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Aiming at the problems of high investment and low efficiency in the planning and
construction of electric vehicle (EV) charging stations in cities, an optimization
model for site selection and capacity determination of charging stations
considering the uncertainty of users’ dynamic charging demands is proposed.
Firstly, based on the travel chain theory and the Origin-Destination (OD) matrix,
the travel characteristics of EVs are studied, and the spatial and temporal
distribution prediction model of EV charging load is established through the
dynamic Dijkstra algorithm combined with the Monte Carlo method. Secondly, a
site selection model for the charging station is established which takes the
minimum annualized cost of the charging station operator and the annualized
economic loss of the EV users as the goal. At the same time, theweighted Voronoi
diagram and Adaptive Simulated Annealing Particle Swarm Optimization
algorithm (ASPSO) are adopted to determine the optimal number/site
selection and service scope of charging stations. Finally, an uncertain scenario
set is introduced into the capacity determination model to describe the
uncertainty of the users’ dynamic charging demands, and the robust
optimization theory is utilized to solve the capacity of the charging station. A
case study is carried out for the EV charging station planning problem in some
urban areas of a northern city, and the validity of the model is verified.
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1 Introduction

To achieve the goals set by China in the Paris Agreement, which include peaking carbon
emissions by 2030 and achieving carbon neutrality by 2060, the vigorous development of electric
vehicles in the transportation sector, characterized by low pollution and noise, has become an
inevitable trend (Zhang et al., 2019a). As a public infrastructure providing charging services for
EV users, the optimal planning of charging stations in terms of site selection and capacity directly
affects their service efficiency and cost. Rational planning of charging station locations and
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capacities, to meet the capacity constraints of the distribution network
while considering the interests of station operators and EV users, is an
urgent problem to be solved for the large-scale development of electric
vehicles. It is of great significance in achieving the dual carbon goals.

In recent years, a large amount of research has been
conducted by international scholars on charging station

planning problems. However, a mature and comprehensive
theoretical basis has not yet been established. Li et al. (2018)
considers the feeder layout of charging stations connected to the
power distribution network and establishes an annual total
travel time cost model for EV users based on road network
traffic flow and users’ travel characteristics, using a discrete

TABLE 1 Summary of charging station planning methods.

References Issuing
time

Site selection and capacity
determination method

Optimization target and
constraints

Limitations

Li et al. (2018) 2018 Site selection planning based on human
assumptions

Minimize the annualized total time-
consuming cost of EV users; EV charging
station distance constraint, voltage limits
constraint, etc.

Charging demand readings based on
artificial simulation deviate from real
charging demand

Zhao et al. (2016) 2016 Analysis method for location and capacity
determination of electric vehicle charging

stations based on a two-step search

Minimize the sum of the charging station
construction cost, the driving cost of the EV
owner, and the cost of waiting in line at the
charging station; The queue waiting time
constraint, etc.

The energy state of the electric vehicle
when it arrives at the charging station is
not considered

Xin et al. (2018) 2018 Chaos simulated annealing particle swarm
optimization algorithm

Minimize the annualized total social cost;
The queue waiting time constraint, the
voltage limits constraint, etc.

The planning of EV charging stations
lacks comprehensive consideration of
road network topology, actual traffic
conditions, and capacity constraints of
the power distribution network

Gan et al. (2020) 2020 Genetic Algorithm Maximize charging station profitability and
enhance user convenience in charging; The
total demands constraint, charging pile
number constraints, etc.

Without considering the uncertainty of
users’ charging demands, only fast
charging stations are considered

Ge et al. (2016) 2016 Quantum Genetic Algorithm Minimize the sum of the annual cost of taxi
charging operation and the annual cost of
charging station construction and operation;
The total demands constraint, charging pile
number constraints, etc.

The impact of actual traffic conditions
on vehicles is not considered, and only
fast charging stations are considered

Xiao and Gao
(2022)

2022 Simulated annealing algorithm and Dijkstra
algorithm

Minimize the sum of the annualized total
cost of charging stations and the annual
economic loss of EV users; EV charging
station distance constraint, charging power
constraints, etc.

The impact of actual traffic conditions
on vehicles is not considered, and only
fast charging stations are considered

Yan et al. (2021a) 2021 Improved Particle Swarm Optimization Minimize the sum of the annualized total
cost of charging stations and the annual
economic loss of EV users; The queue
waiting time constraint, etc.

Without considering the uncertainty of
users’ charging demands

Dong et al. (2016) 2016 Shared Neighbor Algorithm Minimize waiting costs and charging costs of
EV users; The queue waiting time
constraints, etc.

Multi-stage planning without
considering dynamic demands, and the
planning scenario limited to a circular
highway

Cao et al. (2022) 2016 Particle Swarm Optimization Maximize the sum of social benefits of fast
charging station revenue and electric taxi
operating revenue; The total demands
constraint, charging pile number
constraints, etc.

Without considering the uncertainty in
capacity planning and only focusing on
the planning of fast-charging stations

Zhao et al. (2021) 2022 Data-driven distributed robust optimization Minimize the annual average lifecycle cost of
charging stations; The queue waiting time
constraint, charging pile number
constraints, etc.

Without considering the uncertainty in
capacity planning and with the planning
scenario limited to a circular highway

Luo et al. (2018) 2018 Two-step equivalence and second-order
conic relaxation

Minimize the annualized total social cost.
System power flow constraints, the voltage
limits constraint, etc.

Without considering the obligatory path
selection decisions of EV users and with
relatively high complexity in the solution
algorithm

Khardenavis et al.
(2021)

2021 Robust optimization Minimize lifecycle cost of charging stations;
Recharging demand constraint, capacity
constraint, etc.

