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In this study, we address the optimization of the direct power control of a doubly
fed induction generator within a wind conversion system under actual wind
conditions. The primary objective is to enhance the dynamic response of the
wind energy conversion system (WECS) while minimizing the impact of wind
fluctuations on power generation. To achieve this goal, we introduce a novel
control methodology based on the super-twisting algorithm (STA). This approach
allows for effective regulation of both reactive and active power output in the
WECS. We employ comprehensive simulations using a detailed model of the
WECS and real wind profiles to evaluate the efficacy of the STA-based control
strategy. Our simulations demonstrate that the adopted STA-based control
strategy successfully tracks the desired power set-point and effectively
mitigates the adverse effects of wind power fluctuations and uncertainties on
theWECS power output. Specifically, it exhibits superior performance inmanaging
transients and rejecting disturbances compared to a conventional approach
employing a switching table and hysteresis controller. These results suggest
the practical viability and potential applications of the STA-based control
strategy in real-world wind energy systems.
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1 Introduction

In today’s era, the importance of generating electricity from renewable energy sources
has grown significantly. This is primarily the result of the exhaustion of traditional energy
resources and increasing concerns about global warming (Cordroch et al., 2022; Steane et al.,
2022; Algarni et al., 2023). To estimate an organization’s carbon emissions, particularly from
electricity delivery, the use of carbon accounting has become crucial. More and more entities
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are striving to reduce their carbon footprint (Chu et al., 2021; Dong
and Zhang, 2023). Additionally, meeting the CO2 reduction targets
by 2050 and restricting the increase in global temperatures to 1.5°C
may depend on the increased adoption of renewable energy sources
and greater electrification (Anika et al., 2022; Galimova et al., 2022).
Given the abundance of options within the realm of renewable
energy, wind energy has emerged as a remarkably promising
alternative owing to its exceptional efficiency and versatile
control capabilities (Saha et al., 2022). By using an adequate
conversion system, especially the right generator and a robust
control methodology, a part of the kinetic energy of wind can be
converted to electrical energy (Chen and Blaabjerg, 2009). To
guarantee the wind turbine’s reliability and efficiency, it is crucial
to possess an electrical control system tailored to the generator and a
mechanical control system suited for the turbine, aligning with the
generator’s specifications (Al-Muhaini et al., 2019; Desalegn et al.,
2022; Hamid et al., 2022). Therefore, selecting the appropriate
generator is a critical consideration prior to the development and
implementation of the controller (Chen and Blaabjerg, 2009;
Desalegn et al., 2022).

Variable-speed wind generators have gained popularity as a
solution to overcome the limitations of constant-speed operations
that have certain disadvantages like relatively low conversion
efficiency, significant impact of wind speed variability on the
electrical utility, and high sensitivity to voltage drops and grid
faults (Al-Muhaini et al., 2019; Choe Wei Chang et al., 2022;
Loulijat et al., 2023). At present, the prevailing type of generator
commonly employed in wind turbine systems with capacities lower
than 6 MW is the wound rotor induction motor or doubly fed
induction generator (DFIG) (Choe Wei Chang et al., 2022). The
DFIG offers numerous advantages and is well suited for various
wind power operations. In this particular type of generator, the rotor
windings establish a connection to the power grid via an adequate
converter, and those of the stator are connected directly to the grid.

The existing literature highlights diverse control methods, each
associated with distinct objectives. Figure 1 summarizes the main
objectives aimed to enhance the operation of the WECS based on

wound rotor induction generators (WRIGs) during normal
functioning.

Two commonly used techniques for controlling the DFIG are
field-orientation control (FOC) and direct power control (DPC)
(Yessef et al., 2022). FOC with proportional–integral (PI) control is
employed to make the machine behave like a direct current
generator and decouple the machine’s variables (Jenkal et al.,
2020). This technique remains prevalent due to its simplicity
(Zellouma et al., 2023). However, the dynamic performance of
the FOC-controlled DFIG is significantly influenced by the
design of the PI parameters. While a classical PI controller can
provide satisfactory performance in many wind energy conversion
system (WECS) applications, it lacks robustness and adaptability to
the changes in machine parameters that may arise from grid voltage
drops, model inaccuracies, and unforeseen factors like temperature
variations (Kerrouche et al., 2013).

