
A total energy-based adaptive
mesh refinement technique
for the simulation of
compressible flow

Xian Xu*, Yingchun Chen, Zhirong Han and Feng Zhou

Shanghai Aircraft Design and Research Institute, Shanghai, China

In this paper, an adaptive mesh refinement technique is presented for
simulation of compressible flows, which can effectively refine the mesh in
the regions with shock waves and vortices. The present approach uses the
total energy per unit volume as an indicator to capture the shock waves and
vortical structures. In the approach, an h-refinement strategy is adopted. To
save the computational effort, the flow variables on the new mesh are
obtained from the previous step by interpolation, which ensures that the
problem is always solved on the refined mesh. Both inviscid and viscous
compressible flows are considered in this work. Their governing equations
are, respectively, Euler equations and Navier–Stokes equations associated
with the implementation of the Spalart–Allmaras turbulence model. The cell-
centered finite volume method and Jameson scheme are chosen to carry out
spatial discretization, and the five-stage Runge–Kutta scheme is applied to
discretize the temporal derivative. The present approach is applied to simulate
three test problems for its validation. Numerical results show that it can
effectively capture the shock waves and vortices with improvement in
solution accuracy.
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1 Introduction

To analyze the fluid characteristics, accurate simulation of the flow field is one of the
main tasks in computational fluid dynamics (CFD). A high-quality mesh plays an
important role in solution accuracy of the flow field. Generation of a good mesh usually
requires some prior knowledge of the flow behavior in order to match the mesh point
distribution to the essential features of the flow field. However, this prior knowledge may
not always be available in advance. On the other hand, if the mesh is refined in the whole
domain to guarantee the desired solution accuracy, the amount of computational time,
effort, and resources may become excessive. How to balance the high-quality mesh and
the computational effort is a critical issue. It seems that the solution-adaptive mesh
refinement technique is an answer to this problem. It can effectively refine the mesh only
in pivotal regions to improve the solution accuracy. In fact, research on this aspect is
currently a hot topic in CFD (Harvey et al., 1992; Murayama et al., 2001; Yamazaki et al.,
2007; Fossati et al., 2010).
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One of the key issues in the solution-adaptive mesh
refinement process is the identification of cells for refinement.
Much effort has been devoted to this part (Murayama et al.,
2001; Aftosmis and Berger, 2002; Jones et al., 2006; Yamazaki
et al., 2007). The parameter used to identify the mesh refinement
is generally called an adaptation function or indicator. Usually,
the adaptation function is associated with some key physical
variables such as density, entropy, kinetic energy, or a
combination of them (Peraire et al., 1987). Some physical
variables, such as helicity density and turbulent kinetic
viscosity, are not always easy to derive, and the form of
adaptation function may be complicated (Fossati et al., 2010).
Under the premise of compressible flows, most adaptation
functions are designed to resolve either shock waves or
vortices (Pirzadeh, 1999; Ito et al., 2009). As the features of
shock waves (high gradients for pressure and density) are quite
different from those of vortices (high velocity gradients), a single
adaptation function for compressible flows can usually only
detect one feature of them. Wang et al. (2020) utilized
adaptive mesh refinement (AMR) to capture vortices for
improving the accuracy and efficiency of numerical
simulation of the cavitation–vortex interaction. Steinthorsson
et al. (1994) introduced a methodology based on the AMR
algorithm of Berger and Colella (1989) for the accurate and
efficient simulation of unsteady, compressible flows. Gou et al.
(2018) introduced an accurate and robust AMR system suitable
for turbomachinery applications and widely studied shock wave
and tip leakage using the AMR method. Pantano et al. (2007)
presented a methodology for the large-eddy simulation of
compressible flows with a low-numerical dissipation scheme
and structured adaptive mesh refinement (SAMR) used in
turbulent flow regions while employing weighted essentially
non-oscillatory order (WENO) to capture shocks. Papoutsakis
et al. (2018) presented an adaptive mesh refinement (AMR)
method suitable for hybrid unstructured meshes that allows for
local refinement and de-refinement of the computational grid
during the evolution of the flow to increase the order of accuracy
in the region of shear layers and vortices. This paper takes this
challenging issue and aims to present an indicator which can
well detect both the shock waves and vortices in the compressible
flow using h-type AMR.