Without considering the dynamic
charging demand influenced by traffic
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binary particle swarm optimization algorithm to solve the
problem. Zhao et al. (2016) introduces the EV charging
convenience factor, combines urban road information and
EV driving range, and uses queuing theory to determine the
station capacity. Xin et al. (2018) considers the comprehensive
interests of charging station operators, EV users, and power grid
companies, and uses a chaotic simulated annealing particle
swarm optimization algorithm and Voronoi diagram to solve
the site selection and capacity determination model. Gan et al.
(2020) proposed a partition planning model based on candidate
points. Ge et al. (2016) establishes a probability selection
function for taxi drivers to choose charging stations based on
utility functions and uses an improved quantum genetic
algorithm to solve the site selection and capacity
determination for electric taxi charging stations. Xiao and
Gao (2022) establishes an upper-level model to minimize the
sum of the users’ annual loss cost and the charging station’s
annual total cost, and a lower-level model to minimize the users’
travel distance to the station, using a simulated annealing
algorithm and Dijkstra algorithm to solve the problem. Yan
et al. (2021a) proposes an improved particle swarm
optimization algorithm based on single-dimensional search
volume probability mutation for charging station planning
optimization. Dong et al. (2016) clusters charging demands,
and determines station locations and capacities using the shared
neighbor algorithm and queuing theory. Cao et al. (2022)
proposes a fast charging station capacity allocation model
based on EV path simulation results under a dynamic traffic
network model and solves it using a particle swarm
optimization algorithm. Zhao et al. (2021) proposes a two-
stage site selection and capacity determination method for
solar-battery-charging stations based on data-driven
distributed robust optimization. Luo et al. (2018) establishes
an optimization model for electric vehicle charging stations
with multiple types of charging piles, performs equivalent
treatment and second-order cone relaxation, and solves it as
a mixed-integer second-order cone programming problem.
Khardenavis et al. (2021) proposes a robust model for urban
charging infrastructure planning based on dynamic charging
demands. Ge et al. (2021) considers the deep interaction
between the power system and the transportation system, as
well as the transfer of users between charging stations, and
proposes a city fast charging station planning method that
considers network transfer performance. Fakhrmoosavi et al.
(2021) considers the dynamic charging demands under traffic
and weather influences, to minimize the total investment cost of
charging stations, EV users’ charging, and waiting costs and
solves it using a simulated annealing algorithm. In recent years,
scholars have commonly utilized charging station planning
models, and the characteristics of different references are
summarized in Table 1 as follows.

Based on the reviewed literature, it is evident that existing
research on charging station planning predominantly focuses on
static charging demands. These studies consider factors such as
construction costs, maintenance costs, and other relevant aspects of
EV charging stations. They establish corresponding models for site
selection and capacity determination. However, there are still
limitations that need to be addressed.

1) Lack of comprehensive consideration of road network
topology, actual traffic conditions, and capacity constraints
of the distribution network in the planning of EV
charging stations.

2) The site selection planning for charging stations in urban areas
is partly based on artificial assumptions or random generation,
without analyzing the dynamic charging demands of different
EV users. As a result, the obtained predictions of charging load
information are biased.

3) Some existing research is based on the typical daily charging
demands of users, without considering the uncertainty of
charging demands. This omission has resulted in weak
robustness of the planned charging station capacity and
ambiguity in defining the service areas for charging stations.

To address the above issues, this paper proposes a charging
station site selection and capacity determination model that
considers the uncertainty of dynamic charging demands. Based
on users’ travel characteristics, the users’ travel process is
simulated using trip chain theory, OD matrix, and an improved
Dijkstra algorithm to obtain the spatiotemporal distribution of EV
charging load through dynamic Monte Carlo simulation.
Considering constraints such as charging station distance and
queue waiting time, an objective function is established to
minimize the annual operational cost for station operators and
the annual economic loss for EV users. The model is solved
using an adaptive simulated annealing particle swarm
optimization algorithm. The proposed model aims to achieve an
optimal allocation of charging stations in terms of site selection and
capacity, taking into account the dynamic nature of charging
demands and the constraints of the transportation and power
distribution networks.

FIGURE 1
Technology roadmap of the paper.
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2 Optimized model of the
proposed system

Based on the electric vehicle charging load spatiotemporal
distribution prediction model, the electric vehicle site selection and
capacity optimization model, and the model solution algorithm, a
research framework for charging station location and capacity
considering the uncertainty of users’ dynamic charging demands is
proposed. The technology roadmap is shown in Figure 1.

2.1 EV travel characteristics and urban
functional area division

Based on the travel chain theory and OD matrix, we study the
travel characteristics of EVs, consider the attributes of urban
functional areas, road topology, and other factors, set different
charging trigger requirements in the dynamic charging demand
model according to EV types, and use the dynamic Dijkstra
algorithm combined with the Monte Carlo method. Establish a
prediction model for the temporal and spatial distribution of EV
charging load.

Studying the travel characteristics and charging demands of EVs
is the basis for selecting the site and capacity of charging stations.
Currently, to better describe EV travel destinations, the planning
area is divided into three types of urban functional areas: residential
areas, commercial areas, and work areas based on urban functional
area attributes and load types. EVs are usually divided into four
functional types: urban function vehicles, buses, electric private cars,
and electric taxis (Zuo et al., 2022). Since the charging locations of
the first two types of vehicles are relatively fixed, only the spatial and
temporal distribution of charging loads of electric private cars and
electric taxis are analyzed.

The EV travel chain is a special Markov chain. The Markov
chain is used to describe a random process with no aftereffects: if
each state transition is only related to the state of the previous
moment and has nothing to do with the past state (Chen, 2018). It
can be described as: at a certain moment, the EV sets off from the
current parking location, and the destination of this trip is only
related to the destination of the previous trip, forming a travel chain
based on the location at different times. The four travel chains
composed of electric private cars are shown in Figure 2. It is assumed
that the probabilities of the four travel chains are 50%, 15%, 10%,
and 10%, respectively.

Statistically analyze the travel chain data of electric private cars,
and fit the statistical data of the first trip time and length of stay in
residential areas, work areas, and commercial areas. Logarithmic
distribution is used to fit the first trip time. The Weibull distribution
is used to fit the length of stay in residential areas, work areas, and
commercial areas. The former is fitted with Weibull distribution,
and the latter two are fitted with generalized extreme value
distribution. The corresponding values are found in the literature
(Zhao et al., 2017). The state of charge at the time of the first trip
follows the normal distribution N (0.6, 0.1). The initial locations of
electric private cars and electric taxis are evenly distributed at
various points in residential areas and on roads respectively.

Since the taxi travel pattern has strong uncertainty and
randomness, the (Origin-Destination, OD) analysis method is
used to describe the taxi travel characteristics. Through traffic
survey statistics, the distribution pattern of taxi travel starting
and ending points can be determined, thus obtaining The OD
probability matrix of urban road network nodes in each period
(Zhu et al., 2023), the corresponding values are shown in Tables 2–4.