The state-of-the-art control approaches such as sliding mode
control (SMC) (Levant and Levantovsky, 1993; Amira et al., 2020;
Ali et al., 2022; Mousavi et al., 2022) and backstepping (BSC)
(Drhorhi et al., 2021; Hamid et al., 2021) can be employed to
replace FOC and enhance the robustness of the WECS. These
advanced control methods offer potential improvements in the
overall performance of wind turbine systems based on DFIGs.

DPC has risen to prominence as a feasible substitute for the
vector control technique due to its ability to overcome sensitivity
issues associated with parameter variations. However, there are
notable drawbacks to this control technique, which include
significant power fluctuations and variable commutation
frequencies. The existing literature contains a range of proposed
approaches to mitigate these concerns. For instance, Mousavi et al.
(2022) introduced a new sliding mode control (SMC) methodology
for DPC in DFIG-based systems. Wang et al. (2016) suggested a
resonance-based backstepping DPC strategy specifically designed
for DFIG systems. Additionally, Yousefi-Talouki et al. (2019)
presented a DPC technique for a matrix converter supplying a
DFIG with a fixed switching frequency. Furthermore, a new DPC
methodology for DFIGs has been described in Chojaa et al. (2023)

FIGURE 1
Main control objectives.
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that utilizes DSpace to boost the DFIG-WTS current quality by
reducing undesirable harmonic at the current, torque, and active
power signals. Rauf et al. (2022), Gulzar et al. (2023), and Syed and
Khalid (2023) go beyond proposing the right techniques and
approaches to overcome the impact of uncertainties, and they
have suggested that the faced challenges can be effectively
reduced by using a battery energy storage system.

The focus of the present contribution is to present a new
approach that directly controls the power by incorporating the
super-twisting algorithm (STA) for handling real-world wind
conditions. The STA is a widely recognized and effectively
controlled data processing technique. Unlike the conventional
DPC method, the proposed customized DPC approach brings
about significant differences. It replaces the traditional switching
table and comparators with improved alternatives, thereby leading
to a more efficient DPC strategy.

This study contributes valuable insights to the existing body of
literature and presents several noteworthy conceptual ideas. The key
highlights of this contribution can be summarized as follows:

• A robust control strategy using the super-twisting algorithm
has been developed to control both the DFIG’s active and
reactive powers.

• The proposed control design has been evaluated using actual
wind speed data, providing a real-world context for analysis.

• A study comparing different aspects has been undertaken to
evaluate the performance of the proposed method against
other published works in terms of dynamic response time,
accuracy, static error, reference tracking, stator current THD,
and robustness to variations in system parameters.

The structure of this work is as follows: in Section 2, we present a
model of the WECS, comprising the WT model and DFIG model.
Section 3 formulates the problem by explaining the control
configuration of the classic DPC and the objectives of the
intelligent DPC controller. Section 4 describes the STA control,
regulating both active and reactive powers. Section 5 analyzes the
results obtained under a specific wind profile depicted in Figure 6; in
addition, a comparison between the two controllers is conducted to
evaluate their performances. Finally, Section 6 concludes this article.

2 Wind energy conversion system
modeling

2.1 Wind turbine modeling

The mechanical output power of the wind turbine is given by the
following equation (Jiang et al., 2022):

PTur � 1
2
ρπr2CP λ, β( )v3. (1)

Equation (2) defines the turbine power coefficient (Heier, 2014):

CP λ, β( ) � 0.5176
116
λi

− 0.4β − 5( )exp −21
λi

( ) + 0.0068λ. (2)

1
λi
� 1

λ + 0.08β[ ] − 0.035

β3 + 1
[ ]. (3)

The tip speed ratio (λ) is a function of the shaft speed (ωm) and
the wind speed as

λ � rωm

v
. (4)

From Equations (1) and (4), the turbine torque is given as

TTur � 1
2
ρπr2CP λ, β( )

λ
v2. (5)

The equation of motion of single-mass modeling of the
mechanical system is expressed as

dωm

dt
� 1
Jeq

TTur − Te − Beqωm( ), (6)

where Te is the generator’s electromagnetic torque.

2.2 DFIG modeling

The doubly fed induction generator (DFIG) is a part of the wind
conversion system illustrated in Figure 2. It offers easy control and
provides a higher energy output when there are fluctuations in wind
speed. The DFIG has two sets of windings: the stator windings and
rotor windings. The windings of the stator are fixed and connected
to the power grid, and those of the rotor are fed by a power converter
that allows the control of the generator’s output.

