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Deep learning and IoT enabled
digital twin framework for
monitoring open-pit coal mines

Rui Yu*, Xiuyu Yang and Kai Cheng

China Coal Huajin Group Co., Ltd., Yuncheng City, Shaanxi, China

Early detection of cracks enables timely mitigation and maintenance actions,
ensuring the safety of personnel and equipment within the open-pit coal mine.
Monitoring open-pit coal mines and cracks is essential for the safety of workers
and for saving national assets. Digital twins (DTs) can be crucial in open-pit coal
mine crack detection. DTs enable continuous real-time monitoring of the open-
pit mine, including its structures and surrounding environment. Various sensors
and internet-of-things devices can be deployed to collect data on factors such as
ground movement and strain. Integrating this data into the DT makes it possible
to identify and analyze anomalous behavior or changes that may indicate crack
formation or propagation. Deep learning-based networks are a crucial factor
in detecting open-pit coal mine cracks. In this work, we propose a deep
learning-based densely connected lightweight network incorporated into the
DT-based framework for detecting cracks and taking predictive maintenance-
based decisions by combining historical data, real-time sensor data, and
predictive models. The proposed DT-based framework provides insights into the
potential crack formation, allowing for proactive maintenance and mitigation
measures. We compare the performance of our proposed network on different
evaluation measures such as precision, recall, overall accuracy, mean average
precision, F1-score, and kappa coefficient, where our proposed lightweight
multiscale feature fusion-based network outperformed all other state-of-the-
art deep neural networks. We also achieved the best performance on mean
average precision by surpassing all other models. Additionally, we also compared
the performance of our proposed network with U-Net and recurrent neural
network on model training and prediction time benchmarks by outperforming
those cutting-edge models.

KEYWORDS

cloud technology, coal mining, deep learning, digital twins, internet-of-things, multi-
scale feature fusion

1 Introduction

Modern computing technologies, for instance, the Internet-of-Things (IoT)
Sasikumar et al. (2023), high-speed networks Bing et al. (2023) Hassan et al. (2018),
and cloud computing Xu et al. (2023) possess ubiquitous real-world applications
Hassan et al. (2021) Liu et al. (2023) Hassan et al. (2023). The massive amounts of
data collected across various domains necessitate storage, processing, and applying
specific monitoring and managing techniques. The use of technology is significant for
geographical information systems Hussain et al. (2023). Mineral resources constitute a
crucial component of the material foundation of human society and a vital assurance for
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economic growth and national security. China is a large, mineral-
rich nation, and certain regions contain deep-buried mineral
deposits that are simple to exploit Church and Crawford (2020).
For their immediate desires, some illegal miners violate the rules
governing the rapacious extraction of different natural resources,
and others even illegitimately take territory for private mining
without permission. These actions have resulted in severe ecological
harm and depletion of national resources, and it is difficult for
the appropriate regulatory agencies to identify such illicit mining
practices immediately. These actions result in open-pit cracks,
sometimes damaging workers’ safety and bad land conditions.
Therefore, it is crucial to have quick and precise land reach,
usage, and damage of open-pit mining regions to spot cracks
in the coal mines and take preventive measures to end them
Wang et al. (2020) promptly. To achieve effective crack detection
in open-pit coal mines, advanced monitoring technologies such
as remote sensing, geophysical surveys, ground-based radar, and
drone-based inspections are often employed. These technologies
allow for continuous monitoring of mine walls and slopes, enabling
early detection of cracks and the implementation of preventive
measures, ultimately ensuring the safety of personnel and the
protection of assets and the environment.

Digital twins (DTs) are a valuable tool in the coal mining
industry. A DT is a virtual representation of a physical asset or
system, such as a mine, that captures real-time data and provides
a digital replica of its operations, processes, and performance
Hassan et al. (2022). DTs can indeed play a crucial role in
open-pit coal mine crack detection. It combines real-time data,
simulations, and analytics to comprehensively understand the
asset’s behavior and performance. DTs enable continuous real-
time monitoring of the open-pit mine, including its structures
and surrounding environment. Various sensors and IoT devices
can collect data on factors such as ground movement, vibrations,
temperature, and strain Prauzek et al. (2023). Integrating this
data into the DT makes it possible to identify and analyze
any anomalous behavior or changes that may indicate crack
formation or propagation. DTs provide a platform for data-driven
decision-making. By leveraging the insights generated from the
digital twin, mine operators and engineers can make informed
decisions about maintenance schedules, structural interventions,
and resource allocation to address identified cracks. The DT serves
as a decision-support tool by comprehensively understanding the
mine’s condition and the potential consequences of different actions.
DTs can facilitate long-term monitoring and maintenance of the
open-pit mine. By continuously updating the DT with real-time
data, it becomes possible to track the evolution of cracks over
time and assess the effectiveness of maintenance interventions.
This helps in developing predictive maintenance strategies and
optimizing the lifecycle management of the mine’s structures.
DTs provide a holistic approach to crack detection in open-
pit coal mines by integrating real-time monitoring, predictive
analytics, simulation, visualization, and decision support. By
leveraging the power of our proposed DT-based framework, mine
operators can enhance safety, optimize maintenance efforts, and
minimize the risks associated with crack formation and structural
instability.

Open-pit coal mining is a type of surface mining that involves
the extraction of coal from a large open-pit or excavation Benndorf

(2013). Various services are typically involved in operating and
maintaining open-pit coalmines. Several key services are commonly
associated with open-pit coal mining. For example, exploration and
geological Mao (2020), engineering and design Domingues et al.
(2017), mining equipment and machinery, coal processing and
preparation, and waste management and disposal services Yıldız
(2020). These services are integral to the successful operation of
open-pit coal mines, ensuring efficient extraction, processing, and
responsible management of coal resources while prioritizing safety
and environmental considerations Liu et al. (2022). Illegal mining
is frequently rapid and aggressive to elude oversight, and such
intense open-pit coalminingmay seriously damage the surrounding
ecosystem. Open-pit mining can create drastic changes to the
original landform. Many academics have integrated remote sensing
photos into the extraction of open-pit mine data in an effort to
more effectively and quickly identify illicit mining activity. Most
studies use an object-oriented strategy to gather data from open-pit
mines Huo et al. (2021). Several other studies have shown the use
of deep learning technology for processing remote-sensing photos
effectively. However, since these approaches are applied on a single
computer, deep learning methods may take a while to train models,
especially if a lot of remote sensing data is needed. Therefore,
detecting cracks in less time with precise identification becomes a
problem of interest to be explored. Deep learning-based lightweight
networks are a consistent solution for this problem that can be
embedded in IoT devices as well to detect surface cracks in open-pit
coal mines.

The process of open-pit coal mining involves excavating
large areas of land to extract coal deposits. This process can
result in ground movement and subsidence, which may cause
cracks in the surrounding terrain. Subsidence can occur when
coal removal destabilizes the overlying rock layers, leading to
the sinking or settling of the ground. Open-pit coal mines
often have steep slopes or high walls to access coal seams.
These slopes can be unstable, manifesting as cracks or fractures
along the slope faces Ning et al. (2020). Geological conditions,
weathering, erosion, and mining activities can contribute to
slope instability and potential cracking. Coal mining involves the
extraction of coal seams from underground, which can induce
fracturing or cracking in the surrounding rock strata. These
fractures can extend from the underground workings to the surface,
potentially affecting the stability and integrity of the open-pit
mine Xiao et al. (2021). Therefore, timely monitoring and detecting
these cracks is crucial to implementing preventive measures. Coal
mining companies must implement comprehensive monitoring
and management practices to identify and mitigate any potential
issues related to ground movement, slope stability, and strata
fracturing. These measures can help ensure the safety of personnel
and infrastructure within and around the open-pit coal mine
Lanciano and Salvini (2020).