2.2 Speed-flow practical model

EV driving speed directly affects the power consumption per
unit mileage, which in turn affects its charging demands (Zhang
et al., 2022). Since the EV driving process is simulated in the urban
transportation system, it is necessary to accurately analyze the
impact of vehicle speed at different times on road capacity and
traffic flow (Shao et al., 2017). Therefore, this paper introduces the
speed-flow practical model. The speed Vij(t) of the vehicle traveling
on the road segment R (i,j) at time t can be expressed as

Vij t( ) � Vij−f

1 + qij t( )
Cij

( )β
(1)

β � a + b
qij t( )
Cij

( )n

(2)

In Eqs 1, 2, a, b, and n are the adaptive coefficients under
different road grades. Vij-f represents the zero flow speed of road
segment R(i,j); the ratio of traffic volume qij(t) of road segment R(i,j)
at time t to the traffic capacity Cij of road R(i,j) is called t Moment
road saturation. This paper mainly considers main roads (I) and
secondary roads (II), and the corresponding values of a, b, and n
refer to (Shao et al., 2017).

ΔTij t( ) � lijVij t( )−1 i, j � 1, 2, . . . , NR且i ≠ j( ) (3)

Equation 3 defines NR as the total number of road nodes in the
traffic network and lij as the length of the road section R(i,j) in the
traffic network. If there is no road connecting two nodes, the value of
lij is infinity.

2.3 Simulating EV travel routes based on
dynamic Dijkstra algorithm

They are considering urban road network information, which
mainly includes attributes of urban functional zones and road

FIGURE 2
Schematic diagram of typical simple chain and complex chain.
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topology, graph theory methods can be used to describe the
topological structure of the road network. After using the Monte
Carlo method to randomly select the origin and destination points
for EV users, users typically choose the travel path with the shortest
travel time from a set of candidate shortest paths. Based on the travel
characteristics of EVs, the traditional Dijkstra algorithm can be
improved to find the EV travel path with the minimum travel time.

This article is based on the dynamic Dijkstra algorithm. The first
step is to establish a road adjacency matrix, where the starting and
ending points of roads within the planning area, as well as
intersections, are considered as nodes. The algorithm aims to
find the M shortest candidate paths with the shortest distance
from a given starting point to the destination node for an EV.
Additionally, the speed-flow utility model described in Section 2.2 is
utilized to minimize the travel time. The solution process is outlined
as follows:

(1) Determine the road adjacency matrix D, the starting and
destination nodes, and the number of paths M;

(2) Apply Dijkstra algorithm to find the i-th shortest path and its
corresponding set of road segments;

(3) Remove the last road segment from the first i shortest paths
and obtain m subgraphs by sequentially removing other
road segments;

(4) Use the Dijkstra algorithm to find the shortest path set Rs

from the starting node to the destination node for
each subgraph;

(5) Remove duplicate paths from the candidate set, sort them
based on path length, and select the shortest path as the (i+1)-
the shortest path;

(6) Repeat steps 3, 4, and 5 until i = m, obtaining the top M
shortest paths. Then, use the speed-flow utility model to
determine the travel path L with the minimum travel time.

2.4 EV charging load spatiotemporal
distribution prediction model

The vehicles requiring charging on the road can be integrated
into the road nodes, considering the traffic nodes as charging
demand points (Xin et al., 2018). Using the dynamic Dijkstra
algorithm, the travel path with the minimum travel time is
determined. The unit mileage consumption model is used to
dynamically update parameters such as the remaining battery
level for EVs, establishing an individual EV dynamic charging
demand model. When an EV triggers a charging demand, the
dynamic Dijkstra algorithm is employed to calculate the route
with the minimum travel time from the charging demand point
to the charging station. In actual road travel, users do not always
choose the shortest travel time path due to their reasons.
Considering the diversity of users’ path choices, the shortest
travel time path is defined as the path that users are most likely
to choose, and the probability of choosing other paths is the same
and uniformly distributed. If there are s (s > 1) sets of paths for users
from the origin to the destination, the probability of choosing the
shortest travel time path is Ps, and the probability of choosing other
paths is (1-Ps)/(s-1). This paper takes Ps = 0.9.

According to reference (Song, 2014), based on actual road travel
data and considering the actual traffic congestion and vehicle
conditions, a unit mileage consumption model for EVs is

TABLE 2 Taxi OD probability matrix 06:00–18:00.

Urban functional area Residential area Business district Workspace

Residential area 0.15 0.2 0.65

Business district 0.15 0.15 0.7

Workspace 0.2 0.4 0.4

TABLE 3 Taxi OD probability matrix 18:00–21:00.

Urban functional area Residential area Business district Workspace

Residential area 0.15 0.2 0.65

Business district 0.15 0.15 0.7

Workspace 0.2 0.4 0.4

TABLE 4 Taxi OD probability matrix 21:00–06:00.

Urban functional area Residential area Business district Workspace

Residential area 0.3 0.4 0.3

Business district 0.3 0.3 0.4

Workspace 0.4 0.3 0.3
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established for different road levels. Therefore, the expression for the
unit mileage consumption model Eij for two-level roads is:

Eij �
−0.179 + 0.004Vij + 5.492

Vij
,main road I( )

0.21 − 0.001Vij + 1.531
Vij

, Secondary road II( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (4)

In Eq. 4, Eij is the EV power consumption per unit mileage of the
main road (I) and the secondary road (II).

Based on the travel characteristics of EVs, when analyzing
dynamic charging demand information, it is necessary to set
different charging trigger requirements in the dynamic charging
demand model according to the type of EV.

Electric private cars: The travel chain structure of electric private
cars is relatively fixed (Zhu et al., 2023), and it is necessary to
determine whether the remaining power of the EV meets the power
requirements for the next trip before the next trip. When the
remaining power Capt(i) cannot be satisfied, the charging
requirement is triggered.

Capt i( )≤ ∑
i,j( )∈Rs

lijEij (5)

In Eq. 5, Eij is the electric energy consumption per unit kilometer
of the road segment R(i,j) at time t of EV.

Taxi: Considering the mileage anxiety constraint of taxi users, set
the capacity of the electric taxi battery to be lower than 0.3Capi. In Eq. 6,
Capi is the capacity of the i-th electric taxi battery.WhenCapt(i) is lower
than the set threshold power, charging demand is triggered.

