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To realize the cascaded utilization of energy, improve the effective utilization of
energy, and further reduce the carbon emissions of integrated energy systems a
robust stochastic low-carbon optimal dispatch model with economy,
environmental protection and reliability is developed for a park-integrated
energy system wherein the multiple uncertainties brought by source and load
are fully considered. First, a two-stage robust optimization algorithm is employed
to handle uncertain wind power generation. A multi-case analysis method for the
uncertainties of photovoltaics and load is proposed based on an improved
centralized reduction algorithm. Then, considering the depreciation of the
weighted average of the comprehensive operation cost, carbon emissions, and
energy undersupply rate, a robust stochastic optimal dispatch model can be
derived and efficiently solved by using a multi-objective fuzzy optimization
algorithm with an improved membership function. Finally, by comparing the
four cases, the simulation results show that the computational complexity and
calculation time of the system can be reduced, the trimming result errors can be
decreased, and a balance between economy, environmental protection, reliability,
and robustness can be achieved.
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1 Introduction

Nowadays, power industry is continuously optimizing its energy structure in response to
the national “carbon emission reduction.” Renewable energy is becoming increasingly
prevalent because of its low pollutant emissions and sustainable supply (Alabi et al.,
2022; Zhang K. et al., 2022; Zhang et al., 2022b; Wang F. et al., 2023; Zhang et al.,
2023). However, renewable energy also has shortcomings, such as its random nature and
fluctuations, which pose significant challenges to the safety and stability of park-integrated
energy system (PIES). Although related research on energy output and load forecasting has
improved (Li et al., 2021a; Sun Y. et al., 2021; Tang et al., 2022; Wang S. et al., 2023; Huang
et al., 2023; Sun et al., 2023), the uncertainty remains a significant issue in system dispatch.

Over the past few decades, numerous studies have been conducted on the optimal low-
carbon dispatch of PIES. By introducing power-to-gas (P2G) equipment into the system, the
effectiveness of P2G technology in the PIES for wind power consumption was verified in
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(Cui et al., 2022). In (Qin et al., 2022), a refined model of P2G
operation was established, and an electricity hydrogen storage
system (P2HSS) was constructed; the simulation results showed
that the P2HSS could reduce the system carbon emissions and
achieve better performance. Carbon trading was taken as a tool
utilizing market mechanisms to effectively reduce carbon emissions
(Qi and Han, 2023). In (Sun P. et al., 2021), the authors discussed the
influence of carbon trading price on system operation. A stepped
carbon-trading mechanism was introduced into PIES in (Wang
et al., 2022; Zhou et al., 2023), where electricity hydrogen production
was completely considered. In (Yang et al., 2023), an optimal
dispatch model containing a combined cooling, heating,
electricity unit, and carbon capture device was proposed, in
which the demand response could help to flexibly shift the load
and reduce carbon emissions. In (Li H. et al., 2021), a novel stepped
carbon-trading model was constructed by introducing rewards and
punishments. In (Liu, 2022), a low-carbon dispatch model for PIES
was developed considering whole-life carbon emissions. However,
most of the existing results are deterministic models, and low-
carbon optimal dispatch under the influence of multiple source-
and load-related uncertainties is rarely considered.

For these uncertainties in load prediction and energy output in
PIES optimal operation, case analysis, robust optimization, and
fuzzy theory have been adopted (Zhang et al., 2022c; Ma et al.,
2022; Yan et al., 2022). In (Li et al., 2021c), an interval optimal model
under multiple uncertainty conditions was established and the
simulation results showed that the number of optimal intervals
gradually increased with an increase in the degree of uncertainty
fluctuation. In (Wang et al., 2019), the characteristics of the
prediction error of wind power and photovoltaic (PV) were
analyzed in advance and a robust optimal model considering the
prediction errors was provided. A Gaussian process regression
method was used to determine the probability distributions of
renewable energy and load forecasts, and a min-max rolling
optimal model was established in (Dong et al., 2022). In
(Mahdavi et al., 2022), the normal probability density function
was used to describe the uncertainty of the load. In (Xiong et al.,
2022), soyster robust was utilized to handle the uncertainty of
photovoltaic and load, and the worst-case scenario was selected
as the related output. To reduce the conservatism of robust
optimization, a two-stage robust model was proposed, and its
effectiveness in improving the system economy and
robustness was analyzed in (Gao et al., 2022). The Monte
Carlo analysis was used to generate cases of uncertainty in
(Di Somma et al., 2017). These studies used a single method,
and the characteristics of the uncertainty factors were rarely
combinatorically optimized.

In terms of case analysis, wind power output and load cases
were combined to obtain integrated cases and their probabilities
(Xie and Xu, 2022). In (Qi et al., 2023), a risk aversion dispatch
strategy was developed with a minimum objective of the
conditional value at risk. The number of integrated cases in
(Di Somma et al., 2017; Xie and Xu, 2022; Qi et al., 2023)
increased exponentially when the number of uncertain
variables increased, which significantly increased the system
complexity and computation time. In (Zeng et al., 2020), an
overall case generation and reduction method was proposed with
the purpose of reducing the tediousness of operations; however,

the influence of each uncertain variable on the reduction process
was not considered, thereby increasing the error of the reduction
results and easily leading to a single correlation.

