way down to
the initial set value of the algorithm.

(3) DQN algorithm training process.

Thus, the training process of the DQN algorithm is as follows.

1) First, initialize the current value network Q(s, a) and the target
value network Q̂(s, a);

2) Obtain the grid state based on the parameters of the AC/DC
hybrid system st � s1,t, s2,t,/sN,t{ }.

3) During the algorithm’s training, the action network is
responsible for interacting with the environment to obtain the
action at under the state st according to policy selection.

4) During the learning process, after selecting the action
at � a1t , a

2
t{ }, the state of the grid changes, i.e., st → st+1 and

gains are made r1t .
5) Save the reward rt and system status st to the experience replay

pool and train the current value network by extracting a batch of
data from the experience replay pool. Whenever the training
reaches N steps, the parameters of the current value network data
are copied to the target value network to update the target value
network parameters.

6) At this time, to increase the number of games while judging
whether the number of attacks reaches the maximum number of
games, if the maximum number of games, stop iteration,
initialize the grid state, return to step 2), and continue the
algorithm training learning.

When the algorithm reaches the initially set maximum number
of iterations, the algorithm training stops representing the end of

FIGURE 6
Flowchart for determining optimal branch trip sequence of cascading failures.
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learning. Through algorithm training and learning, the target value
network parameters are continuously updated, and the optimal
action value function Q*(s, a) is determined based on the final
network parameters, as shown in Figure 5. The agent uses the
optimal action value function Q*(s, a) to select the optimal
strategy to obtain the maximum benefit.

Through the reinforcement learning algorithm, the action value
function Q(s, a) will gradually converge to the action value function
Q*(s, a) under the optimal policy.When the training of the algorithm is

completed, the agent can obtain the optimal action value as the next
action when the grid is in any state s, i.e., the optimal strategy can be
obtained to achieve the Nash equilibrium of the game model.

3.3 Optimal defense strategy for AC/DC grid
interlocking faults

The algorithm of the deep reinforcement learning game model
for optimal defense strategy in chain failures comprises learning
training using the DQN algorithm to obtain the optimal action value
function Q*(s, a) to obtain the optimal line tripping sequence, and
online optimization search using the optimal action value function
Q*(s, a) to obtain the optimal regulation strategy. First, the initial
parameters of the network associated with the DQN algorithm and
the state of the hybrid system are initialized, and the target value
network parameters are updated after a training phase by mutual
gaming between the attackers and defenders. At the final end of the
training, the optimal action value function Q*(s, a) is determined,
and the attacker takes the maximum action at as the attack target to
form the optimal line-tripping sequence for the attacker. The
procedure for determining the optimal tripping sequence is
shown in Figure 6.

In the specific optimal branch trip sequence finding process, the
attacker uses the ε − greed algorithm to select the action after the
grid tide calculation, obtains the relevant indicators mentioned
above based on the tide calculation results, and uses these
indicators as the relevant reference basis to make corresponding

FIGURE 7
Example system wiring diagram.

FIGURE 8
Q-table comparison of two algorithms.
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adjustments according to the established storage source network
load regulation strategy to ensure stable grid operation, and then
obtains the risk-benefit function r1t � Ψn(t), and uses the function to
calculate the benefit. Subsequently, the state is used as the empirical
replay pool data to update the current value network and target value
network parameters. The next stage of the algorithm training is
judged according to the initial set number of gaming stages, and the
parameters of the ε − greed algorithm are updated.

After all the training is completed, we enter the online
optimization phase, in which we quickly complete the online
optimization process of the optimal tripping sequence and
optimal regulation strategy.

In summary, this study adopts the AC system risk index δ1,
short-circuit ratio variation δ2, and commutation bus voltage
assessment index δ3 to establish the interlocking fault risk
assessment coefficient R of the hybrid AC/DC system. It uses the
deep reinforcement learning DQN algorithm to solve for the line
with the largest risk assessment coefficient in the hybrid grid, that is,
the most hazardous line in the case of interlocking faults, to establish
the optimal defense strategy for interlocking faults in the hybrid AC/
DC system. Owing to the characteristics of the DQN algorithm, the
optimal action value function Q*(s, a) is positively correlated with
the risk assessment coefficient R of interlocking faults in the hybrid
AC/DC system; therefore, the optimal defense strategy is established

FIGURE 9
Comparison diagram of intelligent algorithms.

