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Introduction: The control of Renewable Energy Communities (REC) with
controllable assets (e.g., batteries) can be formalised as an optimal control
problem. This paper proposes a generic formulation for such a problem whereby
the electricity generated by the community members is redistributed using
repartition keys. These keys represent the fraction of the surplus of local electricity
production (i.e., electricity generated within the community but not consumed
by any community member) to be allocated to each community member. This
formalisation enables us to jointly optimise the controllable assets and the
repartition keys, minimising the combined total value of the electricity bills of the
members.
Methods: To perform this optimisation, we propose two algorithms aimed at
solving an optimal open-loop control problem in a receding horizon fashion.
Moreover, we also propose another approximated algorithm which only optimises
the controllable assets (as opposed to optimising both controllable assets and
repartition keys). We test these algorithms on Renewable Energy Communities
control problems constructed from synthetic data, inspired from a real-life case
of REC.
Results: Our results show that the combined total value of the electricity bills of
the members is greatly reduced when simultaneously optimising the controllable
assets and the repartition keys (i.e., the first two algorithms proposed).
Discussion: These findings strongly advocate the need for algorithms that adopt
a more holistic standpoint when it comes to controlling energy systems such
as renewable energy communities, co-optimising or jointly optimising them
from both a traditional (very granular) control standpoint and a larger economic
perspective.

KEYWORDS

optimisation, renewable energy, carbon neutral, linear programming, energy communities,
local electricity market, repartition keys, revenue sharing

1 Introduction

Decarbonising the electricity generation sector is currently one of the primary goals
towards curbing anthropogenic emissions of greenhouse gases. To that end, various energy
policies around the world have set out to provide guidelines and pathways toward achieving
this goal (Code de l’énergie Français, 2017; European Union, 2018; Service public de Wallonie,
2019; Torabi Moghadam et al., 2020). A key enabler of decarbonisation is the decentralisation
of power generation, which now enables the electricity to be generated closer to where
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it is consumed. The production assets are, in this case, typically
small, such as solar photovoltaic (PV) panels, and are directly
connected to the distribution networks.However, this decentralisation
does not come without challenges. Several technical as well as
regulatory challenges emerge when a significant proportion of the
electricity consumed by the end customer is produced near or
at the consumption centres (e.g., by prosumers) as addressed by
(Manuel de Villena et al., 2021). These problems exist due to, among
other reasons, the lack of regulatory frameworks defining how the
electricity can be traded in decentralised settings. In this regard,
various trading alternatives have been studied and described in
existing literature, the most relevant ones based on peer-to-peer (P2P)
electricity trading and on trading via a centralised entity. Concerning
the first one (P2P trading), a substantial amount of research already
exists, including these two literature reviews (Tushar et al., 2018;
Sousa et al., 2019), which encapsulate the existing works in the
context of these types of exchange. The former review deals with
P2P mechanisms using game-theoretical approaches, whilst the latter
provides a motivation for the existence of these markets, identifying
several challenges, market designs, and potential future developments
in this field. As for trading through a central entity, the literature is
less abundant and focuses mainly on aggregator or retailer models
[see for instance (Mathieu et al., 2019)]. Over the last few years
though, a new concept has entered the arena: the Renewable Energy
Communities (RECs). Some literature (Moret and Pinson, 2018;
Cornélusse et al., 2019; Manuel de Villena et al., 2020a) exists on how
the control of energy consumption and production of consumers
inside a REC can be computed; however, the lack of adequate
regulation has made it difficult to apply any of those mechanisms in
practice.

In an effort to provide a framework to boost these new
decentralised markets, in the latest Energy Package, the European
Commission has embraced the concept of a REC and has introduced,
for the first time, a formal definition of these communities along with
some basic working principles (European Union, 2018). According to
this definition, RECs constitute a type of consumer-centric electricity
market comprised of consumers, prosumers, and generation and
storage assets that may be shared by all or a subset of the
REC members. In this context, electricity surplus generated from
prosumers and reinjected into the network can be allocated to the
community and shared among the REC members. Thus, a fraction of
the total electricity surplus can be allocated to each REC member at a
lower price than the retail one. In this paper, this surplus is denoted
as local production surplus. As per European regulation, RECs are
managed by a central entity: the energy community manager (ECM),
whose responsibilities include ensuring the adequate functioning
of the REC. Although the rules of participation in a REC are
precisely outlined in this European regulation1, there is no provision
dictating how to share the local production surplus within the REC.
Furthermore, to date and to the best of our knowledge, little or no
research has addressed the issue of performing the control of flexible
assets such as storage devices within a REC context, which often
modifies this local production surplus within the REC, as further
explained in Section 2.