Capt i( )≤ 0.3Capi (6)

This paper considers the dynamic charging demands of electric
private cars and electric taxi users and uses the dynamic Dijkstra
algorithm combined with the Monte Carlo method to establish a
spatiotemporal distribution prediction model of EV charging load.
The specific process is shown in Supplementary
Appendix Figure SA1.

3 EV charging station site selection and
capacity optimization model

When establishing EV charging stations, it is crucial to consider
not only the annualized cost of operators but also the satisfaction of
the users during the charging process. The satisfaction of EV users
primarily depends on the time loss incurred while driving to the
charging station, the cost of energy loss during the travel from the
charging demand point to the charging station, and the users’
queuing time cost. A compromise between the interests of the
charging station and the users is inevitable. On the one hand, to
enhance user satisfaction, it is necessary to construct more charging
stations, which inevitably leads to increased costs for the charging
station operators. On the other hand, to save costs, the operators
would prefer to minimize the number of charging stations, but this
may adversely affect the interests of the users. In this study, we
assume that the interests of both the charging stations and the users
are equally important, and the objective function of our model is to
minimize the annualized total economic cost. Therefore, the

establishment of EV charging stations involves striking a balance
between the interests of the charging station operators and the users.
The goal is to minimize the annualized total economic cost while
ensuring satisfactory charging experiences for EV users.

3.1 EV charging station site selection model

The objective function of the EV charging station site selection
model is shown in Eqs 7–10.

minF � F1 + F2 (7)
F1 � ∑

k∈K

Ca + Cb( ) (8)

Ca � r0 1 + r0( )m
1 + r0( )m − 1

Nhigh
k Chigh

ch +Nlow
k Clow

ch + Gk( ) (9)

Cb � αTchTyear Nhigh
k Chigh

ch +Nlow
k Clow

ch( ) (10)

Equation 7 breaks down the annualized total economic cost:
F, into two parts: F1, the annualized cost of operators, and F2, the
annualized economic loss of EV users. The cost of F1 for
operators is made up of three main components: the annual
cost of constructing EV charging station infrastructure, the cost
of purchasing charging piles, and the average annual cost of
operation and maintenance.

In Eq. 8,Ca is the average annual construction investment cost of
EV charging stations; Cb is the average annual operation and
maintenance cost of EV charging stations; k∈K = {1,2, . . . kmax},
K is the set of EV charging stations, and kmax is the total number of
charging stations. In Eq. 9, m is the design operating life of the
charging station; r0 is the discount rate; Nhigh kandNlow k are
respectively the number of high-power/low-power charging piles
configured at charging station k, Chigh chand Clow chares the high-
power/low-power charging piles respectively. The unit price of low-
power charging pile; Gk is the infrastructure cost of charging station
k; in Eq. 10, α is the conversion rate of annual operation and
maintenance cost according to the annual operating capacity of
charging station k; Tch is the average effective charging time of
charging station per day; Tyear is the number of days in a year.

The annualized economic loss F2 of EV users mainly takes into
account the travel time cost, power loss cost, and queuing time cost
of the EV users’ journey to the charging station. The expression of F2
calculated using Eq. 11 is as follows:

F2 � Tyear Cwk + Cgk + Cmk( ) (11)

The travel time cost Cwk for EV users to travel from charging
demand point j to the k-th charging station can be expressed as

Cwk � Cevu∑kmax

k�1
∑jmax

j�1
NjΔTjk (12)

The expression (Eq. 12) states that Cevu represents the unit time
equivalent economic loss for EV users during their travel. Nj

represents the number of EVs charging at charging demand
point j and heading to the k-th charging station. jmax is the total
number of charging demand points, and ΔTjk represents the travel
time for an EV from charging demand point j to the k-th
charging station.
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The cost of energy loss during the travel from charging demand
point j to the k-th charging station for EV users denoted as Cgk can
be expressed as:

Cgk � Cch∑kmax

k�1
∑jmax

j�1
fNjLjk (13)

In Eq. 13, Cch represents the unit price of charging for EVs, f is the
conversion coefficient between EV travel distance and energy
consumption, and Ljk represents the total length of the road
segments for EVs traveling from charging demand point j to
charging station k.

3.2 Fixed capacity model of EV
charging station

For users, the number of charging piles configured determines
the queuing time. How to rationally allocate the number of high-
power/low-power charging piles, which not only takes into account
the interests of both charging station operators and users but also
improves charging pile service efficiency and reduces charging
station costs, is an issue that needs to be considered in charging
station capacity determination. Therefore, the M/M/c queuing
theory method is used to calculate the queuing waiting time of
EV users. It is assumed that the number of EVs arriving at the
charging station per hour obeys the Poisson distribution with
parameter λ (Liu et al., 2016). Then the service intensity ρ and
the average waiting time Wk of EV users are

ρ � λ

μNcs
k

(14)

Wk � Ncs
k ρ( )Ncs

k ρ

Ncs
k ! 1 − ρ( )2λP0 (15)

P0 � ∑Ncs
k
−1

i�0

1
i!

λ

μ
( )i

+ 1
Ncs

k ! 1 − ρ( ) λ

μ
( )Ncs

k⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦−1 (16)

In Eq. 14,Ncs k is the number of charging piles configured in the
k-th charging station, and μ is the number of vehicles that each
charging pile completes service per hour.

Equation 15 uses λ to represent the number of electric vehicles
that receive services at charging stations within an hour. For Eq. 15
to be accurate, the condition ρ < 1 must be met. Equation 16 defines
P0 as the probability of all charging piles being idle.

In Eq. 17, the average captain Lk per unit time is

Lk � Ncs
k ρ( )Ncs

k ρ

Ncs
k ! 1 − ρ( )2P0 + λ

μ
(17)

In Eq. 18, to simplify the calculations and consider different
charging durations for q EVs, the average number of vehicles served
per hour, denoted as �μ, for each charging station can be calculated
using the following formula:

�μ �
1
t1
+ 1

t2
+/ + 1

tq

q
(18)

Assuming that the number of vehicles receiving charging
services at time i in charging station k is λi, then the EV users’
queuing time cost Cmk is

Cmk � Cevu∑kmax

k�1
∑24
i�1
Wkiλi (19)

In Eq. 19,Wki represents the average queueing time at charging
station k during the period i.