The authors primarily focused on a robust stochastic low-carbon
optimal dispatch of PIES with multiple uncertainties. The main
contributions and novelty are presented as follows.

(1) For uncertain wind power output, a two-stage robust min-max-
min optimization algorithm is utilized, and a multi-case analysis
method based on an improved centralized case reduction is
proposed. To handle the uncertainty of photovoltaic and load.
The combination of the two methods reduces the conservatism
of the robust optimization method.

(2) By introducing the stepped carbon trading mechanism, a robust
stochastic low-carbon optimal dispatch method for PIES is
constructed with economy, environmental protection and
reliability indicator, which is solved using a multi-objective
fuzzy optimization algorithm with an improved membership
function. This enables the system to achieve comprehensive
operation while reducing the subjectivity of setting multiple
objective weights.

The remaining of the manuscript is arranged as: In Section 2, the
structure of the PIES is described first, and then uncertainmodels for
the load and PV are provided. In Section 3, the development of a
robust stochastic low-carbon optimal dispatch strategy of the PIES
and a detailed solution process are presented. In Section 4, a case
study and comparison analysis are presented to demonstrate the
effectiveness of the proposed model. Finally, the paper concludes
with a discussion on future research.

2 System description

2.1 Structure of PIES

A diagram of the proposed PIES is presented in Figure 1. In
terms of energy production, upper-level power grid, gas network,
and photovoltaic PV and wind turbine (WT) unit are available. The
energy conversion components include combined heat and power
(CHP) unit, gas boiler (GB), electric chiller (EC), absorption chiller
(AC), electrolyzer (EL), methane reactor (MR), hydrogen fuel cell
(HFC), and multi-energy storage device. The energy outputs include
the cooling, heat, electricity, and gas load. The carbon emissions
generated by the PIES are ultimately traded in the carbon trading
market.

2.2 Mechanism of stepped carbon trading

To reduce greenhouse gas emissions, a carbon emission trading
mechanism is developed as an effective approach. The stepped
carbon trading mechanism is a flexible market-based approach to
reducing carbon emissions. According to its mechanism: carbon
emission reduction targets are divided into different tiers, and
participants are rewarded by reaching or exceeding the goals of
each tier. The mechanism includes carbon quota allocation, carbon
trading and reward and punishment mechanism, which encourages
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enterprises and organizations to adopt innovative emission
reduction measures to promote low-carbon economic
development and achieve sustainable development goals.

The carbon emission sources considered in this study include
purchasing electricity from the grid, CHP, GB, and gas load. The
hydrogen conversion process of methane reactors can absorb some
CO2, which is primarily consumed through the combustion of gases
such as coal and natural gas, resulting in carbon emissions that need
to be considered (Zhou et al., 2023).

2.3 Model of wind power with uncertainty

It is well known that wind power output is challenging to
characterize accurately in real-world cases owing to various
factors, such as wind speed and geographical location.
However, obtaining a range of output values is relatively
straightforward. Therefore, a boxing interval set u is used to
describe the uncertainty caused by wind power. A robust
uncertainty adjustment parameter Γ is employed to adjust the
conservatism, a larger parameter results in more conservative
solution. Conversely, a smaller parameter leads to more liberal
the solution. The range of values includes integers within [0, T],
where T represents the total number of periods during the
dispatch cycle. The wind power reaches the described
fluctuation interval that is expressed as:

u �

PWT,t � Ppre
WT,t − v−WT,tΔPWT + v+WT,tΔPWT

v−WT,t, v
+
WT,t ∈ 0, 1{ }

v−WT,t + v+WT,t ≤ 1

∑T
t�1

v−WT,t + v+WT,t( )≤ Γ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(1)

where PWT,t and Ppre
WT,t are the actual and predicted wind power

generation, respectively. v−WT,t and v+WT,t are upward and downward
fluctuating state variables, respectively. ΔPWT is the predicted
deviation in wind power generation. T is the dispatch period.

2.4 Multi-case model of uncertainties of PV
and load

The predicted values of PV generation, cooling, heating,
electricity, and gas load deviate. In this study, the actual values
are taken as the sum of the predicted values and deviations, which
are expressed as:

PPV,i,t � Ppre
PV,i,t + ΔPV,i,t

PLoad,i,t � Ppre
Load,i,t + ΔLoad,i,t

{ (2)

where PPV,i,t and Ppre
PV,i,t are the actual and predicted PV generation

for the ith case, respectively. ΔPV,i,t is the predicted deviation of PV
generation. PLoad,i,t and P

pre
Load,i,t are the actual and predicted load for

the ith case, respectively. ΔLoad,i,t is the predicted deviation of load.

