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As the specific energy of traditional lithium-ion batteries (LIBs) approaches
theoretical limits, the quest for alternatives intensifies. Lithium metal batteries
(LMBs) stand out as a potential solution, promising substantially higher energy
densities (~35% increase in specific energy and ~50% increase in energy density at
the cell level). Historically, challenges with liquid electrolytes (LEs) in LMBs, such as
dendrite growth and unstable solid electrolyte interphase (SEI) formation, led to
skepticism about their compatibility and most of the focus was on solid-state
electrolytes (SSEs) such as polymer electrolytes and recently inorganic
electrolytes (oxides, sulphides halides). However, recent strides in LE
engineering have repositioned LEs as viable candidates for LMBs, particularly
with the strategic use of additives and the careful formulating of solvents. This
review delves into the engineering of LEs for LMBs, highlighting their renewed
potential and explores the realm of SSEs and report on the recent advancements in
both fields. We aim to provide a comprehensive overview of the evolving
landscape of LMB research.
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Introduction

Lithium-ion batteries (LIBs) have revolutionized the realms of portable electronics and
electric vehicles, offering transformative power storage solutions for a technologically-driven
society (Chu et al., 2016). Their widespread adoption was driven by the high energy density
as well as efficiency and versatility they introduced, which was notably absent in the battery
technologies that preceded them (Liu et al., 2019a). Yet, the insatiable demand for even
higher energy density and efficiency reveals that the potential of LIBs is nearing its limit,
especially with graphite-based anodes reaching their theoretical energy threshold (Lin et al.,
2017). Lithium metal batteries (LMBs) emerged as a promising alternative, offering much
higher specific capacities (Liu et al., 2017). They were, in fact, commercialized even before
LIBs but were shelved due to notable safety concerns and limited cyclability (Lin et al., 2017).
Their potential to usher in an era of batteries with unparalleled specific energy has been
acknowledged, given their impressive specific capacity and low reduction potential (Liu et al.,
2017). By replacing the graphite electrode with lithium metal, there’s a projected ~35%
increase in specific energy and ~50% increase in energy density at the cell level, outlining a
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promising route to meet the US Department of Energy’s (DOE)
electric vehicle pack benchmarks of 235 Wh kg–1, 500 Wh L–1, and a
cost of 125 US$ kWh–1 (Albertus et al., 2017). However, despite these
compelling advantages, LMBs face significant challenges, such as the
growth of dendrites, which not only shorten battery life but also pose
serious safety threats (Albertus et al., 2017).

A crucial aspect of lithium batteries, both LIBs and LMBs, is the
choice and stability of the electrolyte used. Historically, ether-based
electrolytes dominated the landscape due to their reductive stability
(Peled, 1979). However, with the advent of high-voltage cathodes,
there was a noticeable shift. The changing dynamics required a shift
from ether solvents to carbonate-based, moderate-concentration
electrolytes to ensure compatibility (Amanchukwu et al., 2020).
Although these aligned with high-voltage cathodes, they exhibited

instability when paired with lithium metal, leading to issues like
dendritic growth and reduced cycle life (Qian et al., 2015).

Considering these developments and challenges, the past decade
saw researchers pioneering strategies that enhanced electrolyte
concentrations and opened doors to more stable electrolytes that
could work seamlessly with lithium metal anodes and high-voltage
cathodes. However, the quest for the ideal LMB is ongoing, as the
performance of current LMBs still falls short of practical application
benchmarks (Louli et al., 2020). Figure 1A demonstrates the
increased interest in LMBs in recent literature by showcasing the
ratio of publications containing the keyword ‘lithium metal
batteries’ to publications containing the more general keyword
‘lithium batteries’ calculated from numbers provided by
Manthiram et al. (Su and Manthiram, 2022). This mini review

FIGURE 1
(A) Ratio of publications with the keyword lithium metal battery to publications with the keyword lithium battery adapted from (Su and Manthiram,
2022). (B) Comparison of capacity retention curves of batteries with different Coulombic efficiencies. (C) Schematics comparing condition of lithium
metal batteries cycled with non compatible liquid electrolyte (top) and compatible liquid electrolyte (bottom) reproduced from (Wang et al., 2022). (D)
potential challenges in all-solid-state lithium metal batteries reproduced from (Liu et al., 2022).
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will delve deeper into the forefront of battery research. Firstly, we
will discuss recent advances in lithium electrolyte (LE) engineering,
shedding light on the innovations that have enhanced battery
performance and safety. Subsequently, we will explore the strides
made in enabling solid-state lithium metal batteries (SSLMBs).
Figure 1C, D show schematics that summarize the challenges
within LE enabled LMBs and solid-state electrolytes (SSEs)
enabled LMBs. Finally, we gaze into the horizon of
electrochemical energy storage, outlining our envisioned future
targets and practical considerations for LMBs. We will explore
pathways, informed by current research trends and technological
gaps, on how we might traverse the journey from present
achievements to future aspirations.