The electrical equations of the DFIG in the PARK frame are
represented by the following equations (Abu-Rub et al., 2014):

Vds � RsIds + dφds

dt
− ωsφqs

Vqs � RsIqs +
dφqs

dt
+ ωsφds

Vdr � RrIdr + dφdr

dt
− ωs − ω( )φqr

Vqr � RrIqr +
dφqr

dt
+ ωs − ω( )φdr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (7)

where Rs and Rr are the phase resistances of the stator and rotor,
respectively, and ω is the electrical speed that is equal to
ω � Pdfig −Ωmec. The pair pole number, denoted as Pdfig,
determines the following equations for expressing the stator and
rotor flux:

φds � LsIds +MIdr
φqs � LsIqs +MIqr
φdr � LrIdr +MIds
φqr � LrIqr +MIqs

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (8)

where Ids and Iqs are direct and quadrate stator currents, and Idr and
Iqr are for rotor currents, respectively.

The stator’s active and reactive powers are as follows (Chojaa
et al., 2023):

Ps � 3
2 (VdsIds + VqsIqs)

Qs � 3
2

VqsIds − VdsIqs( )
⎧⎪⎪⎨⎪⎪⎩ . (9)

The DFIG torque is a function of the stator currents and rotor
flux as shown in Equation (10):
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Tem � 3
2

PdfigM

Ls
Idrφqs − Iqrφds( ). (10)

If the d and q axes are oriented in order to get the stator flux, the
vector is aligned with the d axis (Mensou et al., 2020), therefore

φs � φds � > φqs � 0. (11)
and

Tem � −PdfigM

Ls
Iqrφds( ). (12)

The stator flux can be expressed as

φs � LsIds +MIdr
0 � LsIqs +MIqr

{ . (13)

By adopting the abovementioned mechanism, we can conclude
that the electromagnetic torque and active power are functions of the
rotor quadratic current. The direct and quadrature stator voltages
can be written as per Equation (14) if we consider Rs is negligible
and that φs is constant:

Vds � RsIds + dφds

dt
− ωsφqs � 0

Vqs � RsIqs +
dφqs

dt
− ωsφds � ωsφs � Vs

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
. (14)

The expressions of the stator currents using rotor currents are

Ids � φs

Ls
− M

Ls
Idr

Iqs � −M
Ls
Iqr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
. (15)

The expressions of the stator’s active and reactive powers are

Ps � VsIqs � −3
2
MVs

Ls
Iqr

Qs � VsIds � 3Vs

2
φs

Ls
− M

Ls
Idr( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
. (16)

3 Problem formulation

3.1 Control configuration

3.1.1 Classic PI regulator
The control principle involves adjusting the rotor-side

converter control variables, such as the rotor voltage, in order
to regulate the active and reactive powers of the DFIG. The PI
regulator compares the desired active and reactive power
references with the actual measured values and generates
control signals to adjust the converter settings accordingly.
Figure 3 illustrates the block diagram of the implemented
controller. The term Kp is the proportional gain, and Ki
represents the integral gain.

3.1.2 DPC: classic strategy
The traditional DPC, as presented in Figure 4, is a control

methodology commonly used for controlling wind turbine systems
powered by the doubly fed induction generator (DFIG). In this
control scheme, two hysteresis comparators [the active power
hysteresis comparator (APHC) and reactive power hysteresis
comparator (RPHC)] are used to directly control the DFIG
machine’s stator active and reactive powers, and a switching table
is applied to the converter on the rotor side (Djeriri et al., 2014;
Chojaa et al., 2022).

The switching table receives the rotor flux sector and errors
Sp and Sq as the input and then each switching state, that is, Sa,
Sb, and Sc, of the converter is stored, as shown in Table 1.

The DPC controller aims to regulate the power outputs of the
DFIG by directly controlling the converter switches on the rotor
side. The hysteresis comparators monitor the deviation between
the actual active and reactive powers and their reference values.
Based on this deviation, the hysteresis comparators generate
control signals that determine the switching states of the
rotor-side converter. The switching table provides the
appropriate voltage vectors to be applied to the rotor-side
converter based on the control signals from the hysteresis
comparators (Djeriri et al., 2014; Chojaa et al., 2023).

FIGURE 2
General supply configuration of the DFIG.
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✓ Advantages:
• Fast dynamic response due to its direct control over the
rotor-side converter switches. It can quickly regulate the

active and reactive powers in response to changes in wind
speed.