FIGURE 1
Schematic of PIES.
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Without a loss of generality, in this study, photovoltaic
generation and load are assumed to follow a normal distribution,
and the basic parameters are given as:

μPV,i,t � Ppre
PV,i,t

μLoad,i,t � Ppre
Load,i,t

σPV,i,t � 1
10
Ppre
PV,i,t + 1

50
PPVN

σLoad,i,t � 1
20
Ppre
Load,i,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

where μPV,i,t and μLoad,i,t are the mean values of PV generation and
load for the ith case, respectively. μPV,i,t and μLoad,i,t are the standard
deviation of load output and load for the ith case, respectively. PPVN

is the rated capacity of PV unit.
For these uncertainties introduced by photovoltaic power

output and load, the corresponding samples are generated
through random sampling based on their probability
distributions. In this study, the Latin hypercube sampling
(LHS) is adopted, which ensures that the samples encompass
the entire sample space of the random variable; detailed
procedures can be found in (Xiong et al., 2022) and are
excluded in this paper.

3 Robust stochastic low-carbon
optimal dispatch model of PIES

Considering the uncertainties from sources and loads, a
robust stochastic low-carbon optimal dispatch model is
developed for the PIES. The model is divided into two stages:
First, the multi-case analysis and multi-objective fuzzy
optimization algorithm with an improved membership
function are used to obtain the energy storage charging and
discharging plan, grid interaction plan, and energy storage
equipment output plan. Next, the robust min-max-min
optimization algorithm is employed to minimize the energy
purchase cost in the worst-case scenario. The proposed robust
stochastic low-carbon optimal dispatch model is given by

min∑N
s�1
ρs λ max

u∈U
min

y
Cbuy,s u, y( ) + Cop,s x( ) + FCO2 ,s x( )( ), Es x( ), Csu,s x( )( )( )

s.t.Hbuy,s x, u, y( ) � 0, Gbuy,s x, u, y( )≤ 0
Hop,s x( ) � 0, Gop,s x( )≤ 0
HCO2 ,s x( ) � 0, GCO2 ,s x( )≤ 0
HE,s x( ) � 0, GE,s x( )≤ 0
Hsu,s x( ) � 0, Gsu,s x( )≤ 0

(4)

where N is the number of typical cases. ρs is the probability of
occurrence of typical s cases. Cbuy,s, Cop,s, FCO2 ,s, Es, and Csu,s are
the energy purchase cost, operation and maintenance cost,
carbon trading cost, carbon emission, and energy undersupply
rate of typical s cases, respectively. λ is a function of multi-
objective fuzzy optimization satisfaction. x is the first-stage
optimization variable, including the energy storage charging
and discharging plan, grid interaction plan, and energy storage
equipment output plan. y is a second-stage optimization variable
that includes the unit output and grid interaction. U is a set of
uncertainties in wind power generation.

3.1 Objective function

For a typical case of photovoltaic and load case, the objective
function is described in detail to develop a robust stochastic low-
carbon optimal dispatch model for PIES.

The first objective is to obtain the minimum operational cost
within a dispatch period:

minF � min Cbuy + Cop + FCO2( ) (5)

where F denotes the comprehensive operational cost. FCO2

represents carbon trading cost. Cbuy and Cop represent the
system energy purchase cost and the operation and maintenance
cost, respectively; these can be expressed as:

Cbuy � ∑T
t�1

cbuy,e,tPbuy,e,t + cbuy,g,tPbuy,g,t − csell,e,tPsell,e,t( )

Cop � ∑T
t�1

cWTPWT,t + cPVPPV,t + cCHPPCHP,g,t + cGBPGB,g,t

+cELPEL,e,t + cHFCPHFC,H2 ,t+cMRPMR,H2 ,t + cECPEC,e,t + cACPAC,h,t

+∑5
n�1

cES,n Pcha
ES,n,t + Pdis

ES,n,t( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6)

where cbuy,e,t and cbuy,g,t are the electricity purchase price and gas
purchase price at time t, respectively. csell,e,t is the electricity selling
price. Pbuy,e,t is the power purchased at time t. Pbuy,g,t is the
purchasing power of gas at time t. Psell,e,t is the selling power at
time t. PPV,t is the actual PV generation at t. PCHP,g,t is the natural
gas power input to the CHP system at time t. PGB,g,t is the natural gas
power input to the GB at time t. PEL,e,t is the electric power input to
EL. PMR,H2 ,t is the hydrogen energy input to the MR. PHFC,H2 ,t is the
hydrogen energy input to the HFC. PEC,e,t is the electrical power
input to the EC. PAC,h,t is the heat power input to the AC. Pcha

ES,n,t and
Pdis
ES,n,t are the charging and discharging powers of the nth energy

storage device, respectively.
The second objective is to achieve minimal total carbon dioxide

emissions, which are expressed as follows:

minE � Ebuy + ECHP GB + Egload − EMR (7)
where E is the total carbon emissions, Ebuy is the carbon emissions
caused by purchased power, Egload is the carbon emissions caused by
gas load, ECHP GB is the total carbon emissions from the CHP and
GB, and EMR is the amount of CO2 absorbed by the MR hydrogen
into natural gas. Detailed descriptions are as follows:

Ebuy � ∑T
t�1

a1 + b1Pbuy,e,t + c1P2
buy,e,t( )

ECHP GB � ∑T
t�1

a2 + b2Ptotal,t + c2P2
total,t( )

Ptotal,t � PCHP,e,t + PCHP,h,t + PGB,h,t

EMR � τMR∑T
t�1
PMR,g,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where PCHP,e,t and PCHP,h,t are the electricity and heat power outputs
of the CHP system, respectively. PGB,h,t is the heat power output of
the GB. Ptotal,t is the sum of the power output of the CHP system and
GB. a1, b1, c1 and a2, b2, and c2 are the carbon emission factors of the
CHP and GB coal-fired units, respectively. τMR is the CO2

absorption parameter of the hydrogen-to-natural gas conversion
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process in the MR equipment. PMR,g,t is the natural-gas power
output of the MR.