For open-pit coal mines, the DT can utilize advanced analytics
and machine learning algorithms to analyze the collected data and
identify patterns or trends associated with crack development. By
combining historical data, real-time sensor data, and predictive
models, the DT can provide insights into the potential crack
formation, allowing for proactive maintenance and mitigation
measures. DTs can simulate and visualize the behavior of the
open-pit mine and its structures under various conditions. This
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includes simulating the impact of different loads, environmental
factors, and mining activities on the stability of the mine.
We have incorporated the crack detection algorithms into the
simulation, potential crack locations are identified, and their
propagation patterns are visualized. This has helped understand
the potential risks and assists in planning appropriate remediation
actions.

In this work, we propose and develop a DT-based open-
pit coal mines crack detection and open-pit mines extraction
framework by leveraging the deep learning-based lightweight,
densely connected network for crack detection and open-pit mines
extraction. We utilize the Sentinal-2 imagery Madhuanand et al.
(2021) of open-pit coal mines as a dataset for training and
testing the performance of our proposed framework. We also
claim that this is the first DT-based framework for detecting
cracks and taking preventive measures to tackle future accidents
in open-pit coal mines. We also compared our proposed
lightweight multiscale feature fusion-based method with well-
known models such as AlexNet Krizhevsky et al. (2012), VGG-
16 Simonyan and Zisserman (2014), VGG-19 Simonyan and
Zisserman (2014), GoogleNet Szegedy et al. (2015), ResNet-50
He et al. (2016), Single Shot Detector (SSD) Liu et al. (2016),
DenseNet121 Huang et al. (2017), and MobileNetv2 Sandler et al.
(2018). It can be seen that our method outperformed in all
comparisons. The contributions of this work can be summarized as
follows.

• This research focuses on detecting cracks in open-pit coalmines
early. By identifying cracks promptly, it contributes to ensuring
the safety of personnel and equipment within these mines.
• The utilization of DT in this work allows for continuous,

real-time monitoring of open-pit coal mines, including
their structures and surrounding environment. This is a
significant contribution, as it enhances safetymeasures through
comprehensive data collection.
• Integrating various sensors and IoTdevices for data collection is

critical to thiswork. It contributes by enabling themonitoring of
factors such as groundmovement and strain, which are essential
indicators of potential crack formation.
• The proposal of a deep learning-based densely connected

lightweight network within the DT framework is a notable
contribution. The comparison of the proposed network
with state-of-the-art models on various evaluation measures
demonstrates its superior performance.

In our proposed work, we significantly enhance the safety and
efficiency of open-pit coal mines by employing DTs, integrating
sensor data, implementing deep learning techniques, and facilitating
proactive maintenance decisions. Its superior performance
compared to existing models further underscores its importance
in the field of crack detection and mine safety.

The organization of this work is as follows. Section 2 presents
the literature review and compares our proposed work with other
relatedworks.Themethodological description of our proposedwork
is available in Section 3. We explain the evaluation metrics used
in this work in Section 4. The experimental results are presented
in Section 5 while the concluding remarks and future research
directions are available in Section 6.

2 Literature review

This section reviews the existing literature on deep learning
applications for coal mines and the use of digital twins in IoT-related
applications.

2.1 Deep learning and coal mining
applications

Open-pit coal mines exhibit diverse geometries and comprise
multiple elements, resulting in a complex composite target
encompassing drainage fields, mining pits, side gangs, and other
heterogeneous spatial features Marove et al. (2022). Traditional
approaches to image feature extraction heavily rely on manually
designed extractors, which often lack robustness and generalization,
leading to suboptimal accuracy when applied to practical open-pit
coalmine extraction. In recent years, ConvolutionalNeuralNetwork
(CNN) models have shown significant success in a range of image-
related tasks, including target segmentation Zhang et al. (2021),
localization detection Chen et al. (2022), and image classification
Hassan et al. (2019). Furthermore, CNN models have demonstrated
their applicability in diverse domains such as text classification
Minaee et al. (2021) and speech recognition Wang et al. (2019a).
We review several deep learning-based models in the context of
open-pit coal mines in the following literature.

Remote sensing data from the Landsat series was used
by Zhu et al. (2020) to create guidelines for extracting mining
exploitation locations based on the unique use of land features
seen in open-pit mines. They used an object-oriented categorization
strategy to extract land use data in open-pit mining regions.
However, their proposed approach has only studied the ecological
impacts without highlighting the severe threats to the mines
and they applied principal component analysis for dimension
reduction of slices of imagery data. To find the best segmentation
scale for locating and labeling typical features in mining sites,
Wang et al. (2019b) used histogram comparison approaches. Their
method was used on Gaofen-1 and ZY-3 high-resolution satellite
images. In summary, while the manuscript introduces a deep
learning approach for object detection in high-resolution remote
sensing images, it falls short in terms of providing sufficient
methodological details, benchmarking, and addressing potential
limitations. Using Landsat-8 satellite data and an object-oriented
classification approach, Huangfu and Li (2020) categorized the
Baotou Baiyun Ebo mining region. Results were compared to
those obtained using supervised classification techniques, showing
that the object-oriented strategy performed better. Open-pit coal
mining in Yuzhou City, Henan Province, was the subject of Huo
et al. Huo et al. (2021) use of Gaofen-2 satellite data and support
vector machine (SVM) techniques to extract land use data for
mining regions. Based on the research results, their strategy is
superior to other object-oriented approaches and fused K-nearest
neighbor. Iosif Vorovencii Vorovencii (2021) utilized Landsat images
to map surface mining and reclamation in mining regions. He used
several SVM classification techniques to examine satellite images
for reclamation activity and surface mining evidence. However, the
work does not discuss the potential limitations or challenges of
using traditional image processing methods for change detection in
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mining areas. It does not address the issues of noise, variability in
lighting conditions, or complex spatial patterns that can affect the
accuracy of change detection. Our proposed work has the potential
to overcome some of these challenges by learning robust features
directly from the data.

Demirel et al. (2011) examined high-resolution
multidimensional satellite images taken from 2003 to 2008 from the
Goynuk open pit mine of Turkey. The SVM classification approach
was used in their investigation to locate and quantify characteristics
in themining region. A research employed Landsat-TM images with
a spatial resolution of 30 m to acquire information about the mining
area Yuan et al. (2013). They used object-oriented supervised
classification (ORSC) approaches to get accurate findings. Using
a convolutional neural network (CNN), Chen et al. (2020) extracted
and classified construction and usage data from high-resolution
Gaofen-2 satellite images of the Jiangcang fifth open-pit mining in
the Yuzhou City of China. The classification results were assessed
and compared to the standard pixel-based maximum likelihood
technique, demonstrating that theORSCpairedwith SVMproduced
good accuracy and quality results. Another research used Sentinel-
2A satellite images as a data source for extracting land use data
for mining zones Shao et al. (2020). Their approach combined
supervised classification with normalized index computation,
successfully improving classification accuracy and permitting the
extraction of diverse characteristics over a vast region.