1 According to the latest European regulation, any end customer–consumer or
prosumer–may participate in a REC without losing the previous status.

To fill this gap, the main contribution of this paper consists
of providing a new methodology to simultaneously control, in an
optimal manner, the generation and storage devices of RECs with the
allocation of the local production surplus to the REC members. Our
methodology provides a generic formulation of the decision process
associated with the control of RECs, one sufficiently flexible to work
with any composition of a REC and to the specific rules applying
to it. This decision process, for which the formulation is detailed in
Section 3, describes the dynamics of the controllable assets of each
member (e.g., batteries), as well as the distribution of local production
surplus among the REC members. To that end, it exploits the concept
of repartition keys, which are introduced in (Manuel de Villena et al.,
2020b). Repartition keys represent the fraction of the total production
surplus which is allocated to each REC member—there is one key per
member and time-step of the simulation. These keys are computed
in the framework of our decision process. Along with the decision
process, we propose two algorithms, described in Section 4, which
directly exploit the specification of the decision process itself to jointly
optimise the control of the controllable assets and the repartition keys
in a finite time window. The goal of these algorithms is to jointly
minimise the cost related to the controllable assets and the combined
total value of the electricity bills of the members that is dependent on
the repartition keys (e.g., the combined total value of the electricity
bills of the members after allocating the local production surplus to
the RECmembers). Then, a test case is provided in Section 5, where a
REC is constructed from synthetic data—the two algorithmsdescribed
in the previous section are here benchmarked against a third one, that
does not optimise the repartition keys, illustrating the relevance of
jointly optimising the repartition keys when controlling RECs. Finally,
Section 6 concludes this paper.

1.1 Gap targeted and summary of the
hypotheses

In this paper, we target a centralised optimisation of the REC
electricity bill where we simultaneously command the controllable
assets and periodically re-allocate the electricity production surplus
of the whole REC. The main hypotheses are as follows.

• The controllable assets of each member are managed at a fixed
time rate (e.g., 15 min),
• The dynamics and the operational costs of the controllable assets
of each member are known at runtime and assumed, in the
experiments of this paper, to be linear,
• Any electricity production surplus of any member can be either
redistributed to net consumers inside the REC or sold to the
retailer,
• The network topology is not taken into account.

2 Related work

Although the exact rules defining how to exploit and control
RECs are still “a work in progress,” as seen in (European Union, 2018;
Heaslip et al., 2016; Reijnders et al., 2020; Code de l’énergie Français,
2017; Service public de Wallonie, 2019) research into this topic is
already gathering momentum. In (Ciocia et al., 2020), the authors
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propose a sizing and simulation optimisation framework of a
microgrid composed of nanogrids, which is a structure similar
to RECs, which follows the Italian market framework. However,
this is not addressed as a control problem since the optimisation
stage is directly performed with the full history of production and
consumption of each member of this microgrid. The literature on
these control problems is, by and large, scarce, and typically focuses
on single-entity problems where a unique agent (i.e., a single end
customer such as a microgrid) is optimised with respect to a specific
objective, usually a cost minimisation. In this regard, model predictive
control approaches, based on mixed integer linear programming
(MILP) or dynamic programming (DP), have been used to optimise
the control of microgrids, which can be seen as a particular case
of RECs with a single member. In (Parisio and Glielmo, 2011), the
authors present an MILP as a solution to perform online planning in
a microgrid with the goal of minimising the sum of the operational
costs related to electricity exchanges with the main network and to
the usage of complex devices (e.g., an energy generator with start-up
and shut-down commands). Similarly, in (Francois et al., 2016), linear
programming techniques are employed to optimise the control of
microgrids by balancing the usage of short-termand long-term storage
systems in order to minimise the levelised cost of electricity generated
by the microgrid control. In (Hooshmand et al., 2012) the authors
propose an algorithm that combines dynamic programming and
empirical mean of the objective function to control a microgrid under
stochastic scenarios of wind turbine production so as to maximise
the local energy consumption. In (Cominesi et al., 2017), the authors
propose a bilevel optimisation scheme, in a receding time horizon
to control a microgrid comprised of a battery, a microturbine, a
PV system, and a load. In their work, an optimal daily planning of
each controllable component of the microgrid is computed at a time
scale of 15 min. Then, a lower-level controller adjusts the control of
the microgrid to be as close as the optimal daily plan as possible
while respecting the real-time operational constraints. The optimal
control of microgrids can be achieved by adopting other techniques,
like reinforcement learning (RL) algorithms, which often do not
require an assumption relating to the knowledge of the dynamics
of the microgrids. In (Tomin et al., 2019), the authors propose to
train deep neural networks with RL, specifically with the Q-Learning
algorithm (Sutton and Barto, 2018) by exploiting historical data of
production and consumption in order to sample control trajectories.
Another work using RL, (Nakabi and Toivanen, 2020), benchmarks
several deep reinforcement learning algorithms against a microgrid
with flexible demand. In (Boukas et al., 2018), the authors propose
usingDeep Q-Learning to construct a policy that controls a microgrid
which places orders in a continuous real-timemarket while taking into
account operational constraints.