The third objective is the energy undersupply rate of system,
which is shown as

minCus �
∑T
t�1

ΔPload,e,t + ΔPload,h,t + ΔPload,g,t + ΔPload,c,t( )
∑T
t�1

Pload,e,t + Pload,h,t + Pload,g,t + Pload,c,t( ) (9)

where Cus is the energy undersupply rate, which refers to a supply
shortage when the electrical input and gas input suddenly drop to
50% of the original amount. Pload,e,t is the electricity load at time t.
Pload,h,t is the heat load at time t. Pload,g,t is the gas load at time t.
Pload,c,t is the cooling load at time t. ΔPload,e,t, ΔPload,h,t, ΔPload,g,t,
ΔPload,c,t are the shortages of supply for the electricity, heat, gas, and
cooling load, respectively.

3.2 Constraints

(1) Wind turbine (WT) output constraints

0≤Ppre
WT,t ≤Prate

WT,t (10)
where Prate

WT,t is the rated power of WT unit during the t period.

(2) PV generation constraints

0≤Ppre
PV,t ≤Prate

PV,t (11)
where Ppre

PV,t is the predicted PV power generation during the t
period. Prate

PV,t is the rated power of the PV unit during the t period.

(3) CHP constraints

PCHP,e,t � ηeCHPPCHP,g,t

PCHP,h,t � ηhCHPPCHP,g,t

PCHP,g
min ≤PCHP,g,t ≤PCHP,g

max

ΔPCHP,g
min ≤PCHP,g,t+1 − PCHP,g,t ≤ΔPCHP,g

max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (12)

where ηeCHP and ηhCHP are the energy conversion efficiencies of CHP
electricity and heat power, respectively. PCHP,g

max
and PCHP,g

min
are the

upper and lower limits of the natural gas power input to the CHP
system, respectively. ΔPCHP,g

max
and ΔPCHP,g

min
are the upper and lower

limits of the natural gas power creep input to the CHP system,
respectively.

(4) GB constraints

PGB,h,t � ηGBPGB,g,t

PGB,g
min ≤PGB,g,t ≤PGB,g

max

ΔPGB,g
min ≤PGB,g,t+1 − PGB,g,t ≤ΔPGB,g

max

⎧⎪⎪⎨⎪⎪⎩ (13)

where ηGB is the energy conversion efficiency. PGB,g
max

and PGB,g
min

are
the upper and lower limits of the natural gas power input to the GB,
respectively. ΔPGB,g

max
and ΔPGB,g

min
are the upper and lower limits of

the natural gas power creep input to the GB, respectively.

(5) EL constraints

PEL,H2 ,t � ηELPEL,e,t

PEL,e
min ≤PEL,e,t ≤PEL,e

max

ΔPEL,e
min ≤PEL,e,t+1 − PEL,e,t ≤ΔPEL,e

max

⎧⎪⎪⎨⎪⎪⎩ (14)

where PEL,H2 ,t is the hydrogen energy output from EL and ηEL is the
energy conversion efficiency. PEL,e

max
and PEL,e

min
are the upper and lower

limits of the electric power input to the EL, respectively. ΔPEL,e
max

and
ΔPEL,e

min
are the upper and lower limits of the electric power creep of

the input to the EL, respectively.

(6) MR constraints

PMR,g,t � ηMRPMR,H2 ,t

PMR,H2

min ≤PMR,H2 ,t≤PMR,H2

max

ΔPMR,H2

min ≤PMR,H2 ,t+1 − PMR,H2 ,t≤ΔPMR,H2

max

⎧⎪⎪⎨⎪⎪⎩ (15)

where ηMR is the energy conversion efficiency of the MR. PMR,H2

min
and

PMR,H2

max
are the upper and lower limits of the hydrogen energy input

to the MR, respectively. ΔPMR,H2

min
and ΔPMR,H2

max
are the upper and

lower limits of the hydrogen energy-climbing input to the MR,
respectively.

(7) HFC constraints

PHFC,e,t � ηeHFCPHFC,H2 ,t

PHFC,h,t � ηhHFCPHFC,H2 ,t

PHFC,H2

min ≤PHFC,H2 ,t ≤PHFC,H2

max

ΔPHFC,H2

min ≤PHFC,H2 ,t+1 − PHFC,H2 ,t≤ΔPHFC,H2

max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (16)

where PHFC,e,t and PHFC,h,t are the electricity and heat power outputs
of the HFC, respectively. ηeHFC and ηhHFC are the energy conversion
efficiencies of the electricity and heat power of the HFC, respectively.
PHFC,H2

max
and PHFC,H2

min
are the upper and lower limits of the hydrogen

energy input to the HFC, respectively. ΔPHFC,H2

max
and ΔPHFC,H2

min
are

the upper and lower limits of the hydrogen energy creep of the input
to the HFC, respectively.