This paper is organized as follows: in Section 2, the
governing equations and methodologies for numerical
discretization are briefly described. Section 3 depicts the
solution-adaptive mesh refinement approach which involves
the selection of the adaptation function and the h-refinement
strategy (Pepper and Wang, 2007) based on body-fitted
quadrilateral/hexahedral mesh. Section 4 presents three
numerical examples to validate the present approach. We
report conclusion in Section 5.

2 Governing equations and numerical
discretization

The viscous, compressible flow of a perfect gas is governed by
Navier–Stokes (N–S) equations (Blazek, 2001a). In a three-

dimensional domain of volume Ω with boundary S, the
integral form of the equations is expressed as

z

zt
∫
Ω
W
.
dΩ +∮

zΩ
F
.

c − F
.

v( )dS � 0. (1)

Here, W
.

is the vector of conservative variables which can be
written in the three-dimensional form as

W
. � ρ ρu ρv ρw ρE[ ]T, (2)

where ρ is the density of fluid; u, v, w are the velocity components
in x-, y-, and z-direction, respectively; and E is the energy. F

.

c is the
vector of convective fluxes, which can be expressed as

F
.

c �

ρV
ρuV + nxp
ρvV + nyp
ρwV + nzp

ρHV

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

where p is the pressure and V is the velocity normal to the surface
element dS, which is defined as the scalar product of the velocity
vector and unit normal vector as follows:

V ≡ v
. · n. � nxu + nyv + nzw. (4)

The total enthalpy H is given by E + p/ρ. For the vector of
viscous fluxes F

.

v, we have

F
.

v �

0
nxτxx + nyτxy + nzτxz
nxτyx + nyτyy + nzτyz
nxτzx + nyτzy + nzτzz
nxΘx + nyΘy + nzΘz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where

Θx � uτxx + vτxy + wτxz + k
zT

zx
,

Θy � uτyx + vτyy + wτyz + k
zT

zy
,

Θz � uτzx + vτzy + wτzz + k
zT

zz

(6)

are the terms describing the work of viscous stresses and the heat
conduction in the fluid. T is the temperature. The thermal
conductivity coefficient k is evaluated by

k � kL + kT � cp
μL
PrL

+ μT
PrT

( ). (7)

Here, cp is the specific heat coefficient at constant pressure, PrL
and PrT are the laminar and turbulent Prandtl numbers,
respectively; μL is the laminar viscosity; and μT is the
turbulent eddy viscosity.

Generally, both PrL and PrT are assumed to be constant,
i.e., PrL � 0.72 and PrT � 0.9. At the same time, the laminar
viscosity can be calculated using the Sutherland formula:
μL � 10−6 × 1.45T1.5/(T + 110), where the temperature T is in
Kelvin degree. For the turbulent eddy viscosity, it can be
determined with the aid of the turbulence model (Blazek, 2001b).
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In this work, the Spalart–Allmaras (S–A) one-equation
turbulence model (Spalart and Allmaras, 1992) is adopted. In this
model, a transport equation is employed to calculate an eddy-
viscosity variable ~v, and then the turbulent eddy viscosity μT is
obtained from ~v.The S–A turbulence model allows for reasonably
accurate predictions of turbulent flows with adverse pressure
gradients. In this model, the solution at one point does not
depend on the solution at other points. Therefore, it can be
readily implemented on unstructured grids. It is also robust,
converges fast to steady-state, and requires only moderate grid
resolution in the near-wall region. The S–A model (Spalart and
Allmaras, 1992) reads as follows:

z~v

zt
+ z

zxi
~vui( ) � Cb1

~S~v + 1
σ

z

zxj
]L + ~v( ) z~v

zxj
[ ] + Cb2

z~v

zxj
( )2{ }

− Cω1fω
~v

d
( )2

, (8)

Here, vL � μL/ρ is the laminar kinematic viscosity and σ � 2/3.
The terms controlling the destruction of the eddy viscosity read

fω � g
1 + C6

ω3

g6 + C6
ω3

( )1/6

, g � r + Cω2 r6 − r( ), r � ~v
~Sκ2d2

, (9)

and the production term ~S is evaluated using the following formulae:

~S � SSA + ~v

κ2d2fv2, fv2 � 1 − χ

1 + χfv1
, fv1 � χ3

χ3 + C3
v1

, χ � ~v

vL
.