ResCapsNet is a new deep model suggested by Guan et al.
Guan et al. (2022) that incorporates a band selection strategy
based on clustering with capsule and residual networks. Using
data from the Gaofen-5 satellite, they assessed the stability of
the model. Using multimodal remote sensing information and
including multi-scale kernel functions, Qian et al. (2021) presented
a multi-stream CNN model they called 3M-CNN. Using Gaofen-
2 high-resolution satellite images, they created a CNN-based
object-oriented system for modeling open-pit mines. Using semi-
supervised (SVM-STV) and supervised (E-ReCNN) techniques,
Camalan et al. (2022) investigated multiclass and binary variations
in MDD mining pools.

Naixun et al. (2019) extracted the portion of the development
land used for mining, predominantly open-pit quarries, by
integrating deep learning methods and object-oriented notions.
Convolutional neural networks trained on Gaofen-2 images were
utilized for this purpose. The challenge of low accuracy in CNN-
based recognition of open-pit mining sites due to limited training
data was addressed by Cheng et al. (2018) by implementing a
transfer learning approach. To do this, the bottom variables of
the training CNN model network had to be frozen, while the
top parameters had to be fine-tuned. Experiments comparing
different training methods led to discovering the most successful
strategy. In another work Zhang et al. (2020), they used dense
connections to strengthen a fully convolutional neural network
to achieve complete automation of open-pit mining area extraction
in the Tongling region. This was part of their effort to reach their
goal of full automation. The training of an open-pit mining area
extraction model used data gathered from various remote sensing
sources.

We also include a taxonomyof relatedworks discussed regarding
deep learning and coal mining applications in Table 1. In the
characteristics, we highlight the article types, machine learning, and

deep learning models used, and the datasets used for performing
analysis, and core application areas of discussed works.

In the context of crack detection in open-pit coal mines using
remote sensing data, there are inherent challenges associated with
conventional identification techniques. These challenges include
poor accuracy, limited generalization, inefficiency, prolonged
training periods, and restricted automation. To overcome these
difficulties, a paradigm shift is necessary. One potential solution lies
in leveraging the untapped potential of cloud technology, which has
been underutilized in the field of remote sensing. By harnessing the
power of cloud computing, we can effectively handle large volumes
of image data and accelerate the training process of models. The
integration of cloud technology with remote sensing techniques
offers the potential to address drawbacks commonly associated with
traditional methods, such as extended execution and loading times
for models.

2.2 Digital twins and IoT applications

This section reviews several state-of-the-art DT frameworks
developed with respect to IoT-based applications for several use
cases. For example, Glaessgen and Stargel (2012) proposed the
most widely accepted description of a digital twin (DT) “it is an
integrated multi-physics, multi-scale, probabilistic simulation of
a complex product and uses the best available physical models,
sensor updates to mirror the life of its corresponding twin.” As so,
it serves as a link between the real and virtual worlds. Massive
amounts of data are gathered in real-time from interconnected
devices and distribution networks, all thanks to the IoT Allam et al.
(2022). A research looked at the framework of DT-driven product
design in production, paying special attention to the link between a
product’s physical and digital versions Bertoni and Bertoni (2022).
The Industry 4.0 wearable system was presented in one research
paper. Human-generated data may facilitate the synchronization of
cyber-physical systems Wang et al. (2022). Yet, further quantitative
methodologies are needed to evaluate the hypotheses. A study by
Yasin et al. (2021) suggested best practices for integrating DT into
manufacturing infrastructure, particularly for small and medium-
sized businesses. Acquiring data and running smoothly are both
assured. The primary function of today’s information technology
has shifted from monitoring to establishing an all-encompassing
data infrastructure. From sensing to networking to analytics, they
covered all the obstacles on the path to the DT. Researchers
have discussed digital twins’ concepts and potential applications in
various domains Hassan et al. (2022). One viewpoint suggests that a
digital twin is a real-time virtual representation of a physical object.
However, it is noted that the concept of digital twins is still primarily
in the conceptual stage and calls for a unified framework to facilitate
their implementation.

DTs have been studied for their potential use in asset
condition monitoring and health assessment as part of asset
lifecycle management El Bazi et al. (2023). DTs might improve asset
management throughout their existence. A set of guidelines and
methods for developing a DT using the IoT in the petrochemical
sector have been offered Sharma et al. (2022). The goal is improved
production management via the use of a DT that is powered
by real-time data. DTs, which center on consolidating real-world
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TABLE 1 Taxonomy of works discussed in relation to deep learning and coal mining applications.

Authors Article type Model used Dataset Application area

Demirel et al. (2011) Research SVM Goynuk Himmetoglu open cast
mine in Bolu, Türkiye

Open-pit coal mines

Yuan et al. (2013) Research Object Oriented Supervised
Classification

TM images Coal mines

Cheng et al. (2018) Research CNN Remote Sensing Opencast mines

Naixun et al. (2019) Case Study CNN GF-2 Remote Sensing Open-pit coal mines

Wang et al. (2019b) Research CNN SMALL-FIELD-RSI
LARGE-FIELD-RSI

High-resolution optical remote sensing images

Zhu et al. (2020) Research Remote sensing ecological index Landsat8 Eco-environmental impact of open-pit mining

Huangfu and Li (2020) Research CNN Baotou Baiyun mining area Classification of open-pit coal mines

Chen et al. (2020) Research CNN Gaofen-2 satellite image Open-pit mine mapping

Shao et al. (2020) Research Supervised classification Sentinel-2A Image Extraction of mining area

Zhang et al. (2020) Research DenseNet Tongling, China Extraction of opencast mining area

Huo et al. (2021) Research SVM Gaofen-2 satellite data Open-pit coal mining

Vorovencii (2021) Case Study SVM Landsat images of JiuValley, part
of Oltenia mining basin

Monitoring of landmine surface degradation

Qian et al. (2021) Research Multistream CNN Gaofen-2 satellite data CNN-based object-oriented system for
modeling open-pit mines

Guan et al. (2022) Research ResCapsNet Gaofen-5 satellite data Classification of heterogenous mining areas

Camalan et al. (2022) Research CNN & SVM Sentinel-2 imagery Change detection of amazonian alluvial gold
mining area

components and their digital representations, have been used as
simulation models to aid decision-making and process automation.
It has also been stated how a DT may be used to help with
logistics dispatching in ports. The digital twin enables performance
forecasting and assessment of dispatching rules by using data
received through the IoT and analyzing it via cloud computing.
More study and development of DTs is warranted since these
studies show the wide range of sectors that may benefit from
them.

In an article, Darvishi et al. (2020) proposed a data-driven
approach for anomaly detection in sensors for digital twins. To
obtain a greater sensor validation performance, the suggested
design simultaneously uses both reliable and faulty sensors inside
the system, as well as the temporal correlation of the data.
Weak faults, which are very difficult to identify and are often
disregarded in the literature, are the main focus of produced
defects. Several hyperparameters’ effects, such as the number of
layers and nodes per layer, are evaluated for the situations under
consideration. In another article, Darvishi et al. (2022) proposed
a machine learning-based approach for sensor-fault detection
for digital twins. We also make use of deep learning-based
architecture for crack detection of coal mines in our proposed
work. Yang et al. (2022) suggested building the DT-empowered
IoT model using federated learning optimization. In particular,
they created the DT and IoT-assisted deep reinforcement learning
approach for the industrial IoT device selection process in federated
learning, particularly for picking industrial IoT devices with

high utility values, to address the heterogeneity of industrial
IoT.