Liquid electrolyte lithium metal batteries

High concentration electrolytes (HCEs)
The pursuit of enhancing electrolyte concentrations for superior

battery performance can be traced back to LIB research from the mid-
1980s (Yamada and Yamada, 2015a; Wang et al., 2022). McKinnon
and Dahn’s 1985 discovery showcased how saturated LiAsF6 in
propylene carbonate (PC) successfully circumvented the co-
intercalation of PC into ZrS2 electrodes (McKinnon and Dahn,
1985). Subsequent works by Jeong et al. extended these findings,
highlighting the efficacy of concentrated solvents like LiClO4, LiPF6,
and LiBETI in PC to suppress co-intercalation into graphite anodes.
(Jeong et al., 2003; Jeong et al., 2008a). Recently, Yamada et al.
successfully extended their application to alternative solvents such
as dimethyl sulfoxide (DMSO) and acetonitrile (AN), complemented
with 3.2–4 M LiTFSI as the salt (Yamada et al., 2010). These high
concentration electrolytes (HCEs) not only curtailed co-intercalation,
but also significantly enhanced the electrolyte’s reductive stability
(Yamada et al., 2014). Additionally, Suo et al., ‘s 2015 adaptation of
this approach to water-based electrolytesmarked a pioneering venture
into aqueous LIB chemistry (Suo et al., 2015).

HCE’s potential in enhancing Li metal cycling came to the
forefront with Jeong et al., ‘s 2008 exploration, which, while
promising, highlighted the necessity for further optimization
(Jeong et al., 2008b). A groundbreaking study in 2015 by Qian
et al. detailed the success of 4 M LiFSI in DME, achieving impressive
Li cycling columbic efficiency (CEs): 99.1% under 0.2 mA/cm2 and
98.4% under 4 mA/cm2 (Qian et al., 2015). Numerous subsequent
investigations have further refined HCEs for LMBs, striving for
optimal performance and stability (Zeng et al., 2018a; Fan et al.,
2018b; Suo et al., 2018; Hagos et al., 2019; Maeyoshi et al., 2019;
Chen et al., 2020; Wang et al., 2022). However, despite their merits,
HCEs do possess shortcomings, including reduced ionic
conductivity and increased viscosity, which necessitate specialized
separators (Yamada and Yamada, 2015b). Moreover, the high
concentration leads to substantial cost implications due to the
predominant usage of expensive Li salts (Zhang et al., 2020).

Localized high concentration electrolytes (LHCEs)
To circumvent HCEs’ limitations, diluting HCEs with another

solvent seemed to be a straightforward solution. However, the
challenge lay in selecting a solvent that would not compromise
the Li-ion solvation environment intrinsic to HCEs. Early work by

Dokko et al., in 2013 highlighted this potential, leveraging the
benefits of diluting HCEs with solvents like 1,1,2,2-
tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) to enhance
Li-S batteries’ cyclability (Dokko et al., 2013). A slew of subsequent
research has expanded on these findings, identifying optimal solvent
ratios and candidates for dilution that ensure stability and
performance (Moon et al., 2015; Ueno et al., 2016; Doi et al.,
2017; Wang et al., 2022).

Chen and co-workers’ 2018 introduction of a Li metal CE of
99.3% in a unique electrolyte comprising 5.5 M LiFSI/dimethyl
carbonate and bis(2,2,2-trifluoroethyl)ether highlighted the
innovation in LHCEs (Chen et al., 2018c). A series of LHCEs
followed, each honing in on the optimal molar ratios and
solvents to maximize LMB performance (Chen et al., 2018d; Cao
et al., 2019; Fan et al., 2019; Ren et al., 2019; Wang et al., 2022). The
full potential of these electrolytes has yet to be validated.