(10)
Here, d is the distance to the closet wall and SSA stands for the
magnitude of the mean rotation rate, i.e.,

SSA � ������
2ΩijΩij

√
, Ωij � 1

2

zui

zxi
− zuj

zxi
( ). (11)

Finally, the constants in Eqs 8–10 are defined as

Cb1 � 0.1355, Cb2 � 0.622, Cv1 � 7.1, Cv2 � 7.1,
κ � 0.41, Cω1 � Cb1/κ2 + 1 + Cb2( )/σ, Cω2 � 0.3, Cω3 � 2.

(12)
In current simulation, ~v � 0.1vL is set as the initial value of ~v as

well as the inflow boundary conditions. At outflow boundaries, ~v is

simply extrapolated from the interior of the computational domain.
At solid walls, it is appropriate to set ~v � 0.

When the ideal gas is considered, we can simply neglect the
viscous effect and get rid of F

.

v; therefore, the N–S equations can be
simplified to Euler equations.

To spatially discretize the governing equations, the finite
volume method (FVM) is used in this study. FVM first divides
the physical space into a number of control volumes and then
integrates the governing equation (Eq. 1) over each control
volume. In this work, the Jameson cell-centered scheme
(Jameson et al., 1981) is used to define the location and shape
of the control volume. The mean theorem is applied to
approximate both the volume integral and the surface
integral. The surface integral involves evaluation of fluxes at
the interface between two neighboring control volumes. The
flow quantities are stored at the centroids of each control volume
which coincides with the grid cell. Note that with the mean
theorem, the convective and the viscous fluxes are only evaluated
at the center of each control surface using the flow information
adjacent to two sides of the interface.

Two-dimensional grid is taken as an example. Using the cell-
centered finite volume approach, in which the conserved
variables W

.
are located at the center of cells, the flux across

the edge ab is calculated using the simple average of variables at
the left cell center OL and right cell center OR (shown in
Figure 1), e.g.,

W
.

ab � W
.

OL +W
.

OR( )/2, (13)

fluxab � f W
.

ab( ). (14)

Cell-centered schemes such as the one described previously
would lead to odd–even decoupling of the solution, so that any
errors are not damped and oscillations will be presented in the
steady-state solution. Artificial dissipation terms D can eliminate
these oscillations. TermsD are usually added to the convective fluxes
in Eq. 8 and constructed as a blending of the second-order
differences d(2) and the fourth-order differences d(4) of the
conserved variables W

.
.

D � ∑kedges
i�1

d 2( )
i + ∑kedges

i�1
d 4( )
i , (15)

d 2( )
i � αiε

2( )
i W

.

left −W
.

right( )
i
, (16)

d 4( )
i � −αiε 4( )

i ∇2W
.

left − ∇2W
.

right( )
i
, (17)

where the index i denotes the edges/faces delimiting the control
volumes. W

.

left/W
.

right denotes left/right cell conserved variables of
the ith edge/face. ∇2 is defined for cell OL as

∇2W
.

OL � ∑OLedges

OA�1
W
.

OA −W
.

OL( ), (18)

where OA stands for the cells around the cell OL.
Adaptive coefficients ε(2)i and ε(4)i are defined as

ε 2( )
i � kk 2( )]i, ε 4( )

i � max 0, kk 4( ) − ε 2( )
i( ), (19)

FIGURE 1
Cell-centered scheme of Jameson.
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]i �
p
left

− pright

∣∣∣∣∣∣ ∣∣∣∣∣∣
p
left

+ pright

∣∣∣∣∣∣ ∣∣∣∣∣∣, (20)

where kk(2) and kk(4) are two empirical constants, which
typically have values ranging between 0.5< kk(2) < 1.0 and
kk(4) � kk(2)/32.0. pleft in the shock sensor ]i denotes the left
cell pressure of the ith edge/face. The scaling factor αi is
defined as

αi � V| | + c( )ΔS, (21)

where c and ΔS are the local speed of sound and the length of the
edge/face, respectively.

After spatial discretization, the resultant ordinary differential
equations can be solved using the explicit five-stage Runge–Kutta
scheme of Jameson et al. (1981).