Due to the holiday and random nature of EV charging loads, the
robustness of charging station capacity results obtained based on
typical days of charging demand is weak (Zhu et al., 2019). To
address the uncertainty in users’ dynamic charging demands, robust
optimization theory is utilized. It involves incorporating an
uncertain scenario set to capture the uncertainty in users’
demands and adjusting the size of the set through an uncertain
budget. This approach enables the optimization of the number of
high-power/low-power charging stations within the charging station
to meet the diverse needs of decision-makers while considering the
uncertainties in users’ demands.

Let the number of EVs that need to be charged at the charging
demand point j be xj, xj represents the lower bound of the
uncertainty parameter x̃j (j = 1, 2, 3...jmax), and dj represents the
length of the interval. Therefore xj ∈ [xj, xj + dj], In Eq. 20, ξj is
used to describe the deviation degree xj from the worst-case
scenario, and the expression is given by:

ξj � x̃j − xj

dj
(20)

Furthermore, to constrain the sum of relative deviation
degrees of uncertain parameters, let the sum of relative
deviation degrees of uncertain parameters not exceed the
uncertain budget Γk. In Eq. 21, A larger Γk value indicates a
broader range of the uncertain scenario set and reflects a higher
degree of risk preference by the decision maker. The expression is
as follows:

∑jmax

j�1
ξj ≤ Γk, k � 1, 2, 3...kmax (21)

3.3 Multiple constraints

The inequality constraints for the integration of EV charging
stations into the distribution network primarily consider the
capacity constraints of the distribution network (Ge et al., 2013).

3.3.1 Charging station number constraints

Nmin ≤N≤Nmax (22)
In Eq. 22, Nmin and Nmax are respectively the minimum and maximum
number of charging stations to be built in the planned area.

3.3.2 EV charging station distance constraint

Rk ≤ def ≤ 2Rk e ∈ K,f ∈ K, e ≠ f (23)

Equation 23 represents the distance constraint from neighboring
charging station e to charging station f. Rk represents the service
radius of the charging station.
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3.3.3 The voltage limits constraint for distribution
network node j

Vj
min ≤Vj ≤Vj

max j ∈ Nd (24)

In Eq. 24: Vmax j and Vmin j are the upper and lower voltage
limits of node j respectively; Nd is the number of nodes in the
distribution network in the planning area.

3.3.4 The total demands constraint

∑kmax

k�1
Tch PhighN

high
k + PlowN

low
k( )≥PD (25)

In Eq. 25, Phigh represents the power of high-power charging
equipment, Plow represents the power of low-power charging
equipment, and PD represents the total daily demands of EV
users in the planning area.

3.3.5 The queue waiting time constraint

Wh ≤Wh max (26)

In Eq. 26, Wh_max represents the maximum value for the queue
waiting time of users.

4 Optimized model
construction algorithm

Because the Voronoi diagram has the nearest neighbor property,
it was early applied to the substation planning and site selection
problem (Ge et al., 2007). In the planning and site selection of similar
charging stations, site selection layout, and service scope division
need to be carried out according to load demands. Therefore, a
weighted Voronoi diagram is introduced to divide the service range
of charging stations. In recent years, heuristic algorithms have been
widely used in EV charging station site selection and capacity
determination problems (Kong et al., 2019). Such as genetic
algorithm (Genetic Algorithm, GA) (Li et al., 2018) simulated
annealing algorithm (Fakhrmoosavi et al., 2021), whale
optimization algorithm (Zhang et al., 2019b), etc. Among these
heuristic algorithms, Particle Swarm Optimization (PSO) has been
widely used due to its simple structure and fast convergence speed.
However, as the number of iterations increases in the later stage of
the algorithm, the population diversity is lost. As a result, It is often
easy to fall into the local optimal solution (Kennedy and Eberhart,
1995). Therefore, to apply the algorithm to charging station site
selection planning, it is necessary to improve the algorithm to avoid
the group falling into local optimality prematurely.

4.1 Weighted voronoi diagram

The weighted Voronoi diagram, introduced in the text, is
defined as follows:

Let P = {P1, P2, ..., Pn} (3 ≤ n ≤∞) be a set of control points in the
plane, and τi (i = 1, 2, ..., n) is the given n positive real numbers, The
weighted Voronoi diagram for any point is defined as:

V Pi, τ i( ) � x ∈ V Pi, τ i( )∣∣∣∣d x, Pi( )
τ i

≤
d x, Pj( )

τj
,

j � 1, 2/, n, j ≠ i

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭ (27)

In Eq. 27, d (x, Pi) is the Euclidean distance between any point x
and Pi on the plane; τi is the weight of the vertex Pi. As shown in
Figure 3, there are a total of eleven vertices A...K, and the value in
parentheses in the figure represents the weight of the vertex.

It can be seen that the weighted Voronoi diagram also has the
function of dividing the space. The weighted distance from any point
in a V-curved shape of the weighted Voronoi diagram to the growing
element of the curved shape is smaller than the distance from the
point to other curved-shaped growing elements weighted distance.
For situations where the weights of each vertex are significantly
different, the weighted Voronoi diagram has a more accurate
reflection ability in spatial segmentation than the ordinary
Voronoi diagram. This feature can be exploited to adjust the
respective service range with the weight of charging stations.

In the iterative process of automatic division and alternation of
EV charging station site selection and service scope, EV charging
stations with a large number of charging piles and a large reference
capacity in the planned partition are given a greater initial weight.
When the EV charging demands in some planned partitions are too
large or too small, unreasonable partition weights need to be fine-
tuned during the iterative process. If the reference capacity of the
charging station in the planned area is close to the capacity margin of
the distribution network node to which it is connected, the weight of
the charging station needs to be adjusted to narrow the service scope.
The weight of each planning partition can be calculated by Eq. 29.

ωi �
���
Qr

Qi
,

√
i � 1, 2,/N (28)

FIGURE 3
Comparison between weighted voronoi diagram and
voronoi diagram.
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In Eq. 28, i is the number of planned partitions, Qi is the EV
charging demands of planned partition i, and Qr is the charging
station reference capacity of the planned partition.