• Simplified control structure.

FIGURE 3
Configuration of the power control of the DFIG with PI.

FIGURE 4
Classic DPC.
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• Disassociated control of active and reactive powers.
✓ Disadvantages:

• Voltage and current harmonic: the traditional DPC can
introduce harmonic in the grid due to the rapid switching
of the rotor-side converter. This can lead to increased
distortion in the voltage and current waveforms, requiring
additional filtering or mitigation techniques.

• Limited control precision: the hysteresis comparators used in
the traditional DPC have limited control precision due to the
hysteresis band. This can result in slight fluctuations in active
and reactive powers around the reference values.

• Complexity for higher power levels: The traditional DPC may
become more complex to implement at higher power levels as
the switching losses and thermal stresses on the power
electronics increase with increased power ratings.

3.2 Control objectives

The objective is to track predefined power references by optimizing
errors between the actual and desired values of the targeted parameters,
optimizing the transient response and reducing the steady-state error. In
order to achieve this, the proposed topology is to first decompose the active
and reactive powers at the outer loop controller level in order to get the
targeted errors and then apply the STA at the second level that is
considered as the inner loop controller. Precisely, the aim of using the
STA at this level is to act on the stator and rotor control voltages in order to
control the active and reactive powerflow.The STAcontinuouslymonitors
the electrical power output of the DFIG-based WECS and adjusts the
power reference signal as required to maintain the desired set point, while
the DPC operates at a higher frequency than the STA to achieve a fast
transient response. Overall, the control objective is to provide and
demonstrate an efficient and stable operation of the DFIG-based WECS.

4 Super-twisting algorithm

The idea of using the STA concept to control a variable-structure
first-order system is to minimize the effect of the chattering

phenomenon (Chiang et al., 2011; Hatlehol and Zadeh, 2022). This
approach has similar properties to that of the controllers developed on
the basis of the first-order sliding mode strategy (Levant and
Levantovsky, 1993; Kelkoul and Boumediene, 2021; Elmorshedy
et al., 2023). The controller based on the STA is made up of two
components: one of them is discontinuous, while the other is continuous:

u � u1 t( ) + u2 t( ), (17)
so that

_u1 � −u if u| | < UM

−αsign s( ) if not
{ , (18)

and

u2 � −λ S0| |ρsign s( ) if u| | < S0
−λ S| |ρsign s( ) if not

{ , (19)

where

α> C0

Km
and 0< ρ< 0.5

λ2 > 4C0KM α + C0( )
K3

m α − C0( ) if ρ � 0.5

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
. (20)

The α, λ, and ρ satisfy the aforementioned conditions, with S0, C0,
Km, and KM as positive constants (Chiang et al., 2011; Xiong et al., 2020).

If S0 � ∞, the equations can be developed as follows:

u � −λ S| |ρsign s( ) + u1

_u1 � −αsign s( ){ . (21)

This control is decomposed into a static algebraic component
and an integrative component.

5 Active and reactive power controllers

In Equation (16), we have

Ps � VsIqs � −3
2
MVs

Ls
Iqr

Qs � VsIds � 3Vs

2
φs

Ls
− M

Ls
Idr( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
,

TABLE 1 Switching table concept.

Sq 1 −1 V0 to V7 as follows

Sp 1 0 −1 1 0 −1

S1 V5 V7 V3 V6 V0 V2

S2 V6 V0 V4 V1 V7 V3

S3 V1 V7 V5 V2 V0 V4

S4 V2 V0 V6 V3 V7 V5

S5 V3 V7 V1 V4 V0 V6

S6 V4 V0 V2 V5 V7 V1
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and from Equations (7), (8), we can conclude the first derivative
of the rotor current in the d, q frame as

dIdr
dt

� 1
σLr

(Vdr − RrIdr + σLrωrIqr )
dIqr
dt

� 1
σLr

(Vqr − RrIqr − σLrωrIdr − g
MVs

Ls
)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
. (22)

5.1 Active power controller

The error of Ps can be written as

e Ps( ) � Pref − Ps, (23)
where Pref is the corresponding reference.