Electrolytes with novel additives
Electrolyte additives have etched a reputation for significantly

impacting Li-based battery performance (Xu, 2004; Zhang et al.,
2018c). Historical research has presented a plethora of additives,
from 2-methylfuran (Abraham et al., 1984) and CO2 (Aurbach et al.,
1992; Aurbach and Zaban, 1994) to a wide range of inorganic metal
ions (Matsuda, 1993; Yoon et al., 2008; Vega et al., 2009; Stark et al.,
2011; Wang et al., 2022). Modern advancements, particularly over
the past half-decade, have witnessed an influx of new organic/
inorganic additives (Wang et al., 2022). Some notable mentions
include solvents like vinylene carbonate, (Stark et al., 2011; Ren et al.,
2018), fluoroethylene carbonate, (Stark et al., 2011; Zhang et al.,
2017), and bis(2,2,2-trifluoroethyl) carbonate (Louli et al., 2019)
salts like LiAsF6, (Ren et al., 2018), LiPF6, (Stark et al., 2011), and
LiNO3, (Li et al., 2015; Zhang et al., 2018; Yan et al., 2018; Wang
et al., 2019; Yan et al., 2019; Wang et al., 2022), and innovative
materials such as LiF, (Lu et al., 2014), nanodiamonds, (Cheng et al.,
2017), LiPS, (Li et al., 2015), and tris(pentafluorophenyl) borane
(Li et al., 2020). Among these, fluorinated chemicals, especially LiF,
FEC, and CuF2, have proven to be particularly impactful. LiNO3’s
widespread adoption further underscores its effectiveness, greatly
enhancing Li metal’s CE (Wang et al., 2019). In tandem, the
integration of additives with electrolytes, as demonstrated by Lu
and co-workers, (Li et al., 2020; Zhang et al., 2020), showcases the
vast potential inherent in additive candidates. These combinations
and synergies underline the promise additives hold for enhancing
LMBs’ performance.

Fluorinated electrolytes
Fluorinated electrolytes have emerged as a promising electrolyte

due to their ability to form stable solid electrolyte interphase (SEI) or
cathode electrolyte interphase (CEI) layers (Yuan et al., 2023). These
electrolytes are derived by substituting hydrogen atoms in solvent
molecules with fluorine atoms, which aids in forming LiF-rich SEI
or CEI layers on both the cathode and Li metal (Li et al., 2019).
This substitution also reduces the flammability of organic
solvents (Shadike et al., 2021; Xu et al., 2021). Wang et al.
introduced an all-fluorinated electrolyte composed of 1 M
LiPF6 in a mixture of FEC, 3,3,3-fluoroethyl-methyl carbonate,
and 1,1,2,2-tetrafluoroethyl-2′,2′,2′-trifluoroethyl ether. This
electrolyte is nonflammable and forms F-rich SEI layers

Frontiers in Energy Research frontiersin.org03

Al-Salih et al. 10.3389/fenrg.2023.1325316

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1325316


(Shadike et al., 2021). With added lithium difluorooxalatoborate
salt, the interphase of the LiNiO2 cathode is stabilized, enhancing
electrochemical performance (Deng et al., 2019). It is also suitable
for 5.3 V high-voltage cathodes by forming LiF-rich CEI
layers (Chen et al., 2019). Yu et al. designed fluorine-
substituted ether solvents, which after fluorine substitution,
became highly stable against both Li-metal and high-voltage
cathodes (Yu et al., 2020). They further synthesized fluorinated-
1,2-diethoxyethanes, revealing that the position and amount of
F atoms on 1,2-diethoxyethane significantly influence electrolyte
performance (Kim et al., 2022). Fluorinated electrolytes also exhibit
extended electrochemical windows, reaching up to 6 V, surpassing
conventional carbonate electrolytes (Yang et al., 2021). However, they
have higher viscosity and lower ionic conductivity, necessitating the
use of co-solvents to optimize these properties.

Phosphate-based electrolytes
Phosphate solvents, inherently non-flammable, have been

explored as potential electrolyte solvents as well. These solvents,
while employed in various applications as flame-retardant
additives, unfortunately, exhibit instability towards the Li-metal
anode. For instance, Wang et al. highlighted that even with an
electrolyte containing 10 wt% tris(2,2,2-trifluoroethyl) phosphite
additive, Li–S batteries failed after 700 cycles due to the Li-metal
anode’s degradation (Wang et al., 2014). Liu et al. delved into the
stability of Li deposition in phosphate electrolytes with varying salt-to-
solvent ratios. They found that a 1:1 ratio was essential to achieve an
initial CE of 94.8% for Li deposition (Zeng et al., 2018b). Several
strategies have been proposed to stabilize the Solid Electrolyte
Interphase (SEI) between the Li-metal anode and phosphate
solvents. These include designing ion-solvation phosphate-based
electrolytes, preparing LHCEs, constructing nitride interphases, and
developing inorganic-rich solid-state electrolytes (Shi et al., 2018). In
high-concentration phosphate electrolytes, both the phosphate
solvent and Li ions are surrounded by lithium salt anions. This
configuration leads to the formation of inorganic-rich SEI layers
during discharge, enhancing Li deposition’s average CE to over
99% when the salt-to-solvent ratio is 1:2 (Zeng et al., 2018a).
Additives have also shown promise in stabilizing the interphase in
phosphate electrolytes. Guo et al. introduced LiNO3 into the triethyl
phosphate electrolyte, resulting in a nitride-rich interphase that
improved the reversibility of Li deposition (Tan et al., 2019).
Another effective additive, Li2O, has been shown to enhance the
inorganic content in the SEI layer, improving its stability (Zhang et al.,
2021; Kim et al., 2022).