Table 2 highlights the taxonomy of works discussed in the
literature in the context of IoT applications and digital twins. We
also illustrate the Technology Readiness Level (TRL) and found that
most works are on the concept level. Some works are systematic
literature reviews (SLRs), and we also shed light on application areas
of discussed works.

TheDT-based frameworks formonitoring critical infrastructure
is well-needed these days. Since, current literature lacks in the
development of such frameworks for monitoring the open-pit coal
mines for safety reasons and predictive maintenance of mines,
our proposed work contributes in monitoring mines and provides
potential indicators for safety management as well.

3 Methodology

In this section, we briefly describe the proposed DT-based
framework and proposed multiscale feature fusion-based deep
learning model that we developed in order to provide effective
and timely monitoring of cracks in the open-pit coal mines. In
Section 3.1, we discuss the potential entities of a digital twin involved
in our proposed DT-based monitoring framework for open-pit coal
mines. In Section 3.2, we describe the proposed multiscale feature
fusion-based lightweight deep learningmodel for detecting open-pit
coal mines.
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TABLE 2 Taxonomy of works discussed in relation to IoT and Digital Twin applications.

Authors Article type TRL IoT Digital twin Application area

Glaessgen and Stargel, (2012) Research concept — NASA and US Air Force vehicles Air vehicles health management
system

Darvishi et al. (2020) Research prototype ✓ Maritime sensors Sensor fault detection in maritime
vehicles

Yasin et al., (2021) Research concept ✓ SME Recommendations for
implementing DTs in SMEs

Allam et al. (2022) Research concept ✓ Smart Cities Urban planning and design
management using DTs

Bertoni and Bertoni, (2022) SLR concept — Product-Service Systems Product-Service Systems design
and development, and lifecycle
management

Wang et al. (2022) SLR concept — Human centric smart manufacturing Human cyber physical systems in
smart manufacturing industries

Hassan et al. (2022) SLR concept — Afterdark Environment Lighting analysis of afterdark
Nordic regions

Sharma et al. (2022) SLR concept — General DTs Research direction on
implementing DTs generally

Darvishi et al. (2022) Research concept ✓ Sensor fault detection Real-time machine learning-
based sensor validation system for
Industry 4.0 applications

Yang et al. (2022) Research prototype ✓ Federated learning based DT for
Industry 4.0

Optimizing device selection
and asynchronous learning for
heterogeneous industrial IoT
devices

El Bazi et al. (2023) Research concept — Open-pit mine DTs in the mining industry,
emphasizing their potential to
enhance efficiency, productivity,
sustainability, and product lifecycle
management

3.1 Digital twin platform for open-pit
mining

A DT and IoT-enabled platform for monitoring open-pit mines
is crucial. It includes both the virtual and the real worlds of asset
encapsulation and cooperation. Figure 1 depicts our four-tiered
design implementation of DT-based framework for the safety of
open-pit coal mines. With the help of IoT services and devices,
this architecture connects the real world open-pit coal mines with
the virtual one framework. When workers are in various states
and places, it might be challenging for managers to maintain
command and implement their response. The notion of the DT is
included in this framework’s conception and creation to provide
immediate insight and transparency. Cyber entities are the electronic
representations of physical assets, such as people, machines, and
substances, and depend on data acquired in the field in real-time
via IoT services and devices. When a physical object’s position or
condition changes, its digital counterpart will be updated in real-
time. A single, easily identifiable dot on the virtual locationmapmay
represent the operator’s movement from point A to B. In addition,
the operator’s changing health state might be visually represented by
a shift in the digital representation monitor. With the help of IoT
devices, large amounts of data may be generated, and IoT services

can aid in analyzing this data. Deployed IoT gateways provide
information to the cloud, which may be used to make decisions.

3.1.1 Physical world
The framework begins with this layer at its most fundamental

level. In order to carry out everyday activities in the physical world,
which we can see and touch, it is essential to have assets such as
human resources, machinery, and materials at one’s disposal. Since
it represents physical assets’ geographical and temporal status, two
features are of utmost significance. The first thing to consider is
the passage of time, which can be thought of as both the past and
the present moment in the product’s lifespan. The second property
that represents the exact three-dimensional position data of the
physical assets is called space, and it is an attribute that represents the
physical assets. Both aspects play important roles as critical criteria
in measuring the coal mine environment’s safety.

3.1.2 IoT-based services
Proper IoT devices and services serve as the ladders that

gather, create, analyze, and transport digital data from the real
world to the virtual world. This is necessary to construct the
virtual world for various stakeholders to improve monitoring and
management. Several IoT technologies have been used in this
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FIGURE 1
Overview of our proposed digital twin-based framework for the safety of open-pit coal mines.

framework to create a portable IoT wireless sensor tag. The 1D/2D
barcode is used to identify and pair the tag. The accelerometer
is a key component in the process of recognizing the pattern of
motion of the assets. Movement data analyses are carried out to
determine the asset’s current state; the specifics of this endeavor
will be covered in the next section. The wireless communications
device enables the transfer of the detected data and acts as an
emitter for signal strength collection, which is necessary for outdoor
locations. A power source for modules to work properly is also
needed in our proposed framework for properly working of all
devices and services. In IoT-based services, the deployed deep
learning-based crack detection works. The primary reason behind
developing a lightweight model is to install and deploy it in the edge
devices.

The Raspberry Pi 4B development board is the foundation
for the edge gateway for the IoT. Adding modules and sections
corresponding to the desired responses makes it possible to
tailor many functionalities. IoT edge gateways are responsible for
collecting all of the data that has been detected by IoT wireless
sensor tags using the wireless communication module. Since big
and diverse physical assets create large-scale data in terms of
volume and diversity, the centralized server could run into a
significant amount of computing load. As a result, the cloud-
side pressure is alleviated thanks to the distributed computation
developed and included in the IoT edge gateway. Three important
IoT services must be implemented for an edge IoT gateway to work
properly. The registration services guarantee that the approved edge
gateway is registered and connected to the process and the various
situations. The time-window scanning, geo-location settings, and
data destination are all guaranteed to be in their right configured
states by the configuration services. The following features of the

edge IoT gateway may be realized via commands and procedures
conducted by execution services.

3.1.3 Virtual world
The virtual world is recognized as a gateway in which many

stakeholders may watch and keep an eye on events. Setting the
specifications of the open-pit coal mine’s tracking technique permits
the modification of monitoring sensitivity, which can be seen in
the parameters’ values for things like the fainting detection limit
and the location environmental noise value. Their current state
has been presented in the virtual world to illustrate better the
circumstances surrounding the assets and the steps that need to be
taken. Using the proposed DTs framework, the components that
exist in the physical world are mapped to the virtual world, and
the locations of these components are virtualized so that they may
be represented graphically. A synchronization mechanism has been
built to communicate tracking data with the existing management
systems to reduce the disruption caused by altering the daily
activities that were originally in place. The proposed framework
receives simultaneous updates to information such as the location
name, the number of staff members, and the appropriate operation
procedure ID.