W
. 0( ) � W

.n

,

W
. 1( ) � W

. 0( ) − α1Δt
Ω R

.n(W. 0( )),
W
. 2( ) � W

. 0( ) − α2Δt
Ω R

.n(W. 1( )),
W
. 3( ) � W

. 0( ) − α3Δt
Ω R

.n(W. 2( )),
W
. 4( ) � W

. 0( ) − α4Δt
Ω R

.n(W. 3( )),
W
.n+1 � W

. 0( ) − α5Δt
Ω R

.n(W. 4( )),

(22)

where W
.

is the conservative variable in Eq. 1 and �R is the
corresponding residual. Δt is the time step, and Ω is the area of
the cell. n is the current time level, n + 1 is the new time level, and
coefficients are taken as

α1 � 1/4, α2 � 1/6, α3 � 3/8, α4 � 1/2, α5 � 1. (23)

3 Total energy-based adaptive mesh
refinement approach

3.1 Selection of total energy per unit volume
as the refinement indicator

After obtaining the basic solution of governing equations in
the flow field, two important steps in any solution-adaptive
mesh refinement technique must be followed. The first one
requires an indicator to detect and locate the flow structures
of interest, where the mesh refinement is needed. From a
practical point of view, the adaptation function should
indicate where the mesh must be refined to improve the
accuracy. The adaptation function is usually selected from
flow variables such as density, entropy, and turbulent kinetic
energy. The flow considered in this paper is at high Reynolds
number, and the Mach number ranges from low-compressible
regime (Mach number < 0.3) to supersonic regime (Mach
number > 1.0). In some cases, the viscous effect is very

important. Thus, there is a practical demanding to select an
adaptation function which can well capture both the features of
shock waves and viscous effect.

It is known that any perturbation of flow must be followed by
the perturbation of total energy per unit volume (ρE) in the flow
field. For instance, when the air passes through the Mach wave, a
perturbation of total energy per unit volume happens before and
after the shock wave. ρE in the region with vortices is lower than
that in other regions due to the effect of dissipation, and this is
also a perturbation of total energy per unit volume. In this sense,
ρE can be considered a universal adaptation variable. In this
work, the adaptation function is constructed by the adaptation
variable ρE as

φi �
Δ ρE( )i
ρE( )∞ , Δ ρE( )i � max ρE( )i − ρE( )j∣∣∣∣∣ ∣∣∣∣∣( ),

ϕi � max 0, k0 − ρE( )i
ρE( )∞( ), Euler Eq. k0 � 0,

N − S Eq. k0 � 1,

⎧⎨⎩ (24)

where subscripts ∞, i, and j stand for the free stream, the ith grid
cell, and the cells adjacent to cell i, respectively. (ρE)∞ is used to
normalize ϕi and φi. Since there is a perturbation near the shock
wave and in the region with vortices, ϕi is supposed to capture the
shock waves and vortical structures. Furthermore, φi mainly
contributes to locate the vortical structure when k0 is taken as
1 in the viscous flow. The standard deviations (Zhang et al., 2001) of
ϕ and φ are taken as

σϕ �
�������
1
N
∑N
i�1
ϕi

2

√√
, σφ �

�������
1
N
∑N
i�1
φi

2.

√√
(25)

The summation is only performed for cells which satisfy
ϕi > εϕmax, φi > εφmax, where ε is an empirical threshold and is
equal to 0.05 in this paper.

In the refinement process, the value of ϕi + φi for each cell
depends on the value of σφ + σϕ. When ϕi + φi is greater than or
equal to σφ + σϕ, the corresponding ith grid cell is flagged for
refinement. ρE, the last component of vector W

.
in Eq. 2, is easy

to be obtained from either N–S equations or Euler equations. From
Eq. 24, we know that ϕi + φi has no effect onmesh configuration and
is a non-dimensional number. Therefore, it is very convenient to set
the threshold for mesh refinement.

3.2 Mesh refinement process

After determining the indicator, the process of mesh
refinement, as the second step in adaptive technique, can be
executed. In general, adaptive methods can be roughly classified
into three categories (Pirzadeh, 2000; Pepper and Wang, 2007):
grid movement (r-refinement), grid enrichment (h-refinement),
and local solution enhancement (p-refinement). Each method
has its own merits and shortcomings (Pepper and Wang, 2007; Li
et al., 2010).