FIGURE 10
Return circuit diagram of system when T = 2.
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in the subsequent simulation by determining the value of the
optimal action value function Q*(s, a).

4 Simulation example verification

4.1 Introduction to the simulation system

The above theory was simulated and analyzed using a modified
IEEE39 node system with the specific wiring diagram shown in
Figure 7. Among them, based on the original standard IEEE39 node
AC system, the generating units on Buses 31–38 are changed to wind
farm units with adjustable wind power output, and the adjacent
transmission lines between Buses 25 and 26 and Buses 26–27 are
modified as DC transmission systems, while the corresponding
capacity of energy storage systems are configured at Buses 30–39,
such that the original conventional AC system is changed to a hybrid
AC/DC system with new energy access.

4.2 DQN algorithm training results

When using the DQN algorithm for training, the relevant
algorithm parameters were initialized as follows: � 0.9 , the total
experience pool was 10,000; the initial setting of ε was 0.9; the initial
termination value of ε was 0.1, and the step size of Δε was 0.0001.
Because it is necessary to simulate the complete process of system
destabilization caused by a chain fault in a hybrid AC/DC system,
the initial setting of two-line decommissioning, and the
corresponding settings of two- and three-game phases, to verify
the effect of the game model.

First, the DQN algorithm is trained. The two algorithm models
with or without defense strategy are analyzed separately for
comparison, while two or three game stages are taken for
learning training. At the end of the algorithm learning training,
the optimal action value function Q*(s, a) is determined to form the
corresponding Q-table. The Q-table obtained from the training of
the DQN algorithm and the Q-learning algorithm is compared, as
shown in Figure 8.

As shown in Figure 8, the Q-learning algorithm produces
cumulative Q values mostly in the lower position. In contrast,

the DQN algorithm produces a larger fraction of Q values closer
to the optimal sequence, indicating that the DQN algorithm exhibits
better convergence.

To verify the performance of the DQN algorithm proposed here,
it was compared and analyzed with the Q-learning algorithm. First,
the convergence of the Q-value change curves of the DQN algorithm
and the Q-learning algorithm are compared, and the two are
compared in terms of Q-value estimation. The comparison in
terms of Q-value change trends shows the advantages of the
DQN algorithm proposed here in the offline training process.
Figure 9A shows a comparison of the change trends of the
Q-value under the two algorithms. Figure 9A shows that the
Q-learning algorithm estimates the Q-value from a higher
starting point under the same number of iterations. The DQN
algorithm improves the overestimation of the Q-value caused by
the problem of increasing the dimensionality of the data obtained
from the tide calculation after the AC/DC hybrid system is added to
the DC system owing to the optimization of the objective function.

The algorithm’s convergence was verified by storing the
cumulative gains obtained after each gaming phase; the results
are shown in Figure 9B. The Q-learning algorithm cannot
determine the correct action at the beginning of training. It only
starts to find the correct action after the number of training
iterations reaches 30,000. However, there are still some
fluctuations between, and only after approximately
45,000 iterations are fully determined and continue to increase.
In contrast, the DQN algorithm kept fluctuating and rising at the
beginning of training, even though it was fumbling to find the
correct action, and then selected the correct action to obtain a
positive reward and kept rising linearly for approximately
25,000 iterations, indicating that the algorithm found a suitable
control strategy to complete the convergence of the algorithm.

4.3 Analysis of online optimization search
results

4.3.1 Comparison of AC/DC hybrid system and
conventional AC system

After causing a chain failure in the system according to the
initially set attack sequence L8−9, L9−39 , the next fault-line sequence

FIGURE 11
Circuit diagram of interlocking fault return when T = 3 in AC/DC system.
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is searched according to the Q-table determined by the optimal
action-value function Q*(s, a) . Only one line failure is considered
when there are only two gaming phases because the initial failure has
already occurred; therefore, the subsequent fault lines are sorted by
risk size, as shown in Figures 10A,B.