3.1.4 Stakeholders
All stakeholders, including supervisors, operators, and

management, may access the tracking data if the approved control
is in place. In addition, there may be a large number of stakeholders
that have contradictory beliefs on the significance of the data
and functions. Because operators are mainly perceived as the
targets of monitoring, they only offer essential information about
themselves. This is because operators are primarily seen as the
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targets of monitoring. It is acceptable for managers to use various
online services to surveil their staff members to determine their
present health and locations. In the case of a life-threatening
emergency, supervisors have the option to summon outside aid from
trained professionals. It is only permissible for the super manager,
responsible for the effective safety monitoring of coal mines, to
specify the criteria.

3.2 Proposed crack detection network
based on deep learning

This section provides a detailed overview of the crack detection
mechanism applied in our DT-based framework. We leverage
a lightweight network to process the data in edge devices to
make rapid decisions. Problem Statement: In the crack detection
problem of our presented work, X represents the input data, which
includes various sensor readings and measurements collected from
the open-pit coal mine and its surrounding environment. These
measurements may include factors such as ground movement,
strain, and other relevant parameters. X is a multi-dimensional
dataset where each data point is represented as Xi, i = 1,2,…,N,
where N is the total number of data points. Each Xi includes a
set of features or variables, denoted as Xi = x1,x2,…,xm, where m
is the number of features in each data point. The outputs of the
crack detection problem are formalized as a binary classification
task, where the goal is to determine whether a crack is present or
not based on the input data X.

For the output, we consider Y as the expected outputs, where Yi
is the binary label associated with each data pointXi.Yi = 1 if a crack
is present in the corresponding area represented by Xi. Yi = 0 if no
crack is present in the corresponding area represented by Xi.

We have formulated the problem statement as a mapping
function F that takes the input data X and produces the
corresponding binary labels Y:

F :X→ Y

F(Xi) = Yi, where i = 1,2,…,N
(1)

The objective of the proposed deep learning-based approach
is to train a lightweight network using historical data and real-
time sensor data (X) to learn the mapping function F such that
it accurately predicts the presence or absence of cracks (Y). The
evaluation measures such as precision, recall, accuracy, mean
average precision, F1-score, and kappa coefficient are used to assess
the performance of this model in making these predictions.

3.2.1 Lightweight network
Lightweight networks are constantly being presented as a

solution to the growing need for efficient deep learning. There are
currently a few primary areas of investigation: the straightforward
design of lightweight networks (such as GhostNet, and MobileNet),
the secondary engineering of large-scale networks, for example,
knowledge distillation and model pruning, and neural architecture
search.

In neural network architecture, depth-wise separable
convolution (DSC) is often utilized to decrease the model size and
lower the computation required while keeping high extraction of

features capacity. The DSC is made up of two distinct components:
point-wise convolution (PWC), and depth-wise convolution
(DWC), with DWC performing the convolution functioning
separately for every channel to draw geographic features and PWC
allowing the information to interact across channels via a 1 × 1
convolution kernel. The computation cost of DSC in Eq. 3 below is
much lower than that of the generic convolution Eq. 2.

k1 = q× γ× γ× p = γ
2pq (2)

k2 = q× γ× γ+ 1× 1× q× p = (γ2 + p)q (3)

In these equations, the size of the convolutional kernel is represented
by γ, the number of feature maps is shown by p, while the
convolution kernels’ number is shown by q.

3.2.2 Densely connected network
We leverage a lightweight, densely connected network to

improve open-pit coal mining operations (see Figures 2A, B). There
are two main parts to the network architecture. Our first step in
feature extraction is a two-layer convolutional network. Second,
we add a dense block of eight convolutional layers to the network
in lieu of the original network architecture. Each layer receives the
sum of the channels the layers behind it generates as input. To cope
with smaller training datasets, this design strategy decreases the
number of parameters, encourages efficient feature propagation,
adds regularization advantages, and prevents overfitting. In
addition to the feature extraction network, we also provide a
channel attention module. The network’s performance is enhanced
because of this module’s increased attention to the data in each
channel.

3.2.3 Attention mechanism
Crack detection in open-pit coal mines is an extremely

fine object recognition job since there are only subtle visual
variations between the many types of earth surfaces. Our proposed
network takes cues from the human visual system’s physiological
perception process and uses attention processes to improve feature
representation and extraction.

The Squeeze and Excitation (SE) attention block, adapted
from SENet Hu et al. (2018), significantly enhances the capability
of global extraction of features by enhancing the interplay of
information across several channels. As demonstrated in Figure 2C,
Squeeze combines the input map of features into an attention
scalar that represents the global relevance at the channel’s level.
This is accomplished via global averaging pooling, as seen in Eq. 4.
Excitation is the process’s next phase, consisting of an adaptive
recalibration carried out by a fully connected layer (see Eq. 5).
This recalibration fits complicated channel correlations and shrinks
the feature map to its starting condition. At last, the attention
values will be used to reweight the output feature maps (see
Eq. 6), giving more importance to the significant sections of the
pictures.

Ac = Fso ( fm) =
1

Ht×Wd

Ht

∑
k=1

Wd

∑
l=1

fm (k, l) , fm = vm*Y =
m′

∑
s=1

vsm*ys (4)

Squeeze operation denoted by Fso, input feature map denoted
by fm(k, l), input Y, input feature map height and width
denoted by Ht and Wd, and convolution operation denoted
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FIGURE 2
The illustration of deep neural network-based architecture, including channel attention and spatial attention-based mechanisms. (A) Deep densely
connected network, (B) output of the attention-based network, (C) Squeeze and Excitation network for global feature extraction, and (D) final
extraction of output features from the spatial attention block.

by *, vsm = [v1m,v2m,…,vsm,…,vm′m ] When applied to a given Y-
channel, V functions as a 2D spatial kernel representing a single
vm-channel.

s = Feo (op,Wd) = σ (g (op,Wd)) = σ (Wd2δ (Wd1,op)) (5)

Feo stands for the Excitation operation, op for the output of
the Squeeze, Wd1 ∈ ℝ

M* M
r means the ReLU activation function,

and represents the first completely linked operation, Wd2 ∈ ℝMr*M

indicates the sigmoid function evaluation, which is the second fully
connected action.

Ỹm = Fscale ( fm, sm) = sm ⋅ fm (6)

Where,multiplication of the scalar sm by the featuremap fm ∈ RHt×Wd

channel-wise is denoted by Ỹm = [ỹ1, ỹ2,…, ỹm] and Fscale ( fm, sm).
The Convolutional Block Attention Module (CBAM) is a

plug-and-play focus lightweight block that enhances information
flow across channels and optimizes spatial context data. The key
components of CBAM are the channel attention (CA) block,
which is used to extract the spatial attention (SA) block, and
semantic data, which is used to extract data on position. The
CA block performs average pooling, max pooling, and stochastic
pooling simultaneously to the input feature maps and then
fuses the results to produce a more information-rich channel
focus, as illustrated in Figure 2D, the SA block successively
performs the three pooling steps to the feature maps to acquire
the spatial attention, utilizing the general convolution layer to
recover the channel parameters. Additionally, prior research
demonstrates that both the CA and SA blocks may be integrated
with the network separately to enhance feature extraction
performance.