4.2 Adaptive simulated annealing particle
swarm algorithm

This paper proposes an adaptive simulated annealing particle
swarm optimization algorithm (ASAPSO). The PSO algorithm
introduces a simulated annealing operation and uses the
Metropolis criterion to guide the population to accept differential
solutions with a certain probability, which improves the algorithm’s
ability to jump out of the local optimal solution (Yan et al., 2021b).
And adaptively adjust the inertial weight, self-cognition, and social
cognition parts.

The optimization process of the particle swarm algorithm is
completed by the flight of particles in the search space. The
expressions for each iterative update of particle speed and
position are:

vi h + 1( ) � ωvi h( ) + c1r1 Pbest,i h( ) − xi h( )( )
+c2r2 Gbest − xi h( )( ) (29)

xi h + 1( ) � xi h( ) + vi h + 1( ) (30)

In Eq. 29, The PSO algorithm involves several parameters,
including the inertia weight coefficient (ω), cognitive acceleration
coefficient (c1), and social acceleration coefficient (c2). These
parameters play a crucial role in shaping the behavior of the
algorithm and can significantly impact its performance.

The inertia weight coefficient controls the trade-off between global
exploration and local exploitation. A high ω value allows particles to
maintain their momentum and explore the search space more
extensively, enhancing global search capabilities. On the other hand,
a low ω value reduces the particle’s inertia, leading to more local
exploitation and fine-tuning of solutions. Selecting an appropriate ω
value is crucial to balancing exploration and exploitation.

Pbest,i and Gbest are the individual optimal position of the i-th
particle and the global optimal position of the population
respectively. c1, and c2 determine Pbest, i and Gbest on each
movement, c1 controls the particle’s tendency to move towards
its personal best, while c2 determines the attraction towards the
global best position. These coefficients regulate the balance between
exploiting the particle’s own experiences and leveraging information
from other particles in the swarm.

r1 and r2 are random numbers between 0 and 1, in Eq. 30, xi(h) and
vi(h) are the position and velocity of the i-th particle at the h-th iteration,
respectively, and h is the current number of iterations. ω gives particles
sufficient time to conduct a large-scale global search in the early stage of
the search, and its decline rate is slow; in themiddle stage, it strengthens
local search and decreases approximately linearly; in the later stage, it
focuses on detailed local search, and the rate of change decreases again.
Non-linear changes are used to control c1 and c2, and the learning
factors c1 and c2 adopt non-linear inverse cosine acceleration. Multiple
expressions are:

ω � ωmax + ωmin( )
2

+ ωmax − ωmin( )
2

tanh −4 + 8
hmax − h

hmax
( ) (31)

c1 � c1 e + c1 s − c1 e( ) 1 − arccos − 2h
hmax

+ 1( )
π

⎛⎝ ⎞⎠ (32)

c2 � c2 e + c2 s − c2 e( ) 1 − arccos − 2h
hmax

+ 1( )
π

⎛⎝ ⎞⎠ (33)

In Eq. 31, ωmax andωmin are the maximum andminimum values
of ω, and hmax is the maximum number of iterations.

In Eq. 32, c1_s and c1_e are the iterative initial value and terminal
value of the self-learning factor respectively; in Eq. 33, c2_s and c2_e
are the iterated initial value and terminal value of the social learning
factor, respectively.

By setting a higher initial temperature, the ASAPSO algorithm
can significantly increase the possibility of searching for the global
optimal solution. The formula is as follows:

T h( ) � − Qbest

ln 0.2( ), h � 1

μT h − 1( ), h> 1

⎧⎪⎪⎨⎪⎪⎩ (34)

T(h) is the current temperature, Qbest is the optimal value in the
initial particle population, and μ is the cooling coefficient.

When each particle moves to a new position, its fitness is
calculated. If the fitness value is better than the previous fitness
value, the particle is updated and moved to the new position;
otherwise, according to the Metropolis criterion, the fitness
difference ΔE is calculated (ΔE is The difference between the
current fitness value and the previous fitness value), if p(h) = exp
[-ΔE/T(h)]>rand (rand is any random number between 0 and 1),
then accept it with a certain probability The current solution is the
new solution and the particles move to the new position.

4.3 Solution process

The solution process is as follows.

Step 1: Initial data processing. In Eqs 35, 36, process the EV
charging demands for each hour at the demand points in the
planning area to obtain the total EV charging demands (Qeva).
Estimate the maximum number of charging stations (Nmax) and the
minimum number of charging stations (Nmin) based on the capacity
constraints of a single charging station. Within the range of Nmin to
Nmax, set the number of charging station constructions as a loop
variable N. Initialize N=Nmin and start the iteration. Increase N by
1 after each iteration.

Nmax � ceil
Qeva

Qmin
( ) (35)

Nmin � ceil
Qeva

Qmax
( ) (36)

Step 2: Algorithm parameter initialization. Set the coordinates of N
charging stations as a solving dimension. Randomly generate initial
velocities (v0) and positions (X0) for all particles in this dimension.
Set the parameters of the ASAPSO algorithm: swarm size (Nsize),
maximum number of iterations (Itermax), maximum inertia weight
(ωmax), minimum inertia weight (ωmin), cognitive coefficients (c1_s
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and c1_e), social coefficients (c2_s and c2_e), and mutation
probability (μ).

Step 3:Use a weighted Voronoi diagram to divide the service range
of charging stations.

Step 4: Calculate the queue waiting time for each charging station
and determine the corresponding quantities of high-power and low-
power charging equipment.

Step 5: Update the velocities and positions of the particles.

Step 6: Update the individuals based on the fitness function and
calculate the global best value (Gbest).

Step 7: Calculate the acceptance probability [p(h)] for accepting
new solutions.

Step 8:Use theMetropolis criterion to compare p(h) with a random
number (rand) and determine whether the new solution replaces the
global best solution. Update the temperature according to Eq. 34.

Step 9: Check if the maximum number of iterations (Itermax) has
been reached. If the condition is satisfied, stop the search and output
the optimization result. Otherwise, return to Step 5.

Step 10: Check if the maximum number of charging stations
(Nmax) has been reached. If the condition is satisfied, stop the
loop. This will yield Nmax-Nmin+1 site selection and capacity
determination solutions. Sort them based on the annual total
economic cost and select the optimal solution. Otherwise, return
to Step 2.