The analysis of the faulty lines in Figure 10 shows a large part of
duplication in the lines obtained by the search with or without the
defines strategy. According to Figure 7, the fault lines mentioned
above are lines around L8−9, L9−39 and contact lines. Lines such as
L6−7, L1−39 are affected by lines, L8−9L9−39 , etc., and lines such as
L16−19, L13−14, L3−4 are important liaison lines that connect the upper
and lower systems. As a comparison, the risk-ranking diagram of the
subsequent fault lines of the AC system is drawn, as shown in
Figures 10C,D.

The lines found are roughly the same whether in the AC
system or the hybrid AC/DC system with the addition of DC lines
and new energy generating units. However, owing to the
influence of the new energy generating units and DC lines, the
impact of the AC/DC system produces a larger Q value when a
line closer to the DC system is decommissioned. Similarly, owing
to the influence of the DC system, the risk caused by the failure of
the system to produce a decommissioned line was greater than
that of a pure AC system.

When three game phases are used, the attacker will cause
multiple line failures in the hybrid system after attacking
multiple phases, thus posing a significant threat to the grid. The
risk ranking of the top ten ranked subsequent failed lines with and
without the defense strategy is plotted in Figure 11.

TABLE 1 Defense strategy with energy storage adjustment.

Gaming phase Attacker
action

Defensive side action Q value

1 L8−9 , L9−39 The system is not overloaded, and no policy is taken -

2 L16−24 An overload occurs on line L16–17, whose distance protection section III action angle is reduced by 9.67°, raising the
stored energy output at node 36 by 357 F

0.4189

3 L16−17 Line L17–27, L17–18 overload, line L16–17 distance protection section III action angle is reduced by 10.52°.
Simultaneously, the output of energy storage system at node 30 is reduced by 102 F; the output of energy storage
system at node 31 is increased by 69.36 F, the output of energy storage system at node 32 is increased by 76.5 F; the
output of energy storage system at node 33 is increased by 20.4 F; the output of energy storage system at node 37 is
increased by 24.48 F; the output of energy storage system at node 38 is increased by 173.4 F, and the output of energy

storage system at node 39 is increased by output by 102 F

0.5667

FIGURE 12
Interlocking fault trip sequence diagram with or without energy storage adjustment defense strategy.
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Because the optimal trip sequence needs to be searched by the
fault gain function and the cumulative action value Q(s, a), the plot
of the chain fault trip sequence with and without the defense strategy
with cumulative Q(s, a) ranking in the top 10 is shown in
Figures 12A,B.

An analysis of Figure 12 shows a significant difference between
the cumulative Q(s, a) with and without defensive strategy, that is,
the cumulative Q(s, a) without defensive strategy is significantly
higher than the cumulative Q(s, a) with defensive strategy, which
shows that the defensive strategy may help reduce the risk of the
grid. In addition, the optimal attack sequence of the attacker can be
determined by searching for sequences with a higher cumulative
(s, a) . The analysis of the above figure shows a significant difference
between the line fault sequences with and without the defense
strategy, mainly because the regulation strategy adjusts the power
of each node to change the tide, which in turn changes the high-risk
fault sequence, thus creating the difference between the two.

The cumulative benefit analysis shows that the attacker’s benefit
is significantly higher without the defender’s participation than with
the defender’s participation because the defender mainly aims to
reduce grid losses. However, even if the defender adopts the optimal
regulation strategy, the attacker still poses a greater risk to the system
because the attackers are attacking the main system contact lines.
Therefore, a large amount of energy storage system output must be
regulated to mitigate the risk.