3.2.4 Multi-scaled feature fusion
Although the backbone architecture of YOLOv8 Jocher and

Qiu (2023) and attention technique improve our network’s feature

extraction capacity to some level, the key barrier limiting its
detection efficiency is still the interplay of image and semantic
information across various layers. Image characteristics (such as
edge, color, and texture) are oftenmore strongly responded to by the
shallow levels of the backbone network. In contrast, the deep layers
respond more strongly to semantic features (such as object class).
Vertical feature fusion through a feature pyramid network (FPN)
Lin et al. (2017) is a method that successfully handles the problem
described above and raises the level of representativeness of the
model. This method works by fusing the multi-scale map of features
that have been gathered from several backbone layers. However,The
unidirectional FPN has certain downsides, including the loss of data
features and an insufficient fusion ofmulti-scale features. As a result,
our proposed network employs an attention-based path aggregation
network to correct its deficiencies. Our network uses attention
blocks to manage the feature maps obtained from the backbone
layers and takes the dual-direction strategy, for example, Bottom-Up
and Top-Down, for feature fusion, as shown in Figure 3.This is done
to improve the interaction between the deep-layer semantic and
shallow-layer image information. This produces a more important
feature map, which may be used for further classification and
location.

Most often realized by atrous spatial pyramid pooling
Wang et al. (2018), spatial pyramid pooling or spatial pyramid-
based horizontal feature fusion Jie et al. (2021) is also a
recommended technique to improve the representation ability
of the model. However, the aforementioned spatial pyramids are
not optimal for ore sorting networks (lightweight) due to the
difficulties of enormous parameters and feature redundancies. To
address these issues, our proposed network employs responsive
field blocks (RFB-s), as seen in Figure 3, to provide horizontal
feature fusion, by which the perceptual field is widened with
the help of dilated convolution at four distinct speeds. While
simultaneously reducing the number and complications of
the computation parameters, the 3× 1× 1× 3 convolution
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FIGURE 3
Multi-scale feature fusion strategy.

in RFBs enhances the model’s nonlinear representational
capabilities.

4 Performance evaluation

4.1 Dataset description

For the preparation of training images, freely accessible
Sentinel-2 (L1C) data with a medium resolution is used. The
resolution of Sentinel-2 varies between 10 m and 60 m across
13 spectral bands in the visible, near-infrared, and short-wave
infrared spectrum. It has a 290 km field of view with a global
coverage and a 5-day revisit period. It is a preferred option
for building the database due to its high rate of revisits, open-
source nature, and global scope. The geographic locations of 400
opencast coal mines are identified by hand to prepare the training
dataset.

For testing, the dataset containing the two classifications Coal
Mines and No Coal Mines is divided into a training dataset and
a testing. 80% of the image fragments for each class are used for
training,while 20%are used as a test set.The total number of training
image fragments for Coal Mines is approximately 2,450, while the
number forNoCoalMines is 2,100.There are 1,050 image validation
patches for CoalMines and 900 for No CoalMines. During training,
images from the training dataset are used as input for CNN learning,
and the model’s performance is assessed by predicting the class of
images from the testing dataset. The classification accuracy is the
proportion of accurate predictions made by themodel when applied
to the test set.

In our study, we leverage freely accessible Sentinel-2 (L1C)
satellite imagery with themedium resolution for a classification task,
which forms a crucial component of our broader crack detection
methodology. Although the primary dataset is labeled with the
classifications “Coal Mines” and “No Coal Mines,” it plays a pivotal
role in our crack detection approach. For example, Sentinel-2
data, known for its spectral diversity and high revisit frequency,

offers valuable insights into the earth’s surface. We utilize this data
for image-based analysis. We meticulously identify the geographic
locations of 400 opencast coal mines within the Sentinel-2 imagery.
These locations serve as points of interest in our analysis. Afterward,
we perform a classification task to classify image fragments into two
categories: “Coal Mines” and “No Coal Mines.” This classification is
based on the imagery characteristics associated with these regions.

In the context of crack detection in coal mines, while our
primary task is classifying coal mine areas, this is an integral
step in the broader goal of crack detection within open-pit coal
mines. The presence or absence of coal mines in specific areas
can indicate geological features, structural changes, or ground
disturbances, including cracks. We split the dataset into training
and testing subsets for our classification model. During training,
the proposed lightweight network learns to recognize features
associated with coal mines. Importantly, this learned knowledge
can be leveraged in our crack detection framework. Finally, the
classification accuracywemeasure reflects the ability of ourmodel to
discern between coal mine and non-coal mine areas. This accuracy
serves as an initial indicator of our model’s capability to identify
anomalous features, which may include cracks, in open-pit coal
mines.

4.2 Loss function

The performance of a model is measured by reducing a
loss function that measures how well it does its job of making
predictions. One popular option is the Cross Entropy Loss Function.
Obtaining the probabilities of “p” and “1-p” for each category is
possible in the situation of binary classification, when the model
predicts results for just two options. For binary classification, the
Cross-Entropy Loss formula is as shown below:

L = 1
N
∑
j
−[xj ⋅ log(pj) + (1− xj) ⋅ log(1− pj)] (7)

In this equation, the number of samples are shown by N, xj denotes
the label of sample j, the negative class is 0, the positive class is 1, and
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the likelihood that sample j belongs to the expected positive class is
represented by pj.

4.3 Evaluation metrics

To measure the accuracy of semantic segmentation models,
evaluation metrics are used. Metrics like Recall (R), Precision
(P), F1-score, Overall Accuracy (OA), and Kappa Coefficient
(KC), are widely used for this purpose. “TP” signifies true
positives in the algorithms used for these measurements,
indicating accurately recognized open-pit coal mine pixels.
“FP” stands for false positives or pixels that were wrongly
detected as open-pit coal mines. The letter “TN” stands for
true negatives, which are accurately detected surface coal mine
images that are discarded. Finally, “FN” signifies false negatives,
which are pixels that were wrongly rejected from surface coal
mines.

4.3.1 Precision
The ratio of true positives (TP) to the total of false positives (FP)

and true positives (TP) is used to calculate precision, a statistic that
measures the level of accuracy of positive predictions. The accuracy
calculation is shown below:

Precision = P = TP
FP+TP

(8)

4.3.2 Recall
The Recall metric, which measures the ability of a model

to identify positive instances correctly, is calculated by dividing
the number of true positives by the sum of true positives and
false negatives. The equation below represents the computation of
Recall:

Recall = R = TP
FN+TP

(9)

4.3.3 F1-Score
The F1-Score is a statistical measurement that determines how

well a binary classification model performs. It is defined as the
arithmetic mean that is harmonic between accuracy and recall. The
following formulation determines the F1-score:

F1− score = F1S = 2× P×R
P+R

(10)

The accuracy measure represents this calculation’s accuracy,
while the Recall representation denotes the Recall metric.
The F1S is a balanced measurement of accuracy and
recall that considers both the model’s negative and positive
classifications.

4.3.4 Overall accuracy
The Overall Accuracy (OA) measure computes the proportion

of properly categorized samples to the total number of samples. It
gives an evaluation of a classification model’s overall accuracy. The
following equation gives the method for calculating total accuracy:

Overall accuracy = OA = TN+TP
FP+ FN+TP+TN

(11)

4.3.5 Kappa coefficient
The Kappa Coefficient (KC) is a metric used to examine

the consistency between a classification model’s predicted
and actual classification results. It goes beyond what would
be predicted by chance in measuring the agreement.
The Kappa Coefficient is calculated using the following
formula:

K = (Po − Pe)X(
1

1− Pe
) (12)

In this formula, Po stands for the observed agreement, which is
calculated as the ratio of the observed agreement to the total number
of samples. The probability of agreement by chance is shown by
the expected agreement (Pe). The Kappa Coefficient evaluates the
model’s effectiveness while considering the likelihood of agreement
resulting from pure chance. Considering that the true samples
number in every category is c1,c2,…,cn predicted samples number
in every category is d1,d2,…,dn, and the total samples number will
be Pe = c1 × d1 + c2 × d2 +⋯+ cn × dn.