Ionic liquid electrolytes
Ionic liquids (IL), by virtue of their distinct physicochemical

properties, have marked a significant advance in the electrolyte
landscape for LMBs Renowned for their nonflammability and
negligible volatility, these liquids are poised to replace conventional
carbonate-based solvents, enhancing the safety metrics of battery
systems (Sun et al., 2020; Dong et al., 2022). The ionic liquids
featuring FSI-/TFSI- anions have garnered attention due to their
efficient ion transfer, with the reduced interaction between cations
and anions boosting Li+ fluidity (Wang et al., 2019). One such
prominent example is the EM–5Li–Na IL electrolyte, composed of 1-
ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([EMIm]FSI)

mixed with 5 M lithium bis(fluorosulfonyl)imide (LiFSI) and 0.16M
sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) additive. This
electrolyte showcases a low viscosity of 125mPa s at ambient
temperature, significantly lower than earlier ionic liquid formulations
(Sun et al., 2020). Its ion conductivity stands at ~2.6 mS cm-1 at 25°C,
appreciably higher than other ionic liquids used in LMBs, and increases
further with temperature (Sun et al., 2020). The LiCoO2 (LCO)||Li cell
employing this electrolyte demonstrates superior capacity retention and
CE at moderate rates, in contrast to the rapid performance degradation
seen with conventional electrolytes (Sun et al., 2020). Furthermore, the
high concentration of LiFSI salts in the EM–5Li–Na IL electrolyte is
linked to its enhanced battery performance, and the strategic inclusion of
NaTFSI as an additive is a novel approach to LMB improvement (Sun
et al., 2020). In essence, ionic-liquid electrolytes, with their broad
electrochemical windows and superior safety profiles, could also offer
a potential path forward for the development of high-voltage, high-
safety LMBs.

Solid electrolytes lithium metal batteries

Solid-state electrolytes (SSEs) are also a promising option as an
electrolyte in LMBs. Monroe’s report highlighted that a solid
electrolyte with a shear modulus greater than 6.8 GPa effectively
suppresses lithium dendrites (Monroe and Newman, 2005). It was
also established that, aside from the modulus, other properties like
Li+ conductivity of the solid electrolyte have a role in dendrite
suppression (Khurana et al., 2014). Optimal solid electrolytes share
certain desired characteristics, (Wang et al., 2021), namely,.

• High Li+ ion conductivity at ambient temperature.
• Adequate mechanical strength to prevent dendrite growth.
• Compatibility at the interface with both electrodes.
• Chemical and electrochemical stability.

Among the various solid electrolytes researched, they can be
broadly classified into ceramic electrolytes, polymer electrolytes, and
hybrid inorganic/polymer solid electrolytes.

Inorganic solid electrolytes
These are notable for their good Li+ conductivity (>10–3 Scm−1)

and high elastic modulus, ranging from tens to hundreds of
gigapascals (Xiong et al., 2020). Oxides (Li et al., 2019; Guo
et al., 2019; Jiang et al., 2020) and sulfides (Zhao et al., 2020)
have been explored as potential electrolytes in LMBs. However, their
intrinsic brittleness and rigidity, combined with compatibility issues
at the solid electrolyte/lithium interface, pose significant challenges
for real-world applications. Interlayers between the solid electrolyte
and lithium, like a membrane consisting of lithium perchlorate, poly
(ethylene oxide) (PEO), and garnet particles, have been introduced
to mitigate these problems (Pervez et al., 2019; Wen et al., 2019).

Polymer solid electrolytes
Comprising of a blend of lithium salts and a polymer matrix,

polymer solid electrolytes benefit from enhanced interface
compatibility over their inorganic counterparts, thanks to their
inherent flexibility (Li et al., 2019). PEO stands out as the
primary material in this category. However, challenges arise due
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TABLE 1 Recently reported lithium metal batteries employing novel liquid and solid electrolytes along with their reported performance. Note: N/P is the ratio of
negative to positive electrode capacity.