The first derivative of the error expressed in Equation (23) is

_e Ps( ) � _Pref − −3
2
MVs

Ls

dIqr
dt

( ). (24)

Then, by using Equation (22), we have

_e Ps( ) � _Pref + VSM

σLsLr
Vqr − RrIqr − σLrωrIdr − g

MVs

Ls
( ). (25)

Equation (26) shows the designed power controller based on the
STA that aims to change the Vqr.

FIGURE 5
STA-DPC strategy.

FIGURE 6
Real wind profile.
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Vqr � −λ S| |ρsign e Ps( )( ) − ∫ λ1sign e Ps( )( ). (26)

5.2 Reactive power controller

The error of Qs can be written as

e Qs( ) � Qref − Qs, (27)
where Qref is the corresponding reference.

The first derivative of the error expressed in Equation (28) is

_e Qs( ) � _Qref − 3MVs

2Ls

dIdr
dt

. (28)

Then, by using Equation (22), we have

_e Qs( ) � _Qref + MVs

σLrLs
Vdr − RrIdr + σLrωrIqr( ). (29)

We can design our super-twisting reactive power controller in
order to change the Vdr as shown in Equation (30):

Vdr � −λ S| |ρsign e Qs( )( ) − ∫ λ1sign e Qs( )( ). (30)

FIGURE 7
Speed ratio of wind turbine and power coefficient.

FIGURE 8
Rotor speed.
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5.3 STA-DPC strategy

Figure 5 illustrates the graphical representation of our
proposed control strategy, which is derived from Equation (26)
and Equation (30). This control strategy incorporates the
mathematical relationships defined in these equations to
effectively regulate the system dynamics. By visually presenting
the control strategy in Figure 5, a clear and concise understanding
of the proposed approach is provided that allows further analysis

and evaluation of its effectiveness in achieving the desired control
objectives.

6 Results and discussion

The aim of the simulation is to examine the dynamic behavior of
the system and to check the performance of the proposed control
strategy that is developed on the basis of the super-twisting sliding

FIGURE 9
Electromagnetic torque Tem.

FIGURE 10
Active and reactive stator powers.
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mode and applied to a 1.5 KW DFIG using the MATLAB/Simulink.
In Table A1, we highlight the DFIG’s parameters.

In this section, we have analyzed the behavior of the classical
DPC and the STA-DPC using the wind profile shown in Figure 6.

The power coefficient and speed ratio of the WT closely align
with the behavior of the wind variation. These parameters adapt and
respond to changes in wind conditions, as is illustrated in Figure 7.

Figure 8 presents the rotor speed, offering valuable insights into
the impact of wind on the rotational comportment of the system.
The plot depicts the behavior of rotor speed over time, providing a
clear representation of its dynamic nature.

The electromagnetic torque behavior in Figure 9 provides
valuable insights into the dynamics of the system. The torque
exhibits a direct relationship with the quadrature rotor current
(Figure 11), as variations in the quadrature current lead to
corresponding changes in the electromagnetic torque. This
relationship can be observed through the torque fluctuations,
which coincide with the fluctuations in the quadrature rotor
current.

In Figure 10, it is evident that both the active and reactive powers
exhibit a remarkable convergence toward their respective reference
values. Notably, even a slight alteration in the wind speed can lead to
a substantial variation in the extracted active power, ranging from
100W to 600 W. It is clear that when the wind speed decreases, the
value of active power (Ps) decreases as well, whereas it increases
when the wind speed rises. Regarding the reactive power, the

reference value remains fixed at zero, ensuring a unit power
factor on the network side.

In the context of Figure 11, an insightful representation is
provided regarding the rotor current components within the (d,
q) frame. Notably, the quadrature rotor current, which is intricately
connected to the active power, demonstrates a notable variation
spanning from approximately 0.3 A to 1.8 A. This range illustrates
the dynamic nature of the active power generation process. On the
other hand, the direct rotor current remains relatively stable,
maintaining a consistent value of around 2.7 A. This constant
magnitude of the direct rotor current underscores its role in
facilitating reactive power exchange within the system. Together,
these findings shed light on the intricate relationship between the
rotor currents, power generation, and their respective components
in the (d, q) frame.

The observations in Figure 12A–D highlight the correlation
between the three parameters: stator currents, rotor currents, and
the used wind profile. These figures clearly demonstrate the effect of
wind variability on the current’s magnitude of the stator and rotor
currents. Notably, the currents exhibit a maximum value of 3 A
each, indicating the peak levels of electrical flow within the system.
This dependence on the wind profile underscores the crucial role
that the external environmental factors play in determining the
operational performance of the system.