In the r-refinement method, the value of the adaptation function
directly determines the mesh spacing. As described previously, the
values of adaptation function in this work do not represent the
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magnitudes of estimated errors. Instead, they only indicate the
location of dominant flow features. Therefore, r-refinement is not
appropriate for this work. At the same time, although the
p-refinement approach can obtain a solution with high order of
accuracy in smooth flow regions, it is not effective in regions with
discontinuity of flow variables. In addition, the coding of
p-refinement is very complicated. In the methods based on
h-refinement, however, an adaptation function only serves as a
means to locate the regions which can be refined without
considering the mesh spacing. Additionally, the h-refinement
approach can be effectively applied in both the smooth flow and
discontinuous flow regions. Due to these advantages, the
h-refinement process is adopted in this work.

To reduce the number of cells, and in the meantime, to well
capture the thin boundary layer, the structured mesh is taken as the
background mesh. Grid cells are quadrilaterals for two-dimensional
cases and hexahedra for three-dimensional cases. It should be
indicated that as refinement process goes on, the overall
unstructured mesh is formed.

During refinement, each quadrilateral/hexahedron is
divided into four/eight sub-cells by joining the midpoints of
opposite faces, as shown in Figure 2. For the two-dimensional
case, to the initial coarse grid cell, a parent face is replaced by the
current parent face and a new child face. This may form a
hanging node (Spragle et al., 1995) between the initial coarse cell
and the refined cells.

FIGURE 2
Refinement strategies.

FIGURE 3
Unsmooth cells. (A) A two-dimensional cell has only one adaptive neighboring cell and its opposing neighboring cell is the wall. (B) A two-
dimensional cell has two opposing adaptive neighboring cells. (C) A two-dimensional cell has a neighboring cell which has two or more adaptive levels.
(D) A three-dimensional cell has only one adaptive neighboring cell and its opposing neighboring cell is the wall. (E) A three-dimensional cell has two
opposing adaptive neighboring cells.
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A node is a hanging node if it is not a vertex of all cells sharing
one face. The hanging node grid adaptive scheme has the ability
to efficiently operate on grids with a variety of cell shapes,
including hybrid grids. However, the hanging node adaption
scheme makes some solvers unusable, especially for the
structured solvers. In contrast, the face-based unstructured
solver presented by Li et al. (2010) provides an ideal
environment for dealing with a hanging node adaption
scheme. For the cell-centered scheme used in this work, as
shown in Figure 1, the solver simply visits each face and then
uses flow variables on its left and right grid cell to evaluate the
face flux, and the contribution of the face flux is then sent to the
two neighboring cells sharing the interface.

fluxOL � fluxOL + fluxab,
fluxOR � fluxOR − fluxab.

(26)

Once the integration loop is performed along all face
indexes, spatial discretization of the governing equations is
completed.

To maintain a smooth variation of cell volume, additional
cells are refined based on the relative position of neighboring cells
or boundary conditions. There are three cases shown in Figure 3
in which cell M must be refined. One is that a cell has only one
neighboring cell which is refined but its opposing neighboring
cell is the solid wall (Figures 3A, D). The second is that a cell has
two opposing neighboring cells (Figures 3B, E) or more than two
neighboring cells are refined. If the initial grid needs more than
one adaptation, then the third case (Figure 3C) arises: a cell has a
neighboring cell which has two or more levels. For these cases,
additional refinement is needed.

The flow field variables of new children cells can be interpolated
from their parent cells. To carry out that, there are several different
techniques. The simplest way, which is employed in this work, is to
directly copy all physical variables of parent cells to their children
cells. Such kind of implementation can improve the computational
efficiency.

The process of the refinement strategy is summarized in the
flowchart as shown in Figure 4. On the other hand, it should be
noted that the coarsening process, which is not required in this
paper, can be easily implemented based on the obtained
information during the refinement process.

4 Numerical examples

To validate the present approach and demonstrate its capability for
effective simulation of inviscid/viscous compressible flows, three typical
problems are selected. The first problem is a two-dimensional inviscid
flow in a channel with a 15° ramp with the typical multi-channel shock
wave and expansionwave, to demonstrate the capability to capture shock
waves. The second problem is the three-dimensional inviscid flow
around the ONERA M6 wing at a transonic speed resulting in a λ

FIGURE 4
Flowchart of the process of the refinement strategy.