Cell configuration Electrolyte Electrochemical
performance

Notes References

Cu/LiTFSI-LiFSI-G3-HFE/
NMC811+Li2O

1 M LiTFSI +1.5 M LiFSI/G3-HFE 0.375C–0.5D Capacity retention: 80%
(300th cycle)

Anode free Qiao et al. (2021)

Li/LiFSI-DME/NMC111 4 M LiFSI/DME C/3 Capacity retention: 92% (500th
cycle)

N/p = 60. N/P too high could impact
energy density

Qian et al. (2016)

Cu/LiFSI-DME/NMC111 C/8 Capacity retention: 60% (50th
cycle)

Anode-free

Li/LiFSI-DMC-BTFE/NMC111 1.2 M LiFSI/DMC-BTFE 0.5C - 2D Capacity retention: 80%
(700th cycle)

N/p = 45. N/P too high could impact
energy density

Chen et al.
(2018a)

Li/LiFSI-TEP-BTFE/NMC622 1.2 M LiFSI/TEP-BTFE C/3–1D Capacity retention: 97%
(600th cycle)

N/p = 56.25. N/P too high could
impact energy density

Chen et al.
(2018b)

Li/LiFSI-FDMB/NMC532 1 M LiFSI/FDMB C/3 Capacity retention: 100% (210th
cycle)

N/p = 2.5 Yu et al. (2020)

1 M LiFSI/FDMB C/5–D/3 Capacity retention: 80%
(100th cycle)

Anode free

Li/LiFSI-DME-FDMH/
NMC532

1 M LiFSI/DME-FDMH C/3 Capacity retention: 84% (250th
cycle)

N/p = 1.6 Wang et al.
(2021a)

Li/LiFSI-DME-FDMH/
NMC811

C/2 Capacity retention: 76% (250th
cycle)

N/p = 2

C/5–D/4 Capacity retention: 75%
(120th cycle)

Anode free

Li/LiPF6-FEC-FEMC-D2/
NMC811

1 M LiPF6/FEC-FEMC-D2 C/2 Capacity retention: 95% (120th
cycle)

N/p = 1 Fan et al. (2018a)

C/4 Capacity retention: 50% (30th
cycle)

Anode free

Li/LiFSI-FSA/NMC622 1 M LiFSI/FSA C/4 Capacity retention: 89% (200th
cycle)

N/p = 7.6 Xue et al. (2020)

C/10–D/3 Capacity retention: 50.8%
(45th cycle)

Anode free

Li/LiTFSI-LiDFPB-DME/
NMC111

2 M LiTFSI +2 M LiDFOB/DME C/3–1D Capacity retention: 79%
(500th cycle)

N/p = 30 Jiao et al. (2018)

Li/LiPF6-EC-DEC-LiNO3/
NMC111

0.5 M LiPF6/EC-DEC with LiNO3 1C Capacity retention: 80% (250th
cycle)

N/p = 8.4 Liu et al. (2018)

Li/LiFSI-DME-LiNO3-
CuF2/LFP

2.3 M LiFSI/DME with 20 mM of
LiNO3 and 20 mM of CuF2

0.2c Capacity retention: 100% (80th
cycle)

N/p = 5 Yan et al. (2019)

Li/PPC-P(VDF-HFP)/LFP PPC/P(VDF-HFP) Initial discharge capacity:
140.0 mAh g−1 (50 μA cm−2) Capacity
retention: 91.3% (300th cycle)

- Lu et al. (2020)

Li/SN-CSSE/LCO SN-CSSE Initial discharge capacity: 160 mAh
g−1 (0.1C) Capacity retention: 99.98%
(85th cycle)

- Fu et al. (2021)

Li/LiTFSI-PEO@Ce-MOF/LFP LiTFSI-PEO@Ce-MOF Initial discharge capacity: 158 mAh
g−1 (1C) Capacity retention: 71%
(2400th cycle)

- Wu et al. (2021)

Li/P-IL/LFP LAGP-PVDF-IL Initial discharge capacity: 106 mAh g−1

(0.5C) Capacity retention: 90.7%
(196th cycle)

- Lin et al. (2021)

Li/LLZO-PCL-LiTFSI/FCG78 LLZO-PCL-LiTFSI Initial discharge capacity: 172.4 mAh
g−1 (0.5C) Capacity retention: 84.3%
(200th cycle)

- Tian et al. (2022)

(Continued on following page)
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TABLE 1 (Continued) Recently reported lithium metal batteries employing novel liquid and solid electrolytes along with their reported performance. Note: N/P is
the ratio of negative to positive electrode capacity.