Using the above fault sequence (L8−9, L9−39), L16−24, L16−17 as the
attacker’s strategy, the optimal regulation strategy for the defender is
prepared, as shown in Table 1. Analyzing the data in the table, when
the initial fault occurs, there is no tidal overload in the system.
However, because L16−24L16−17 is the central contact line of the
hybrid system and is mainly responsible for connecting the DC
transmission system with most of the generating units, the attacker
prefers to attack these two lines. At the same time, the defender also

adopts strategies such as distance protection and output adjustment
of the energy storage system at each node to ensure the normal
operation of the grid.

4.3.2 Comparison of energy storage system out of
power participation or not

To consider the case of system failure when energy storage
system capacity adjustment is used as the defense strategy here, the
energy storage system output adjustment part of the original overall
defense strategy is removed, and only the original AC side
conventional defense strategy is retained before and after
comparison. The chain fault trip sequence without energy storage
adjustment defense strategy is plotted with the cumulative Q(s, a)
ranking of the top 10, as shown in Figure 12C.

Through the overall comparison of Figures 12B,C, it is first
found that owing to the addition of new energy-generating units and
DC lines in the hybrid AC/DC system, the original conventional AC
steady-state defense strategy still plays a role in the chain fault of the
AC/DC system. However, although the main role is still focused on
the original direct connection line of each sub-grid and the
adjustment at the level of conventional generating units, the DC
lines and new energy units are not. Hence, it is impossible to take
more defensive measures to reduce the final Q value, but there is still
a greater risk threat. Second, when the energy storage system output
adjustment comes into play, the cumulative Q value decreases
significantly, and the risk of chain failures is significantly reduced
by the joint action of the AC and DC sides, thus proving the
feasibility of the defense strategy of increasing the energy storage
system. Finally, comparing specific fault sequences reveals that after
the addition of the energy storage system, the attacker of the system
focuses more on its attack strategy of dealing with the connection
between the nodes where the energy storage system is located after
the second stage of the game. In contrast, the overall DC-side

TABLE 2 Defense strategy without energy storage adjustment.

Gaming phase Attacker
action

Defensive side action Q value

1 L8−9 , L9−39 The system is not overloaded, and no policy is taken -

2 L4−14 Line L4–5 is overloaded, and its distance protection section III action angle is reduced by 14.84°, reducing the output
of the generating unit at node 31 by 620 MW and increasing the output of the generating unit at node 35 by

620 MW.

0.8596

3 L1−39 Line L2–3, L3–4 overload, line L4–5 distance protection section III action angle is reduced by 18.78°. Simultaneously,
the output of generator set at node 30 is reduced by 300 MW; the output of generator set at node 31 is increased by
184 MW; the output of generator set at node 32 is increased by 225 MW; the output of generator set at node 33 is
increased by 60 MW; the output of generator set at node 37 is increased by 72 MW; the output of generator set at
node 38 is increased by 300MW; the output of generator set at node 39 is increased by 240 MW, and reduce the load

power at node 3 by 775 MW.

1.3193

TABLE 3 Methods comparison.

Fault sequence Load loss (MW) Risk coefficient income

risk coefficient ranking method ,(L8−9 , L9−39), L26−29 , L4−14 1768.6 0.6445

The algorithm in the manuscript - no defense (L8−9 , L9−39), L26−29 , L3−4 2098 0.7641

The algorithm in the manuscript - with defense (L8−9 , L9−39), L16−24 , L16−17 435 0.001942
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defense strategy makes it possible for each node to adjust
individually, thus better targeting the attack strategy and proving
the importance of the defense strategy to increase the energy storage
system adjustment.

Using the fault sequence (L8−9, L9−39), L4−14, and L1−39 in
Figure 12C as the attacker’s strategy, the specific defense
strategy of the defender is prepared, as shown in Table 2.
When the energy storage adjustment is no longer part of the
defense strategy, the attacker’s action focuses more on the contact
lines between the nodes where each unit is located. The main role
of the conventional AC defense strategy is still focused on the
original direct connection lines of each sub-grid and the
adjustment at the level of conventional generating units. No
more defense measures can be taken for DC lines and new
energy units, and only the conventional measures of
increasing generator output and load shedding can be taken to
cope with them. However, owing to the lack of defensive
measures on the DC side, the chain failure will further
increase the damage to the system when the next game phase
is initiated, resulting in a greater adjustment of generator output
and more load loss compared to the impact of energy storage
system adjustment, which is extremely harmful to the grid. This
also proves the importance of increasing the defense strategy of
energy storage system adjustment.