4.3.6 Mean average precision
The metric mean average precision (mAP) is a commonly

used evaluation metric in object detection tasks, including crack
detection in images. To calculate mAP for open-pit coal mine
crack detection, we used the following formulation with different
mAP settings such as mAP@0.25, mAP@0.5, mAP@0.75, and
mAP@1.

mAP = 1
N

N

∑
i=1

APi (13)

5 Experimental results

PyTorch was used throughout the tests that were carried out
as part of this research project. Experiments were run on a
server equipped with a GeForce RTX 3090 and 24 gigabytes of
RAM. Linux was used as the operating system. To correct the
imbalance that existed between non-mining and mining pixels
in each dataset, an equal number of non-mining pixels were
chosen as negative samples based on the mining pixels that
were used to choose the positive samples. This was done to
ensure that the training data had equal positive and negative
samples. Additionally, the training set was divided in a ratio of
8:2 with the validation set. These experiments aimed to achieve
the highest possible accuracy for the model. To accomplish
this, various experiments were conducted on the model. These
experiments can be categorized into two main parts, each focusing
on specific aspects or techniques. We also used the same parameters
for all other state-of-the-art models to run a fair comparison
with our proposed lightweight multiscale feature fusion based
network.

The research focused on defining the optimum slice size for the
input data and choosing the best optimizer for the model in the
first portion of the trials. Several slice sizes were tested to see which
generated the best accuracy and overall model performance results.
Simultaneously, many optimizers were examined to see which one
was most successful in reaching optimum model performance. We
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TABLE 3 Experiments of the proposedmodel with different slice sizes.

Slice size Precision Recall Overall accuracy F1-score Kappa coefficient

3 × 3 0.813 0.884 0.957 0.974 0.957

6 × 6 0.829 0.948 0.955 0.947 0.967

9 × 9 0.855 0.981 0.906 0.947 0.892

18 × 18 0.891 0.965 0.875 0.906 0.982

36 × 36 0.966 0.905 0.978 0.878 0.959

The bolds are the best scores achieved on all metrics.

compared the performance of the optimummodel with state-of-the-
art models in the second stage of the tests. P, R, OA, F1S, and KC
were the assessment criteria employed in this comparison. These
metrics evaluated the model’s classification accuracy, consistency,
and overall efficacy in separating crack samples for open-pit coal
mines.

5.1 Slice experiments

The size of the input network’s slices plays a crucial role in the
training outcomes, as it affects the extraction of image features,
which vary depending on the image scale. Larger images tend
to contain more textures, contextual information, and important
features. However, there is a point where increasing the size may
not lead to improved classification performance, and it may even
result in a decrease in performance. Moreover, larger image sizes
require more computational resources. In our experimental study,
we worked with Sentinel-2 images and shape files, which had
dimensions of 3,001 × 2,205. These were divided into slices of six
different sizes: 3× 3, 6× 6, 9× 9, 18× 18, and 36× 36. The evaluation
results of our model on the dataset, including metrics such as P, R,
OA, F1S, and KC. Table 3 reports the slice experimental results of
our proposed model for different satellite data images.

For the satellite dataset in our experimental investigation, when
cutting the input sizes, intervals of 2:1 were used, beginning at 9
× 9. Among the various slice sizes, 18× 18 consistently produced
the greatest KC when compared to the other sizes. Overall, the KC
rose at first, then reduced as the slice size grew. P, R and F1S values
were approximately 0.9 for all three slice sizes 36× 36, 18× 18, and
9× 9 showing their usefulness in detecting open-pit coal mines’
cracks. OA of all studies was more than 0.9, indicating the success
of open-pit coal mine crack detection and extraction. Only the
18× 18 slice size above 0.9 in terms of KC, and its R, P F1S, and OA
were consistently greater than the assessment results of other slice
sizes. As a result, the slice size of 18× 18 was selected for further
investigation and analysis.

5.2 Comparison of different optimizers and
CNN-based models

Extensive testing was used to determine the ideal slice size
and optimizer. The most efficient combinations must be found to

properly extract cracks from open-pit coal mines satellite data.
On several dataset combinations, various slice sizes and optimizers
were tested as part of the assessment process. When the findings
from all three combinations of the dataset were analyzed, it became
clear that our proposed lightweight network consistently performed
better than the other state-of-the-art models. Table 4 presents
the findings of experiments with different optimizers Stochastic
Gradient Descent (SGD), Adam Optimizer, and Root Mean Square
(RMS) Prop known as RMSProp. We compared our model with
RNN and U-Net Ronneberger et al. (2015) in the experimental
evaluation.

Once the loss value is computed using the loss function,
finding the optimal values for the model’s inputs is crucial. The
model’s intrinsic parameters have a major impact on both the
training process and the output. Therefore, employing diverse
optimization strategies and algorithms becomes crucial in updating
and calculating the network parameters. This study tested the SGD,
Adam Optimizer, and RMSprop algorithms on three distinct model
combinations. The evaluation metrics for the different optimization
functions are P, R, OA, F1S, and KC, presented in Table 4. These
key performance indicators (KPIs) provide valuable insights into
the effectiveness of the optimization functions across the dataset.
Upon comparing the results, we found that the model utilizing the
SGDoptimizer outperforms all other optimizers, exhibiting superior
performance on all optimizers.

A comparison is also made with traditional CNNs to establish
whether the suggested model accurately represents reality. The
model was trained using a satellite imagery-based open-pit coal
mine dataset, and its performance was evaluated using a variety
of metrics, including P, R, OA, F1S, and KC. The proposed
model outperformed well-known algorithms such as AlexNet
Krizhevsky et al. (2012), VGG-16 Simonyan and Zisserman (2014),
VGG-19 Simonyan and Zisserman (2014), GoogleNet Szegedy et al.
(2015), ResNet-50 He et al. (2016), Single Shot Detector (SSD)
Liu et al. (2016), DenseNet121 Huang et al. (2017), MobileNetv2
Sandler et al. (2018), and our proposed network. These findings
highlight the significant accuracy improvement achieved by the
proposed model compared to traditional approaches. Furthermore,
the model’s streamlined structure enables faster processing, making
it a compelling choice for practical applications in open-pit coal
mine extraction. Table 5 represents the comparison of our model
with other CNN-based networks.

The predicted results obtained from the model represent
continuous probability values rather than a binary map of 0 or 1.

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1265111
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Yu et al. 10.3389/fenrg.2023.1265111

TABLE 4 Experiments of different combinations of our network with optimizers and comparison with other networks.

Optimizer combinations Precision Recall Overall accuracy F1-score Kappa coefficient

Ours + SGD 0.932 0.935 0.940 0.913 0.925

Ours + Adam 0.775 0.864 0.940 0.861 0.828

Ours + RMSProp 0.960 0.904 0.876 0.945 0.833

RNN + SGD 0.906 0.880 0.885 0.802 0.909

RNN + Adam 0.770 0.922 0.747 0.868 0.718

RNN + RMSProp 0.826 0.822 0.719 0.788 0.841

U-Net + SGD 0.845 0.906 0.891 0.912 0.919

U-Net + Adam 0.769 0.934 0.886 0.705 0.920

U-Net + RMSProp 0.922 0.754 0.863 0.829 0.721

TABLE 5 Comparison of proposed network with other models.