Cell configuration Electrolyte Electrochemical
performance

Notes References

Li/TFA- LiPF6/LFP TFA- LiPF6 (deep eutectic salt) Initial discharge capacity: 125 mAh
g−1 (0.1C) Capacity retention: 80%
(60th cycle)

- Mezzomo et al.
(2023)

Li/LiPON–Mn/LiCoO2 Mn-doped LiPON Initial discharge capacity:
130 μAh·cm−2 μm−1 (0.1C) Capacity
retention: 93% (100th cycle)

- Song et al. (2023)

Li/(LiTFSI-SN0.05-10 wt.%
FEC)−15 wt.% PEO/NMC532

(LiTFSI-SN0.05-10 wt.%
FEC)−15 wt.% PEO

Initial discharge capacity:
169 mA h g−1 Capacity retention: 80%
(120th cycle)

- Liu et al. (2021a)

Li/PEO-LLZO nanofibers-
LiTFSI/LFP

PEO/LLZO nanofibers/LiTFSI Initial discharge capacity:
123.2 mA h g−1 (1C) Capacity
retention: 84% (200th cycle)

- Zheng et al.
(2021)

Li/Li3GaF6/LiFePO4 Li3GaF6 Initial discharge capacity:
137.5 mA h g−1 (0.5C) Capacity
retention: 90% (100th cycle)

- Hu et al. (2020a)

Li/LiDGO-PEO-LiTFSI/LFP LiDGO-PEO-LiTFSI Initial discharge capacity:
156 mA h g−1 (0.5C) Capacity
retention: 98.7% (200th cycle)

- Yang et al.
(2021a)

Li/LLTO-PEO-LiTFSI/LFP LLTO-PEO-LiTFSI Initial discharge capacity:
144.6 mA h g−1 (1C) Capacity
retention: 96% (100th cycle)

- Liu et al. (2020)

Li/PVDF-LSTHF-TMP-
LiClO4/LFP

PVDF-LSTHF (10 wt.%)-TMP-
LiClO4

Initial discharge capacity:
134 mA h g−1 (1C) Capacity retention:
97.7% (300th cycle)

Li anode was coated with FEC Dai et al. (2020)

Li/LMZP/LFP LMZP Initial discharge capacity: 140 mA h g−1

(0.1C) Capacity retention: 90% (50th
cycle)

- Zhou et al.
(2020)

Li/Li(IL)-UiO67/LFP- Li(IL)-
UiO67

Li(IL)-UiO67 Initial discharge capacity: 149 mA h g−1

(0.1C) Capacity retention: 94% (300th
cycle)

Li(IL) comprises of LiTFSI dispersed
in IL [EMIM][TFSI]; the Li(IL) was
encapsulated in the UiO-67 MOF
structure

Liu and Sun
(2020)

Li/Li4Ti5O12-PVDF/LFP Li4Ti5O12 (80 wt.%)-PVDF Initial discharge capacity: 150 mA h g−1

(0.5C) Capacity retention: 98% (30th
cycle)

- Zhou et al.
(2022)

Li/LLZT-PVDF/LiCoO2 LLZT-PVDF Initial discharge capacity: 120.3 mA h
g−1 (2C) Capacity retention: 94.1%
(200th cycle)

- Sun et al. (2021)

Li/LIBOSS/TiS2 Li2S–B2S3–SiO2–LiI Initial discharge capacity: 260 mA h g−1

(0.1C) Capacity retention: 99% (130th
cycle)

- Kaup et al.
(2020)

Li/TEP-FEC/LFP TEP-FEC-PEGDA-HMPP-PVDF-
LiTFSI-BA-EC/DMC

Initial discharge capacity: 139 mA h g−1

(0.5C) Capacity retention: 93% (150th
cycle)

A protective layer comprised of BA-
PEGDA-PEO matrix and EC/DMC
plasticizer is placed between the
electrolyte and the anode because TEP
is incompatible with Li anodes

Zhang et al.
(2021a)

Li/LLZTO/NCM622 LLZTO (20 wt.%)-PPC-LiTFSI Initial discharge capacity: 166 mA h g−1

(0.5C) Capacity retention: 80% (100th
cycle)

- Chen et al.
(2019a)

Li/PDOL-YSZ/NCM622 Polymerized 1,3-dioxolane
(PDOL) -YSZ

Initial discharge capacity: 164.7 mA h
g−1 (0.5C) Capacity retention: 73%
(800th cycle)

Li2ZrO3 rich ion conductive layer
forms on the surface of Li anode

Yang et al. (2022)

Li/PEO-LiTFSI/LiMn0.7Fe0.3PO4 PEO-LiTFSI (mole ratio EO/
Li = 18)

Capacity retention: 90.3% (120th cycle) - Qiu et al. (2020)

(Continued on following page)
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to its low modulus (below 400 MPa) and insufficient ion
conductivity at ambient temperature (Balo et al., 2018; Ding
et al., 2019). Strategies to enhance Li+ transport dynamics include
the introduction of plasticizers such as IL, (Balo et al., 2018),
incorporation of inorganic fillers, (Zhao et al., 2020), and
fabricating cross-linked polymer electrolytes (Khurana et al.,
2014). Recent innovations in this space include ILE@MOF
electrolyte, which offers enhanced ionic conductivity by
anchoring anions of the electrolyte salt (Chen et al., 2019).