5 Results and discussions

5.1 Parameter scene setting

This study focuses on the site selection and capacity
optimization of EV charging stations in a specific region of a
northern city. The planning area of this region is approximately
58 km2, with an east-west span of about 7.56 km and a north-south
span of about 8.62 km. The total population in this area reaches
250,000. The first step is to divide the transportation road network
within this region. There are 48 road nodes and 82 road segments.
Within the planning area, there are 3,000 electric private vehicles
and 1,100 electric taxis. For simplicity, it is assumed that each
electric vehicle has an average capacity of 50 kWh.The coverage
of nodes for each functional zone within this area can be found in
Supplementary Appendix Table SA1, and the schematic diagram of
the road network structure is provided in Supplementary
Appendix Figure SA2.

In the given example, the parameters for the particle swarm
optimization algorithm are set as follows:

• Swarm size (Nsize = 100)
• Maximum number of iterations (Itermax = 100)
• Maximum inertia weight (ωmax = 0.95)

• Minimum inertia weight (ωmin = 0.45)
• Cognitive coefficient (c1_s = 2.50)
• Cognitive coefficient (c1_e = 1.25)
• Social coefficient (c2_s = 1.25)
• Social coefficient (c2_e = 2.50)
• Mutation probability (μ = 0.95)
• Γk = 1

The parameters related to the charging stations are as follows:

• High-power charging station power (Phigh = 80 kW)
• Cost of purchasing a high-power charging station:
20,000 yuan per unit

• Low-power charging station power: (Plow = 30 kW)
• Cost of purchasing a low-power charging station:
8,000 yuan per unit

• Minimum number of charging stations to be built (Nmin = 5)
• Maximum number of charging stations to be built: (Nmax = 12)
• Service radius (Rk = 1.5 km)
• Maximum waiting time for charging (Wh_max = 20 min)

Other charging station planning parameter values can be found
in Supplementary Appendix Table SA2.

5.2 Spatiotemporal distribution
prediction results

Using the load forecasting method proposed in Section 2, which
takes into account the dynamic charging demands of users, the
spatial and temporal distribution of charging load for electric private
vehicles and electric taxis is obtained. The specific results are shown
in Figure and Figure 5.

Analysis of Figures 4, 5 reveals that the spatial and temporal
distribution of charging load at each node is closely related to the
functional zones of the respective cities. The nighttime peak
charging demand areas are predominantly concentrated in
residential areas, while the daytime peak charging demand areas
are primarily concentrated in working and commercial zones. For
electric private vehicles, the peak charging demands during the

FIGURE 4
Spatial and temporal distribution of charging load of electric
private cars.
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nighttime are mainly concentrated between 19:00 and 03:00. This is
because most electric private vehicle owners prefer to charge their
vehicles slowly during the night. The peak charging load in
residential areas occurs around 19:00 when most electric private
vehicle users return home.

For taxis, the charging load reaches its peak between 12:00 and
14:00, with another peak occurring between 17:00 and 18:00. During
the first period, taxi drivers take a break and have lunch, so they
prefer fast charging to quickly replenish their vehicle’s battery. The
second period is 1 h before the evening rush hour when they need to
quickly recharge to cope with the upcoming peak demand. In
different functional zones, significant charging demands for
electric private vehicles are observed at nodes 1–9, 16–21, 46–48,
etc. After work or commercial activities, most electric private vehicle
users return to residential areas. If their remaining battery level is
insufficient for the next trip, charging demands arise. For taxis,
nodes 8–10, 22–24, and 38–42 represent the road nodes with the
highest number of charging stations in each functional zone. These
nodes primarily serve as transportation hubs connecting residential
and commercial areas and are linked to main roads. From a spatial
perspective, the charging load for taxis is significantly influenced by
the attributes of the functional zones. On one hand, users
concentrate along the main roads connecting residential areas to
commercial areas, which are the main destinations and passenger
pick-up areas for taxis, resulting in higher charging demands. On the
other hand, main roads in the urban transportation system provide
advantages such as wider roads and easier travel, making drivers
more likely to choose them, thereby increasing the
charging demands.

5.3 Algorithm verification

To verify the superiority of the proposed algorithm, we chose to
run it on the same computer and used the ASAPSO algorithm,
Particle Swarm Optimization (PSO), and Genetic Algorithm (GA)
mentioned in the article to solve the example, respectively, the
optimal fitness curves of the three algorithms are obtained, as
shown in Figure 6. Comparing the three curves in the figure, we
can see that the PSO algorithm has the fastest convergence speed in
the early iterations and converges quickly with a smaller number of

iterations. The GA algorithm has the slowest convergence speed.
Compared with other algorithms, ASAPSO has better convergence
speed and accuracy in the early iterations, and after 60 iterations,
when the other two algorithms have fallen into local optimal
solutions, the ASAPSO algorithm can still continuously update
the global optimal value, still maintaining good population
diversity in the middle and late stages of iteration. It can be seen
that ASAPSO has certain advantages in both convergence speed and
accuracy, and the comprehensive optimization results are better
than the other two algorithms.

5.4 Result of charging station site selection
and capacity determination

Based on the prediction of the spatial and temporal distribution
of charging demands, the planning process is solved according to
Section 4.3, and the annualized total economic cost of each planning
scheme is obtained, as shown in Table 5 and Figure 7.

Table 5 shows that for EV charging station operators, the
number of charging stations has a linear relationship with the
annual average fixed construction costs and annual average
operational and maintenance costs. For EV users, an increase in
the number of charging stations reduces costs associated with travel

FIGURE 5
Spatial and temporal distribution of charging load of electric taxis. FIGURE 6

Comparison of optimal fitness curves of three algorithms.

TABLE 5 Annualized total economic cost of each planning scheme.

N Ca Cb Cwk Cgk Cmk F

5 78.71 88.16 125.79 90.04 80.03 462.73

6 87.59 100.73 101.17 79.16 70.89 439.54

7 94.36 110.72 83.98 60.48 50.47 400.01

8 107.23 123.08 78.74 54.53 48.53 412.11

9 121.49 143.68 73.74 50.10 43.10 432.11

10 133.18 150.67 69.68 49.33 40.33 443.19

11 150.13 183.25 64.98 47.39 38.39 484.14

12 164.13 192.50 62.73 46.93 36.93 503.22
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distance, time, and waiting queues. When constructing 5 to
7 charging stations, the total annual economic cost decreases as
the number of EV charging stations increases. However, when
constructing 7 to 12 stations, the total annual economic cost
increases with the number of stations. The optimal planning
solution is achieved when there are 7 charging stations, resulting
in the minimum total annual economic cost of 4,000,100 yuan.