FIGURE 5
Uniform meshes and final refined mesh after two levels of
adaptation. (A) Initial mesh 89 × 29 for the refinement case. (B)
Uniformmeshwith 5,120 cells (without refinement). (C)Uniformmesh
178 × 58 (without refinement). (D) Uniform mesh 356 × 116
(without refinement). (E) Final refined mesh with 5,116 cells
(refinement case).
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shockwave on the upper surface of thewing, to show the capability of the
algorithm to capture shock waves in a transonic flow. In the third
problem,we hope to show the capability of the algorithmon simulating a
detached vortex of a delta wing, especially the vortex core fragmentation,
which is important in calculating the lift and drag coefficients.

4.1 Two-dimensional inviscid flow in a
channel with a ramp

By solving Euler equations, the results for supersonic flow at a
Mach number of 2 in a channel with a 150 ramp ranging from

x � 0.5 to x � 1.0 can be obtained. The upper and bottom
boundaries are solid walls, and the left and right boundaries
are the inlet and outlet of the flow field, respectively.

The initial mesh is a uniform mesh containing 89 × 29
quadrilateral cells as shown in Figure 5A. Figure 6A shows the
Mach number contour lines for the entire flow field based on the
initial mesh. The shock wave emanating from the leading ramp
and its reflection as well as the expansion wave can be clearly
captured. After two levels of adaptation are implemented, the
final refined mesh, as depicted in Figure 5E, contains
5,116 quadrilateral cells. The Mach contours on the final
refined mesh are displayed in Figure 6E.

To compare the computational cost (cells and seconds)
between cases with refinement and without refinement,
numerical simulation of the same problem on the three
uniform meshes without refinement is carried out. The three
uniform meshes without refinement are shown in Figures
5B–D. The mesh in Figure 5B has 5,120 cells. The number of
cells for this mesh is the same as the final refined mesh of the
refinement case. The mesh in Figure 5C has 10,324 cells which
are approximately two times the cells in the final refined mesh
of the refinement case. The mesh spacing for this case is the
same as the minimum mesh spacing of the refinement case
when the initial mesh shown in Figure 5A is refined by one
adaption level. The mesh in Figure 5D has 41,296 cells which
are approximately eight times the cells in the final refined mesh
of the refinement case. The mesh spacing for this case is the
same as the minimum mesh spacing of the refinement case
when the initial mesh in Figure 5A is refined by two adaption
levels. All the results (Mach number contour) are demonstrated
in Figure 6. The minimum and maximum levels of contours are
1.0 and 1.8 respectively, and the number of levels is 14. Figures
6A–D show that the shock wave becomes thinner and thinner
with the increase in cell numbers. It is seen clear from the figure
that the results of the uniform mesh of 41,296 cells are very
close to those of the final refined mesh where two adaption
levels are used to refine the mesh. This can be well understood
as both cases have the same mesh spacing in the vicinity of the

FIGURE 6
Mach number contours in the contracted channel based on
uniform meshes and final refined mesh. (A) Mach number contours
based on the initial mesh of 89 × 29. (B)Mach number contours based
on the uniformmesh with 5,120 cells. (C)Mach number contours
based on the uniform mesh of 178 × 58. (D) Mach number contours
based on the uniform mesh of 356 × 116. (E) Mach number contours
based on the final refined mesh of the refinement case.

FIGURE 7
Initial and refined mesh for the ONERA M6 wing. (A) Initial mesh.
(B) Refined mesh.

TABLE 1 Comparison of computational cost among different meshes.

Initial mesh cell
number

Final mesh cell
number

Time/
s

Refinement (two
adaption levels)

2,581 5,116 113

5,120 5,120 37

Without refinement 10,324 10,324 104

41,296 41,296 1,106

Frontiers in Energy Research frontiersin.org07

Xu et al. 10.3389/fenrg.2023.1203801

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1203801


shock wave. The computational time required on the meshes
shown in Figure 5 is listed in Table 1. It can be observed from
Table 1 that the refinement case with two adaption levels only
takes approximately 10% of the computational time of the
uniform mesh case (without refinement) when the mesh
spacing near the shock wave is kept the same. This well
demonstrates high computational efficiency of the solution-
adaptive approach.