Inorganic/polymer hybrid solid electrolytes
Merging the benefits of both inorganic and polymer solid

electrolytes, this category has garnered significant attention.
Various polymer matrices (like PEO, (Li et al., 2020),
polyethylene glycol (PEG), (Pan et al., 2020), and
polycaprolactone (Zhang et al., 2019)) and inorganic fillers (e.g.,
lithium aluminium germanium phosphate (Zhang et al., 2019),
lithium germanium phosphorus sulfide (Liu et al., 2019b; Pan
et al., 2020), and lithium lanthanum zirconium oxide (Li et al.,
2019)) have been combined to strike a balance between flexibility,
conductivity, and rigidity. For instance, an LAGP-PEO hybrid solid
electrolyte demonstrated commendable stability attributed to its
impressive Li + conductivity and flexural modulus, reinforced by
LAGP particles in the PEO matrix (Li et al., 2020).

Despite the advancements in solid electrolyte technologies, there
remain substantial challenges. The interfacial resistances
documented in several studies are notably high, resulting in
relatively low current densities when used in batteries (Al-Salih
et al., 2022; Al-Salih et al., 2024). One of the paramount issues in
solid-state lithium batteries is the uncontrollable dendrite growth at
high current densities, which can result in short circuits or
diminished capacity. Dendrite formation might be influenced
by the nonuniform contact between the solid electrolyte and
lithium metal, but the underlying mechanisms in solid-state
batteries remain underexplored (Tsai et al., 2016). Some studies,
like that by Aguesse et al., have shed light on potential reasons,
such as lithium clusters in cavities and pores of the garnet solid
electrolyte or lithium metal accumulation in the pores leading to
electrolyte failure (Aguesse et al., 2017). Yet, a comprehensive
understanding of dendrite formation in solid electrolytes is still
elusive. Considering the rapid advancements and evident challenges
of SSEs, continuous research is crucial. While we’ve made progress,
the onus is on the scientific community to further unravel the
intricacies of solid-state lithium batteries, ensuring that we harness
their full potential in the evolving landscape of energy storage
solutions.

Table 1 lists examples of impressive high performing lithium
metal batteries reported in the literature in the past few years.

TABLE 1 (Continued) Recently reported lithium metal batteries employing novel liquid and solid electrolytes along with their reported performance. Note: N/P is
the ratio of negative to positive electrode capacity.

Cell configuration Electrolyte Electrochemical
performance

Notes References

Li/PAN-LAGP/NMC622 PAN-LAGP 80 wt.% Initial discharge capacity: 180 mA h g−1

(0.1C) Capacity retention: 81.5%
(270th cycle)

- Duan et al.
(2019)

Li/PAN-LLZTO/LFP PAN-LLZTO-Mg(ClO4)2
(30 wt.%)

Initial discharge capacity: 150 mA h g−1

(0.5C) Capacity retention: 99% (300th
cycle)

- Qiu and Sun
(2020)

Li/PVDF-HFP:LiTFSI/TiO2 PVDF-HFP:LiTFSI (1:1.1 weight
ratio)

Initial discharge capacity: 227.5 mA h
g−1 (0.2C) Capacity retention: 86.8%
(800th cycle)

- Liu et al. (2021b)

Li/PEO-LiTFSI-DBDPE-PI/LFP PEO-LiTFSI-DBDPE-PI Initial discharge capacity: 143 mA h g−1

(0.5C) Capacity retention: 98% (300th
cycle)

Decabromodiphenyl ethane (DBDPE)
was incorporated to make the
electrolyte fireproof

Cui et al. (2020)

Li/LGPS/LiCoO2 Li10GeP2S12 (LGPS) Initial discharge capacity: 131 mA h g−1

(0.1C) Capacity retention: 86.7%
(500th cycle)

LiH2PO4 protective layer employed at
the Li/electrolyte interface to improve
chemical stability and stabilize cycling

Zhang et al.
(2018a)

Li/PI-LLZTO-PVDF/NCM PI-LLZTO nanoparticles-PVDF Initial discharge capacity: 152.6 mA h
g−1 (0.1C) Capacity retention: 94.8%
(80th cycle)

- Hu et al. (2020b)