(8) EC constraints

PEC,c,t � ηECPEC,e,t

PEC,e
min ≤PEC,e,t ≤PEC,e

max

ΔPEC,e
min ≤PEC,e,t+1 − PEC,e,t ≤ΔPEC,e

max

⎧⎪⎪⎨⎪⎪⎩ (17)

where PEC,c,t is the cooling power output of the EC. ηEC is the energy
conversion efficiency. PEC,e

max
and PEC,e

min
are the upper and lower limits

of the electrical power of the input EC, respectively. ΔPEC,e
max

and
ΔPEC,e

min
are the upper and lower limits of the electrical power creep of

the input EC, respectively.

(9) AC constraints

PAC,c,t � ηACPAC,h,t

PAC,h
min ≤PAC,h,t ≤PAC,h

max

ΔPAC,h
min ≤PAC,h,t+1 − PAC,h,t ≤ΔPAC,h

max

⎧⎪⎪⎨⎪⎪⎩ (18)

where PAC,c,t is the cooling power output of AC. ηAC is the energy
conversion efficiency. PAC,h

max
and PAC,h

min
are the upper and lower limits of

the heat power of the input AC. ΔPAC,h
max

and ΔPAC,h
min

are the upper and
lower limits of the heat-power creep of the input AC, respectively.

(10) Energy storage device constraints
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where n is the type of energy, and n ∈ e, h, g, H2, c{ }. e, h, g, H2, c
are electricity, heat, gas, hydrogen and cold energy, respectively.
En,t is the capacity of the nth energy-storage device. En

max
and En

min

are the upper and lower capacity limits of the nth energy storage
device, respectively. ηchaES,n and ηdisES,n are the charging and
discharging efficiencies of the nth energy-storage device,
respectively. Bcha

ES,n and Bdis
ES,n are the charging and discharging

0–1 state variable of the nth energy storage device, respectively.
Pcha
ES,n,max and Pdis

ES,n,max are the maximum power of the nth energy
storage device, respectively.

(11) Power balance constraints

Pbuy,e,t − Psell,e,t + PCHP,e,t + PHFC,e,t + PWT,t + PPV,t + Pdis
ES,e,t

� Pload,e,t + PEL,e,t + Pcha
ES,e,t

0≤Pbuy,e,t ≤ ke1Pbuy,e
max

0≤Psell,e,t ≤ ke2Psell,e
max

0≤ ke1 + ke2 ≤ 1
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(20)

where Psell,e
max

and Pbuy,e
max

are the upper limits of the electricity
selling and purchasing through the upper-level grid during the t
period, respectively. The upper limit of electricity purchasing
Pbuy,e
max

is set to 3500 kW. ke1 and ke2 are both 0-1 variables. When
ke1 = 1, it indicates that PIES purchases electricity from the upper-
level grid. When ke2 = 1, it indicates that PIES sells electricity to
the upper-level grid.

(12) Heat balance constraints

PCHP,h,t + PHFC,h,t + PGB,h,t + Pdis
ES,h,t � Pload,h,t + PAC,h,t + Pcha

ES,h,t (21)

(13) Gas balance constraints

Pbuy,g,t + PMR,g,t + Pdis
ES,g,t � Pload,g,t + PCHP,g,t + PGB,g,t + Pcha

ES,g,t

0≤Pbuy,g,t ≤Pbuy,g
max{

(22)
where Pbuy,g

max
is the limit for purchasing gas from the upper-level gas

grid. The upper limit of gas purchasing Pbuy,g
max

is set to 3000 kW.

(14) Hydrogen balance constraints

PEL,H2 ,t + Pdis
ES,H2 ,t

� PMR,H2 ,t + PHFC,H2 ,t + Pcha
ES,H2 ,t

(23)

(15) Cooling balance constraints

PAC,c,t + PEC,c,t + Pdis
ES,c,t � Pload,c,t + Pcha

ES,c,t (24)

3.3 Solution to optimal model

The number of typical scenes generated by the traditional
centralized reduction method is artificially adjustable, which can
reduce computational complexity. However, it does not consider the

impact of various uncertain variables such as dimensions and value
ranges on the typical scene set and probability obtained through
centralized reduction. Therefore, an improved centralized reduction
method is proposed to handle sampled scene sets. For the developed
optimal dispatch model, Latin hypercube sampling is adopted for
scene generation, and because its initial scene set is large, an improved
centralized reduction approach is developed to process the sampling
scene set. In this method, the uncertain variables are sampled using a
Latin hypercube. The obtained scene set is then normalized. The system
sampling scene set under the improved centralized reductionmethod is
combined. Finally, the heuristic synchronous back-substitution method
is used to improve and reduce the typical scene set and its probability,
which is expressed as:

SIC � ∑m
w�1,v�1
u�1,i�1,i�1
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,
SPeloadj

Pload,e,max − Pload,e,min
,

SPhloadu

Pload,h,max − Pload,h,min
,

SPgloadv

Pload,g,max − Pload,g,min
,
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SIC Improved concentrated reduction
→ ∑k

i�1
SICpare,i, pi

IC
i( ) (26)

where m is the number of sampled cases. k denotes the number of
reduction target cases. SIC represents the set of cases sampled by the
improved centralized reduction method. PPV,max, PPV,min,
Pload,e,max, Pload,e,min, Pload,h,max, Pload,h,min, Pload,g,max, Pload,g,min,
Pload,c,max, and Pload,c,min are the maximal and minimal values of
power concentration of the sampled cases generated by PV and load,
respectively. (SICpare,i, piICi ) is the ith typical case and its probability
obtained by the improved centralized reduction method.

An evaluation index called the comprehensive probability
distance (CPD) is proposed to evaluate the performance of the
proposed reduction strategy:

CPD � ∑k
i�1

∑k
j�1
Dij

⎛⎝ ⎞⎠pii (27)

where Dij means Euclidean distance between case i and case j.
It is noteworthy that the min-max-min structure in a robust

stochastic low-carbon optimal dispatch model cannot be solved
directly. Therefore, the algorithm of column and constraint
generation algorithm (CCG) is employed to decompose the
main problem and sub-problem and solve them alternately;
the large M method and duality theory can be used to
transform the sub-problem into a single objective optimization
issue, and a more detailed description can be found in (Ma et al.,
2022), which is excluded here owing to the length-limit of the
paper.

Furthermore, a new multi-objective fuzzy optimization
algorithm with an improved membership function is developed,
in which a continuously differentiable inverse sigmoid function in
the definition domain is adopted. Based on the maximum and
minimum satisfaction approaches, the minimum value of the
three objective membership functions is set as satisfaction, and a
single objective issue that satisfies all constraints and maximum
satisfaction was derived (Wang et al., 2019).
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The main steps of the proposed optimization model are as
follows.

Step 1: The predicted values of the cooling, heat, electricity, gas
loads, and PV generation are input and a large number of sample
cases is generated using Latin hypercube sampling, which
conformed to the corresponding probability distribution.

Step 2: A small number of typical representative scenes and their
probabilities are obtained using a heuristic synchronous back-
substitution method.

Step 3:A two-stage robust min-max-min optimization algorithm is
developed to deal with the uncertainty of wind power. Typical cases
are substituted into the model to build a robust stochastic low-
carbon optimal dispatch model based on system equipment
parameters and system structure.

Step 4: The fuzzy multi-objective optimization algorithm with an
improved membership function is used to obtain the solution. A
commercial solver, Gurobi, is employed based on Matlab 2020a.

The flow of the proposed optimization approach is illustrated in
Figure 2.

4 Case study

4.1 Basic data

In this study, the optimal dispatch period is 24 h. The
multidimensional load, the predicted output of wind and PV
power in the PIES, and the purchase and sale prices of electricity
at different times are illustrated in Figures 3–5. The natural gas price
is set to 0.35 yuan/(kWh). Table 1 lists the basic parameter settings
for each device, and Table 2 lists the parameter settings for each
energy storage device. The carbon emission quota for unit power
generation is set to 0.798 kg/(kWh). The carbon emission quota for
the unit heat supply is set as 0.385 kg/(kWh) (Qin et al., 2022). The
interval length of the stepped carbon trading mechanism was set to
2000 kg. Based on the data from (Dong et al., 2022), the price
increase rate is set to 25% and the base price of carbon trading is set
to 0.252 yuan/kg.

FIGURE 2
Flow chart of the optimization algorithm.
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Using the proposed method, a set of 1,000 sampled cases is
generated, as shown in Figure 6. The sampled case set contains
1,000 × 120 data points, representing the size of the PV generation
and the load of cooling, heat, electricity, and gas at every hour. A
synchronous back-substitution method is adopted to improve and
reduce the 1,000 scene sets. Eight typical scenes and their
probabilities are shown in Figure 7.

To further demonstrate the performance of the improved case
reduction method, the results are compared with those obtained by
separate reduction and traditional centralized reduction with CPD.
A comparison of the results is presented in Table 3; Figure 8.

From Table 3; Figure 8, the CPD of each uncertain variable is
found to be more significant than that of centralized reduction and
improved centralized reduction using the separate reduction
method, because the heuristic synchronous backtracking
algorithm calculates the probability distance between each scene
in the generated scene set and the rest of the scenes. The scene pair
with the smallest probability distance is selected and reduced by
adding the probability of one scene to the other. This process was
repeated until the number of scenes is reduced to one or fewer. As
the number of scenes decreases, the CPD of the remaining scene
pairs becomes the maximum CPD value for the same number of
scene pairs in the original scene set.