4.2 Three-dimensional inviscid flow around
the ONERA M6 wing

To further demonstrate the capability of the present solution-
adaptive mesh refinement approach for capturing the shock wave,
the inviscid flow around the ONERA M6 wing is considered. The
Mach number is 0.84, and the incidence is 3.06°. Same as the case in
Section 4.1, the governing equations are Euler equations.

FIGURE 9
Flat-plate semispan delta wing model.

FIGURE 10
Initial mesh and refined mesh for the delta wing. (A) Initial mesh. (B) Refined mesh.

FIGURE 8
Pressure coefficient distributions at 0.65 and 0.8 spanwise locations for the ONERA M6 wing. (A) 0.65 spanwise. (B) 0.8 spanwise.
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A background mesh with a nearly uniform grid distribution is
generated as shown in Figure 7A. The initial mesh contains
294,912 hexahedral cells. Figure 7B shows the final refined
mesh which contains 440,365 hexahedral cells. Obviously, the
majority of mesh refinement occurs in the shock wave regions,
and the refined cells clearly outline the λ shock waves.

The surface pressure coefficient distributions at 0.65 and
0.8 spanwise locations obtained on the initial coarse mesh and
the final refined mesh are compared in Figure 8 with the
experimental data (Schmitt and Charpin, 1979). The comparison
indicates that the shock wave is diffused due to the coarse mesh. The
high resolution of shock waves by the refined mesh is evident as
revealed by sharp discontinuity of the pressure distribution. There
are some deviations between the numerical results and the
experimental data. The reason may be due to the fact that the
inviscid flow is assumed in the numerical computation, while the
real flow always involves viscous effect.

Numerical simulations for two-dimensional inviscid flows in a
channel with a ramp and three-dimensional inviscid flows around
the ONERA M6 wing well demonstrate the capability of the present
solution-adaptive mesh refinement approach for capturing shock
waves and expansion waves. To illustrate the ability of the present

approach for capturing vortices, numerical simulation of three-
dimensional compressible viscous flows around a delta wing is
considered in the following example. The prediction of leading-
edge vortex breakdown on a delta wing at high angles of attack
is made.

4.3 Three-dimensional viscous flow around
a delta wing

The geometry chosen for this case is a flat-plate semispan delta
wing with a leading-edge sweep of 700 and a 250 bevel on the lower
surface along the leading and trailing edges (Agrawal et al., 1992) as
shown in Figure 9. For this problem, N–S equations with the S–A
turbulent model are taken as governing equations. Numerical
simulation is carried out at a Mach number of 0.3 and an
incidence of 300. The Reynolds number based on the root chord
is taken as one million.

The initial mesh and the adaptive refined mesh are displayed in
Figure 10. The corresponding adaptation function is shown in
Figure 11. The initial mesh contains 320,624 hexahedral cells.
After refinement, the final mesh contains 503,317 hexahedral cells.

Figure 12 shows some numerical results for this problem. The
solution presented in Figure 12A shows the vortex core line without
vortex breakdown, which is different from the solution based on the
refined mesh presented in Figure 12B.

5 Conclusion

A solution-adaptive mesh refinement technique, which is based
on the total energy per unit volume as the refinement indicator, is
presented in this work. Different from previous adaptation indicator
used, the present indicator can well detect both the shock waves and
vortices. The technique is validated by applying it to simulate two-
dimensional and three-dimensional steady compressible inviscid/
viscous flows. The h-refinement approach by subdivision is adopted
to perform the mesh refinement process.

The capability of the present solver is verified by applying it to
handle three test problems. For inviscid/viscous flows, the Euler/

FIGURE 12
Vortex breakdown position indicated by the core line, Ma∞ � 0.3, α � 300 ,Re � 1.0E6. A vortex breakdown at approximately 0.6 root chord observed
from the adaptive solution is supported by both experimental data and other numerical results (Agrawal et al., 1992; O’Neil et al., 1989). (A) Initial mesh. (B)
Refined mesh.

FIGURE 11
Contours of ϕi + φi at different cross sections.
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Navier–Stokes (with the Spalart–Allmaras one-equation turbulence
model) equations are employed. The cell-centered finite volume
method is applied for spatial discretization, and an explicit five-stage
Runge–Kutta scheme is used to implement time integration.
Numerical results show that the proposed adaptation function
can well capture the shock waves, expansion waves, and vortices
in the flow field. As a consequence, a high-resolution solution of
important flow features such as shock waves and vortices is
obtained.
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