Figure 13 visually represents the power factor of the system,
revealing an approximate value of 1. The plot also exhibits noticeable

FIGURE 11
Direct and quadratic rotor currents.
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FIGURE 12
Stator and rotor current Isabc observed under the super-twisting_DCP configuration. (A) Stator current Isabc observed under the DCP classic
configuration structure. (B) Stator current Isabc observed under the super-twisting_DCP configuration structure. (C) Rotor current Isabc observed under
the DCP classic configuration structure. (D) Rotor current Isabc observed under the super-twisting_DCP configuration structure.
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ripples that are directly linked to the system’s operation and the
fluctuations in wind speed.

Figure 14 represents a result of the fast Fourier transform
(FFT) analyses of the current waves generated at the DFIG stator
for both the used methods. The following key parameters were
considered.

✓ Sampling rate (Fs): The sampling rate is twice the maximum
frequency to avoid aliasing.
✓ Window function: Hamming is a window function that is
applied to the time-domain signal before performing the FFT.

✓Window length (N): The window length is the number of data
points used in each FFT calculation.
✓ Overlap: 50%.
✓ Zero Padding: Two zeros were added to the end of the time-
domain signal before performing the FFT.
✓ Averaging: Multiple FFTs are averaged to reduce the effects of
noise.
✓ Window Scaling: A scaling factor of 1.5 was applied to correct
the amplitude loss due to windowing.
✓ DC component handling: The DC (0 Hz) component was
excluded in the FFT results.
✓ Normalization: FFT results were normalized to obtain the
power spectral density values.

Notably, the results clearly indicate that the THD achieved
through the implementation of the STA-DPC is significantly
lower than the THD observed with the classical DPC. This
finding highlights the improved harmonic performance and
superior quality of the generated current.

While Figure 14 does not offer a direct comparison with specific
standards such as IEEE 519, it serves as a fundamental assessment of
the harmonic behavior. Table 2 compares the presented study with

FIGURE 13
Power factor.

FIGURE 14
Net improvement in the THD of the current induced using the two methods.

TABLE 2 Comparison of the obtained THDwith those recorded in the literature.

Strategies THD (%) References

Integral SMC 9.7 Quan et al. (2019)

Second-order SMC 3.13 Yahdou (2017)

DPC using LCL filter 4.05 Alhato and Bouallègue (2019)

DPC with neural algorithm 3.26 Mahfoud et al. (2022)

Proposed strategy (DPC with STA) 0.85 —
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other studies that have been published according to the THD of
electric stator current.

7 Conclusion

This research presents a thorough investigation aimed to
highlight the advantages of utilizing doubly fed induction
generators (DFIGs) in wind energy conversion systems (WECSs)
in association with a robust control strategy known as the super-
twisting algorithm (STA).

By implementing the STA based on the direct power control
(DPC) method, several significant benefits are achieved relative
to the conventional DPC approach. One of the notable
advantages is the reduction of total harmonic distortion
(THD) in the stator current of the DFIG. This reduction
indicates that the STA-DPC effectively mitigates harmonic
components and enhances the overall quality of the stator
current. Consequently, the adoption of the STA-DPC leads to
an improvement in the overall system performance, a decrease in
electrical noise, and a power quality enhancement in the used
wind energy conversion system.
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Appendix A

TABLE A1 Parameters of the DFIG.

Rated power Pn = 1.5 KW

Stator rated voltage vs = 220/380 V

Stator current Isn = 5.2 A

Rotor current Irn = 8.5 A

Number of pair of poles p = 2

Stator rated frequency fs = 50 Hz

Stator resistance Rs = 1.18 Ω

Stator resistance Rr = 1.66 Ω

Stator inductance Lss = 0.20 H

Rotor inductance Lrr = 0.18 H

Mutual inductance Lm = 0.17 H

Rotor radius R = 1 m

Number of blades 3

Gearbox gain G = 2

Friction coefficient f = 0.0027 N.m.s/rad

Moment of inertia J = 0.04 kg.m2
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Nomenclature

PTur Mechanical output power of wind turbine

ρ Air density

r Wind turbine blade

CP Turbine power coefficient

λ Speed ratio

β Pitch angle

ωm Shaft speed

TTur Turbine torque

Te Generator’s electromagnetic torque

DFIG Doubly fed induction generator

Rs Resistance of stator
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