For the traditional centralized reduction and improved
centralized reduction methods, the CPD of the gas load is
smaller when using the improved centralized reduction, while
the CPDs of the electrical load and cooling load are larger when
using the traditional centralized reduction because the value
ranges of the photovoltaic, heat load, and gas load are
relatively small, and the value ranges of the electric load and
cooling load are relatively large. The traditional centralized
reduction method has a greater impact on the probability
distance of the scene set in the reduction process owing to the
relatively large value ranges of the electric and cooling loads. The
reduction process is more correlated with the electric and cooling
loads; therefore, the reduction is more inclined to be conducted
according to the trend of separate reduction of the electric and
cooling loads. Therefore, the difference between the CPD under
the traditional centralized reduction mode of the electric load and
cooling load, and the CPD under the separate reduction mode is
smaller. After adopting the improved centralized reduction
mode, the uncertain variables in the scene set are normalized
to obtain the normalized scene set, which significantly reduced
the influence of the length of the value range of the uncertain
variables on the reduction process. Simultaneously, the
dimensionality of the uncertain variables can be eliminated.
The influences of different variables on the reduction process
are more balanced. Therefore, with the increase in the CPD of
photovoltaic, heat load, and gas load, the correlation of the
reduction process can be improved such that the error of the
reduction result is reduced and a single correlation of the
reduction result is avoided.

4.2 Analysis of simulation results

In this section, the advantages of a multi-objective low-carbon
optimal PIES in terms of economic and environmental protection
and reliability are discussed. Without loss of generality, the load
demand and wind and PV power outputs are considered as the
predicted values. The following four models were constructed with
different objectives.

Model 1: PIES economic model to minimize optimal
comprehensive operation cost.

FIGURE 3
Prediction load curves in PIES.

FIGURE 4
Prediction curves of wind power and photovoltaic in PIES.

FIGURE 5
Electricity purchase and sale prices at different times.
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Model 2: PIES low carbon model to minimize carbon emissions.

Model 3: PIES reliability model to minimize the energy
undersupply rate.

Model 4: PIES multi-objective low-carbon optimal dispatch model
considering economic and environmental protection and reliability
indicator.

The optimization results are summarized in Table 4. Table 4
demonstrates that the carbon emissions of the PIES are 13.21%

higher than the minimum emissions, and the energy undersupply
rate is 12.47% higher. The system cost is 12.71% higher than the
optimal economic cost. The energy undersupply rate is 24.48%
higher. The energy undersupply rate is the lowest, and the system
cost is 31.22% higher. The carbon emission is 49.38% higher.
Compared with the single economic objective, the carbon
emissions and energy undersupply rate increased by 3.30%
and decreased by 3.60%, respectively. Compared with the
single carbon emission objective, the system cost and energy
undersupply rate decrease by 2.07% and 12.89%, respectively.

TABLE 1 Equipment parameters.

Name Capacity/kW Efficiency (%) Upper limit of climbing speed/(kW·h-1) Lower limit of climbing speed/(kW·h-1)

CHP 1,500 30(electricity)/40(heat) 300 −300

GB 400 95 80 −80

EL 500 87 100 −100

MR 435 60 87 −87

HFC 435 35(electricity)/60(heat) 87 −87

TABLE 2 Energy storage parameters.

Name Capacity/
kW

Lower limit of
capacity/kW

Lower limit of
capacity/kW

Upper limit of climbing
speed/(kW·h-1)

Lower limit of climbing
speed/(kW·h-1)

Electricity storage
tank

450 45 405 90 −90

Heat storage tank 500 50 450 100 −100

Gas storage tank 150 15 135 30 −30

Hydrogen storage
tank

200 20 180 40 −40

Cooling storage
tank

300 30 270 60 −60

FIGURE 6
Sampled case set. FIGURE 7

Typical case set.
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Compared with the single minimum energy undersupply rate
objective, the system cost reduces by 15.88%, and carbon
emissions reduce by 21.71%, which is more suitable for
meeting the engineering requirements.

Figure 9 shows the optimal results for Model 1. Wind power
resources are abundant whereas the electric load is relatively low at
1:00–7:00 and 23:00–24:00. To absorb abundant wind power and
promote economic operations, surplus wind power is sold through a
higher-level power grid. Some part of it is input into the EL
equipment for hydrogen production. Hydrogen is the first input
into HFC because of its high energy-conversion efficiency. The
remaining hydrogen is converted into natural gas via the MR or
stored in a hydrogen storage tank. When energy prices are high,
wind power generation is low at 8:00–22:00. The system mainly
satisfies its electricity and heat-load demand through the CHP
output, thereby reducing the system operation cost.

Figure 10 shows the optimal results for Model 2. The system
relies on CHP to meet its load requirements of the electricity and
heat throughout the day, compared to when the system operates in
the economically optimal mode. When the economic objective is
pursued, a portion of the abundant wind power is consumed by
inputting the EL equipment for hydrogen production. Hydrogen can
be used by HFC to output a large amount of electricity and heat,
thereby improving the operating economy of the system. When
carbon emissions are minimized, the system sells all surplus wind
power through the higher-level power grid; thus, carbon emissions
can be reduced. This is because the factor of carbon emission for
purchased electricity is higher, resulting in all surplus wind power
being sold in Model 2.