The above simulation results verify that the energy storage
system adjustment as a defense strategy can be fast and efficient
for interlocking faults in the hybrid AC/DC system. Because the
energy storage system has a millisecond power response speed, it can
effectively improve the resilience and flexibility of the hybrid AC/DC
system, which can in turn minimize the damage caused and avoid
the sudden load-cutting action of the system that would have
otherwise caused greater losses on the user side. Similarly, the
energy storage system can also smooth out the intermittent and
fluctuating power generated by new energy-generating units, such as
wind power and photovoltaics, during normal operation, which is
conducive to new energy consumption.

4.3.3 Comparison of different methods
To show the advantages of the chain failure game model based

on the deep reinforcement learning DQN algorithm proposed in this
paper for obtaining the chain failure trip sequence and the optimal
defense strategy, the simulation system in this paper is taken as an
example, and compared with the traditional risk coefficient ranking
method, and the results are shown in Table 3.

It can be found from the table that the fault sequence found by
the traditional risk ranking method is not the optimal sequence,
which is only the fourth in the previous Figure 12A. Themain reason
is that the traditional risk ranking is to select the line with the highest
risk as the attack target at each stage of cascading fault, which only
considers the loss caused by each stage to the power grid, but does
not consider the impact of the fault sequence on the power grid as a
whole, It is easy to fall into local optimum; The model algorithm
proposed in this paper focuses on the impact of a fault sequence on
the power grid as a whole, and focuses on the global optimal defense
strategy.

From the perspective of loss, the load loss is caused by the fault
sequence found by the risk ranking method and the risk return is
lower than the fault sequence in this paper, which shows that the

algorithm in this paper can find the sequence that makes the
maximum return. In the game with defense, the development
direction of the fault sequence is changed, and the load loss and
risk income caused by the fault sequence are far lower than those
without defense, but it can find the fault sequence that makes the
power system lose, so the model in this paper has certain advantages
over the traditional risk ranking method.

5 Conclusion

The algorithm here considers the impact of interlocking faults
on the AC/DC hybrid system from the perspectives of both steady-
state and transient systems, establishes a multi-stage dynamic zero-
sum game interlocking fault model by finding the fault sequence
through the DQN algorithm, and proposes a corresponding defense
strategy to provide reference to grid operation and dispatchers. In
summary.

(1) This study proposes a method for searching chain fault-tripping
sequences and finding optimal regulation and control strategies
for hybrid AC/DC systems based on game deep reinforcement
learning algorithms. The method applies the theory of multi-
stage zero-sum game to the scheduling and control adjustment
of the hybrid AC/DC system. It uses the DQN algorithm to train
the optimal action value function to find the most threatening
fault line in the complex hybrid grid and the optimal regulation
and control defense strategy to reduce the risk of the grid.

(2) Here, a multi-stage zero-sum game chain fault model for an AC/
DC hybrid system is proposed, which can completely describe
the dynamic process after the chain fault occurs in an AC/DC
hybrid grid and the involvement of a regulation strategy.
Furthermore, a novel deep reinforcement learning algorithm
was used to solve the Nash equilibrium of the game model,
which improved the convergence and accuracy of the algorithm.

(3) The multi-feeder short-circuit ratio constraint method and the
energy storage system adjustment strategy were used as defense
strategies to cope with the faults occurring in the DC system in
the hybrid AC/DC system. The energy storage system is fully
utilized to improve the fault ride-through capability of new
energy units and the rapidity and economy of fault handling.
Considering the scheduling of the energy storage system at the
whole grid level, it is superior as a defense strategy to cope with
interlocking faults in complex AC/DC systems.
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