For the planning solution with seven charging stations, the
objective is to minimize the sum of EV users’ annual economic
losses and charging station operators’ annual costs. The optimal
number and locations of charging stations are determined using the
risk-value theory to solve the robust capacity model. The weighted
Voronoi diagram is employed to divide the service range of the
charging stations. The coordinates of the charging station sites and
the number of charging piles for each station are shown in Table 6.
The configuration of high-power and low-power charging piles is
illustrated in Figure 8, and the layout and service range division of
the charging stations are presented in Figure 8. The layout and
service coverage of the charging stations are depicted in Figure 9,
with the numbering of the 7 charging stations as A, B, C, D,
E, F, and G.

From the results in Table 6 combined with Figure 8, it can be seen
that the number of charging piles in different charging stations is
related to the charging load of the coverage area. According to the
analysis of the EV charging load demand prediction results in Section
5.2, it can be seen that EVs generally replenish electric energy quickly in

a short time in commercial areas. Charging times are relatively long in
work areas and residential areas. Road node numbers with large
charging load requirements are 5, 11, 33, 38, 41, 44, etc.; charging
stations covering these nodes, such as charging stations B, F, and G are
equipped with a larger number of charging piles. Charging stations A,
C, and D exhibit comparatively lower charging demand within their
respective coverage areas, leading to a noticeably reduced number of
charging points allocated correspondingly. It can be seen from Figure 8
that for charging stations with a larger total number of charging piles,
the proportion of high-power charging piles is greater than that of low-
power charging piles, and most of these charging stations are
distributed in areas with high charging demands, such as charging
stations B and F. It is not only close to the business district but also
located in the heart of the residential area or work area. Charging
stations with a high proportion of low-power charging piles mean that
there are less demands for fast charging in the coverage area. As long as
it can meet normal charging, the corresponding total charging
demands are relatively low, such as charging stations A, C, and D.

Based on the aforementioned results, it can be concluded that
the proposed optimization strategy for configuring high-power and
low-power charging stations effectively addresses the charging
demand in different planning areas. This approach expands the
range of options available to EV users. Compared to methods that
only consider the deployment of high-power charging stations, this
strategy demonstrates superiority in practical capacity-based
applications of charging stations.

FIGURE 7
Annualized total economic cost comparison chart.

TABLE 6 The site selection of the EV charging station and the number of charging piles.

Charging station number x/km y/km The total amount of charging piles Road network node number

A 1.84 8.40 16 1, 2, 3, 7, 8, 9

B 6.97 7.13 21 4–6, 10–12, 13–15

C 1.43 5.10 16 17–20, 29, 30

D 4.99 4.62 18 16, 21, 22, 27, 28

E 7.93 3.79 18 24, 25, 26, 36

F 1.88 1.53 25 31–33, 37–39, 43–45

G 6.94 1.34 20 34, 35, 40–42, 46–48

FIGURE 8
The number of high-power/low-power electric piles configured
in each charging station.
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In addition, due to the increasing demand from EV users in
recent years, to further highlight the advantages of the robust
optimization model, deterministic Scenario 1 and uncertain
Scenario 2 were designed in this section for analysis and comparison.

Scenario 1:Under the deterministic condition of EV user charging
demand, the number, location, and capacity of charging stations are
determined using the charging station optimization model
established in Section 3.

Scenario 2: Under the uncertain condition of EV user charging
demand, without adding new charging station locations, the capacity
of existing charging stations is adjusted using the capacity-based
robust model.

To compare the resilience of the two scenarios against risks, the
existing demand at each charging point was increased by 20% to
represent the expected demand. Figure 10 illustrates the quantities of
charging points configured when the demand is increased by 20%.

Based on Figure 11, it can be observed that the charging station
capacity in Scenario 1 almost perfectly meets the current existing users’
charging demands. However, when the users’ anticipated charging
demand increases by 20%, the daily service capacity of the
previously optimized seven charging stations is unable to meet the
users’ requirements. This would significantly diminish the charging
experience for EV users. Without considering the addition of new
charging station locations, and only taking into account the uncertainty
of demand, a robust capacity planning model adjusts the capacity of the
existing charging stations. Comparing the capacity planning results, it is
evident that Scenario 2, in contrast to Scenario 1, not only effectively
satisfies the current users’ charging demands but also leaves room for
expansion. Even with a 20% increase in the anticipated charging

demand, the capacity planning results in Scenario 2 still meet the
users’ expected requirements. This indicates that the capacity
adjustment in Scenario 2, implemented through a robust capacity
planning model that considers demand uncertainty without the need
for additional charging station locations, proves capable of meeting the
users’ anticipated demands. Moreover, it demonstrates that Scenario 2
charging station capacity is more than sufficient to accommodate the
increased demand, ensuring a satisfactory charging experience for
EV users.

6 Conclusion

The paper proposes a capacity determination method for siting
charging stations considering the uncertainty of users’ dynamic
charging demands. Through a case study analyzing a specific
city’s urban area in the northern region, the main conclusions
obtained are as follows:

1) The proposed charging station planning model, which aims to
minimize the annual total economic cost, provides reasonable
charging station locations and the configuration of high-
power/low-power charging piles. It aligns well with the

FIGURE 9
Site selection and service scope division map.

FIGURE 10
The number of electric piles in each charging station in Scenario
2 when the demands increase by 20%.

FIGURE 11
Comparison of the total capacity of charging stations in Scenario
1 and Scenario 2.
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actual situation. The annual costs of EV charging station
operators and the annual economic losses of users are
relatively low, balancing the interests of both parties.

2) The ASAPSO algorithm, introduced in the study, incorporates a
simulated annealing mechanism and adaptively adjusts the self-
cognition and social cognition components, improving algorithm
performance. This leads to more accurate siting planning results
for charging stations. The introduced weighted Voronoi diagram
effectively delineates the service range of charging stations.

3) The proposed capacity-constrained robust model, which
considers the configuration of high-power/low-power
charging piles, enables effective optimization of these piles’
quantities. It provides a reference for addressing the
uncertainty of charging demands in charging station planning.
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