Figure 11 shows the optimal results for Model 3. Compared to
the system in the economically optimal mode and the carbon
emissions minimum mode, the surplus wind power is entirely
consumed using the EL device for hydrogen production. A large
amount of electricity and heat power are generated using HFC.
However, owing to equipment capacity limitations, more than one
HFC thermal power generation is required to satisfy the load
demand. Therefore, the system relies primarily on a upper-level
grid to satisfy its electricity load demand. A small number of CHP
units are used to satisfy the heat demand. When the goal is to
minimize the energy undersupply rate, the average energy
conversion efficiency of the power-consuming units is higher
than that of the gas-consuming units. Therefore, when the
system needs to meet the same load demand, it must purchase
less electricity than gas. To meet the electricity load demand, it tends
to purchase electricity from the upper-level grid and meet the heat-
load demand of the system using HFC. This reduces the output of
the CHP units and causes a decrease in the purchase of gas by the
system from the upper-level gas grid and a lower dependence on
external energy purchases. Consequently, the operational reliability
of the system improves.

Figure 12 shows the optimal results for Model 4. Compared with
Models 1, 2, and 3, Model 4 comprehensively considers the multi-
energy complementarity and collaborative optimization of wind power
hydrogen production, CHP, and other equipment; it completely utilizes
the existing wind and photovoltaic resources, interacts with external
energy prices, such as time-of-use electricity and gas prices, and
balances the three indicators of economic and environmental
protection and reliability to obtain the optimal dispatch plan.

4.3 Comparison of optimal models

In this subsection, four cases are presented. Additionally, the
comparison of the advantages of the robust stochastic optimization
model and its verification are explained.

Case 1: Source and load uncertainty are not considered;

Case 2: A multi-case analysis method is utilized for the
uncertainties from the source and load.

Case 3: A two-stage robust optimization algorithm is utilized for
source and load uncertainties.

TABLE 3 Evaluation results of different reduction methods.

Programs CPD Length of interval

Separate reduction Traditional centralized reduction Improved centralized reduction

PV 1,013.29 269.46 675.56 336.0515

Electricity load 1993.17 1,425.13 1,281.10 904.64

Heat load 1725.39 1,186.97 1,227.66 544.56

Gas load 561.84 154.02 384.22 241.67

Cooling load 1,189.53 992.39 378.06 815.68

The bold values represent the optimization scheduling results of the model proposed in this paper.

FIGURE 8
CPD line chart of different reduction methods.
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Case 4: A two-stage robust optimization algorithm is employed for
the uncertain wind power output, and a multi-case analysis method
is used for the uncertainty of the photovoltaic output and load.

The comparison results of the different cases are listed in
Table 5. In Case 1, uncertainty is considered; therefore, the

results of the comprehensive operation cost and carbon
emissions are the best, while the energy undersupply rate is not
reliable. The worst case for each uncertain variable is considered in
Case 3 to maximize the multi-objective result. The proposed robust
stochastic optimization method represents the actual operation

TABLE 4 Multi-objective results of different dispatch models.

Single objective Single-objective optimization results Multi-objective fuzzy
optimization results

Comprehensive operation
cost/CNY

Carbon
emissions/kg

Energy undersupply
rate/%

Comprehensive operation
cost/CNY

20475.1 23077.1 26866.3 22599.5

Carbon emissions/kg 16784.0 14825.5 22146.5 17338.2

Energy undersupply rate% 38.05 42.11 33.83 36.68

The bold values represent the optimization scheduling results of the model proposed in this paper.

FIGURE 9
Dispatch results of Model 1.

FIGURE 10
Dispatch results of Model 2.

FIGURE 11
Dispatch results of Model 3.

FIGURE 12
Dispatch results of Model 4.
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situation. Multi-objective results are obtained between those of Cases
1 and 3. Thus, the method improves the shortcomings of the over-
conservative two-stage robustness and has more reference values.

5 Conclusion

In this study, a robust stochastic low-carbon optimal dispatch
strategy for PIES was constructed with economy and environmental
protection and reliability factor, in which the uncertain source load
factors were entirely considered and a stepped carbon-trading
mechanism was introduced with multiple objectives. The optimal
dispatch scheme was solved under the worst wind power cases by
using a two-stage robust min-max-min optimization algorithm, with a
focus on the uncertain wind power. A multi-scene analysis based on
improved centralized reduction was proposed, which reasonably
considered the impact of uncertain variables on the reduction
process for photovoltaic and load uncertainty, compared to separate
reduction and traditional concentrated reduction. Finally, a multi-
objective fuzzy optimization algorithm with an improved
membership function was adopted to solve the multi-objective
optimal dispatch model, which can reduce the subjectivity of multi-
objective weights to some extent. The simulation results demonstrated
the usefulness and effectiveness of the proposed method, which could
provide a reference for future applications of the PIES.

However, it should be pointed out that the proposedmethod in this
paper still has certain subjectivity and conservatism. Therefore, in the
future, some interesting research topics, such as further reducing
conservatism by using distributed robust methods, further weaking
the subjectivity of selecting the multi-objective weight and establish a
more refined model, etc., which are some ongoing research directions.
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