Networks Precision Recall Overall accuracy F1-score Kappa coefficient

AlexNet 0.938 0.865 0.913 0.916 0.968

VGG-16 0.955 0.940 0.892 0.883 0.933

VGG-19 0.911 0.899 0.888 0.866 0.929

GoogleNet 0.933 0.919 0.881 0.936 0.869

ResNet50 0.925 0.945 0.941 0.950 0.904

SSD 0.912 0.974 0.920 0.881 0.905

DenseNet121 0.939 0.971 0.922 0.951 0.914

MobileNetv2 0.944 0.864 0.934 0.954 0.967

Our network 0.969 0.984 0.946 0.962 0.973

A threshold must be set to convert these probability values into
a binary map. This study used GIS software to apply different
threshold values of 0.9, 0.8, and 0.7 for comparison purposes. The
experimental analysis revealed that a threshold of 0.8 yielded better
results. The model generally performed well in predicting most of
the surface coal mines, with more accurate boundaries and strong
continuity. However, some errors were observed in the prediction
results.The results show instances in which some features with traits
similar to open-pit mines were inadvertently included, or cases in
which certain open-pit mines with less conspicuous characteristics
were ignored. These inaccuracies highlight the difficulties involved
in effectively differentiating open-pit mines from other objects seen
in satellite images.

The mAP is also calculated for different settings such as
mAP@0.25, mAP@0.5, mAP@0.75, and mAP@1. We compared
AlexNet, VGG-16, VGG-19, GoogleNet, ResNet-50, SSD,
DenseNet121, MobileNetv2, and our proposed network for mAP
comparison and it can be seen in the Figure 4 that our network
outperformed all other models in the mAP evaluation.

5.2.1 Qualitative evaluation
We also present the qualitative performance of our method with

other CNN-based models such as DenseNet121 and ResNet50 in

Figure 5. We show the cracks detection for satellite imagery dataset
of open-pit coal mines. The detected cracks are sent to our proposed
DT-based framework for predictive maintenance of evaluated data.
The engineers take the necesssary preventivemeasures for predictive
maintenance of open-pit coal mines.

The size and quality of the dataset have a significant impact on
how accurate the detection results are. Incorporating image pre-
processing methods like de-blurring and expanding the training
sample pool may both help to improve detection accuracy. By
collecting more data from the images, we hope to improve the
process of mining open-pit coal mines in further studies. This
involves locating side gangs, dumps, and mining locations. We may
learn more about the geographical features of mining activities and
enhance our knowledge of their environmental effect by broadening
the scope of information extraction.

5.2.2 Performance of proposed model in
DT-based framework

The crack detection and extraction of open-pit coal mines
system was designed to operate in a distributed environment
consisting of a central data center and two smaller IoT-based edge
centers in the DT-based framework. The data center comprised
multiple computers; each edge center had a single computer with
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FIGURE 4
Comparison of our proposed network with other networks for mAP.

FIGURE 5
Comparison of our proposed network with other networks for open-pit cracks detection.

comparable specifications. The network connecting the data center
and edge centers had a throughput of 1 GB/s. Virtual machines
hosted on virtualized servers within the architecture accommodated

the proposed network in the cloud application modules. It was
assumed that computing resources were fairly shared among the
different services, and each component of the proposed network
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FIGURE 6
Comparison of model training and prediction times computational complexity in the Cloud and DT-based Cloud server settings.

utilized its designated resources. To evaluate the performance of our
model in the Cloud and DT-based Cloud settings, we compared it
to other models like RNN and U-Net for training and prediction
time evaluation. It can be seen from Figure 6 that in our proposed
DT-based framework, the training and prediction time of open-
pit cracks and extraction is lesser than in the cloud-based setting
only.

Using an edge node in our trials led to significant gains in both
model prediction accuracy and training speed. Time spent making
predictions using the model was cut by an average of 23.6% and
as much as 28.1%. In addition, the time it takes to train a model
improved by anywhere between 12.8% and 16.4%. It is important to
note that image quality, file size, and available computing resources
in the cloud all have a role in how long it takes to make a forecast.
As a result, the amount of time needed to make a forecast might
vary considerably depending on these parameters. We found that
both cloud and DT-based cloud deployments had equal effects on
the precision of models.

6 Conclusion and future works

Digital twins provide a holistic approach to crack detection
in open-pit coal mines by integrating real-time monitoring,
predictive analytics, simulation, visualization, and decision support.
By leveraging the power of digital twins, mine operators can
enhance safety, optimize maintenance efforts, and minimize the
risks associated with crack formation and structural instability. This
work presents a DT-based open-pit coal mines crack detection
and open-pit coal mines extraction framework. We propose
a lightweight, densely connected network for detecting the

Sentinal-2 imagery dataset. Using the proposed DT-based
framework, the engineers and workers working in the open-pit coal
mines can immediately take preventivemeasures for their safety.The
proposed framework is a first of its kind and can be used globally in
open-pit coal mines.

By deploying diverse sensors and IoT devices, our DT-based
framework excels in capturing essential data on factors like
ground movement and strain. By harnessing this comprehensive
dataset, our framework excels in detecting and analyzing
anomalous behaviors or changes that might signal the formation
or propagation of cracks. Our approach’s cornerstone lies in
applying deep learning-based networks, specifically a densely
connected lightweight network seamlessly integrated within the
DT-based ecosystem. This fusion of historical data, real-time
sensor information, and predictive models empowers our system
to take proactive measures and make informed maintenance
decisions.

Our extensive evaluation of the proposed network showcases its
prowess, consistently outperforming state-of-the-art deep neural
networks in precision, recall, overall accuracy, mean average
precision, F1-score, and the kappa coefficient. Our lightweight
multiscale feature fusion-based network achieves impressive
scores of 0.969, 0.984, 0.946, 0.962, and 0.973, respectively,
demonstrating its superiority in these crucial performance metrics.
Additionally, it excels in mean average precision, surpassing all
other competing models. Furthermore, our network demonstrates
remarkable efficiency in terms ofmodel training and prediction time
benchmarks, outperforming cutting-edgemodels such asU-Net and
recurrent neural networks.

In summary, our proposed framework, fueled by deep learning,
data-driven insights, and the power of Digital Twins, represents
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a pioneering approach to open-pit coal mine crack detection
and predictive maintenance. By harnessing the potential of these
technologies, we strive not only to enhance safety and asset
protection but also to lay the foundation for sustainable and efficient
mining practices in the future.

While our current work represents a significant leap in open-
pit coal mine safety and maintenance, the field of DTs and deep
learning-driven crack detection continues to evolve. Future research
endeavors may explore Multi-Sensor Integration by investigating
a wider array of sensors and IoT devices to capture an even
more comprehensive dataset, potentially encompassing additional
environmental and geospatial factors that could impact crack
formation. Future works can extend the capabilities of DTs
to provide real-time decision support for crack detection and
immediate safety interventions, predictive maintenance scheduling,
and resource allocation. Also, future works can address the crucial
issues of data privacy and security when deploying IoT devices
and collecting sensitive operational data within open-pit coal
mines. Our current research sets the stage for a new era of
safety and efficiency in open-pit coal mining. However, there is
still much-untapped potential in the fusion of Digital Twins and
deep learning. Future studies should focus on these directions to
further advance the state of the art in mine safety and operational
excellence.
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