Li/LiTFSI- Pyr1,3FSI/LiCoO2 LiTFSI- Pyr1,3FSI (mass ratio 1:1) Initial discharge capacity: 160 mA h g−1

(0.2C) Capacity retention: 94.2% (60th
cycle)

- Zhang et al.
(2018b)

Li/Li (DME)0.7FSI-PEO0.6/NMC Polymer in quasi-ionic liquid Li
(DME)0.7FSI-PEO0.6

Initial discharge capacity: 127 mA h g−1

(1C) Capacity retention: 88.4% (300th
capacity with 4.2 V charge cutoff
voltage)

- Wu et al. (2019)

Li/PVDF-HFP/LFP PVDF-HFP-LiPF6-EC-DEC Initial discharge capacity: 125 mA h g−1

(2C) Capacity retention: 86% (200th
cycle)

Asymmetric gel polymer electrolyte is
proposed

Li et al. (2020a)
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Discussion and outlook

Drawing upon the extensive analysis of practical considerations
for LMB electrolytes, several aspects emerge that warrant critical
discussion that takes into account industry, consumer, and market
perspectives. The future of LMB technology is undoubtedly reliant
on the interplay between battery materials’ chemistry, their
structural/performance relationship and their validation in
industrial cells under real life application conditions. Let’s delve
into some of these aspects more deeply.

Economic feasibility and environmental
sustainability

The commercial feasibility of LMBs is inextricably linked to the
cost-effectiveness of the electrolyte. However, emphasizing cost-
effectiveness should not be at the expense of environmental
considerations. In fact, the integration of green chemistry and
atom economy must be central to future endeavors. Leveraging
techniques such as organic-solvent-free methods for salt synthesis,
like ball milling, or employing organic synthetic procedures that
yield fewer byproducts can help bridge the gap between commercial
viability and eco-responsibility.

Calendar and cycle life
The spotlight on the cycle life of LMB electrolytes has

inadvertently dimmed the attention towards the calendar life of
these batteries. Even though recent electrolytes have made strides
in cycling efficiency, there is still much ground to cover in terms of
calendar life, with factors like SEI thickening playing a dominant role
in capacity loss. Drawing parallels with the solid electrolytes for all-
solid-state lithium batteries (ASSLBs), it becomes evident that while
much progress has been made, the understanding of the nuanced
mechanisms at play, like ion solvation and SEI formation pathways, is
still in its infancy. The promise of anode-free LMBs heralds a
transformative phase in energy density optimization. However, this
promise is deeply intertwined with achieving exceptionally high CE. If
a future electric vehicle (EV) is designed to journey 1,000 km per
charge cycle, it necessitates a CE of at least 99.95% (see Figure 1B).
This would ensure the battery’s capability to power the vehicle for a
staggering 400,000 km, harmonizing with the typical lifespan of many
other car components. Such a CE threshold, while ambitious,
positions the battery pack as a beacon of durability, potentially
outpacing most other vehicle parts in longevity. For the auto
industry, this paints a future where the battery is not the limiting
factor but a benchmark of resilience and reliability, setting a realistic
yet pioneering goal for future EVs.

Battery safety
Just as the interfacial resistance in solid-state batteries (SSBs) is a

challenge, safety stands out as a paramount concern for LMBs.
While non-flammable solvents or additives show promise, their true
safety merits can only be adjudicated under realistic conditions, such
as nailing or heating tests. This necessity is highlighted by Ouyang
et al.’s findings, which suggest that even assumed non-flammable
electrolytes like trimethyl phosphate-based HCE can combust under
the most rigorous conditions.

Wide temperature range operation
The ability of LMBs to function efficiently across a broad

temperature spectrum is a pertinent challenge that mirrors the
need for SSEs to maintain stable contact with electrodes across
varying conditions. Whether it is high-temperature performance,
contingent on the robustness of SEI and CEI, or low-temperature
operation, reliant on innovative solutions such as liquified gas
electrolytes or weakly solvating solvents, both spectrums
necessitate rigorous research and innovation.

To conclude, the realization of optimized LMBs requires a
confluence of materials chemistry, engineering, safety protocols,
and an understanding of real-world operational challenges. The
path forward necessitates researchers from academia,
government labs, and industry alike work hand-in-hand to
prioritize cost-effectiveness, eco-friendliness, safety, and
operational versatility to meet the demands of a dynamic
marketplace. Embracing novel chemistries, for the components
of the liquid electrolytes and solid electrolyte, at the vanguard of
innovation. As we continue to expand our knowledge and develop
more sophisticated strategies, the promise of LMBs as an
advanced energy storage solution becomes increasingly
tangible, paving the way for their integration into the
sustainable energy storage landscape.
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