The decision processes relating to the control of multi-entity
problems, such as the REC, are only covered to a very limited extent by
the existing literature. For instance, in (Zhou et al., 2019) the authors
adapt the Q-learning algorithm to train an autonomous centralised
controller with the objective of minimising the combined total value
of the electricity bills within a REC composed of buildings (members)
that are equipped with batteries and PV panels. In (Prasad and
Dusparic, 2019), amulti-agent deep reinforcement learning algorithm,
previously developed in (François-Lavet et al., 2018), is employed to
train each member of the REC to cooperate in order to minimise
the volume of the energy imported from the main network, that is,

the proportion of the REC consumption that is not covered by local
generation.

3 Decision process associated with
renewable energy communities

This section explains in detail the modelling framework proposed
in our work, formalising the decision process associated with
RECs. This decision process aims to control the dynamics of the
electricity consumption and production of the REC members, as
well as the electricity exchanges between them. Each REC member
is characterised by i) a non-controllable electricity consumption,
ii) a non-controllable electricity production (when it exists) with
e.g., PV panels or wind turbines, and iii) a controllable electricity
consumption/production (when it exists) with devices such as flexible
loads, batteries or hydrogen tanks equipped with fuel cells and
electrolysers. Periodically (e.g., each month), REC members are
billed for their electricity consumption depending on their metered
consumption/production. According to the last European regulation
(European Union, 2018), the electricity surplus of a REC member
can either be sold to other REC members or can be injected
into the main grid via sales to the retailer. On the other hand,
the energy consumption needs of REC members may be covered
first by their own energy production (if they are prosumers), with
the surplus of other REC members via the local REC market, or
through a traditional retailer contract. In the context of RECs as
described in (European Union, 2018), the ECM of the REC is in
charge of distributing the local electricity surplus among the REC
members as required. This allocation of the local production surplus
can be performed according to different objectives such as the
minimisation of the total combined value of the individual REC
members’ electricity bills. To that end, we introduce a methodology
of local production surplus allocation based on a sequential decision-
making optimisation framework. This methodology is based on
repartition keys, as described in (Manuel de Villena et al., 2020b). For
each member, a repartition key is defined by two values: the first one,
namely the export key, determines the fraction of each member’s own
local production surplus to be sold in the internal market of the REC,
whereas the second one, the import key, determines the fraction of
the total local production surplus to be allocated to each member.
An illustration of the REC design used in our decision process can
be found in Figure 1.

3.1 Mathematical formulation of the
decision process

The decision process introduced previously can be formalised
as a discrete-time dynamical system with a finite time horizon
T. Within this dynamical system denoted by D, we can identify
the state, action, and exogenous spaces of the dynamical
system.

• S denotes its state space and gathers all possible states of the
system.
• U denotes its action space and comprises the actions that steer the
state transitions from one step to the next;
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FIGURE 1
Illustration of a REC. Each member i ∈ {1,…,N} is associated with a
specific consumption meter (C) and a production meter (P). At each
discrete time step t, these meters are incremented by the energy
consumption and production of each member during the time interval]
t, t+ 1], respectively. These meters are monitored at the end of each
metering period by an energy management system (EMS). The EMS can
modulate the controllable assets. It also computes optimal repartition
keys with the values monitored from all the meters of the REC members
and send them to their respective retailers. Retailers periodically (e.g.,
monthly) compute the electricity bills of each REC members based on
the repartition keys and sends them to their respective customers.

• Ξ denotes its exogenous space and is composed of the exogenous
values with non-observable dynamics to which dynamical
systems associated with RECs are typically subject (e.g., PV panel
production).

With these spaces, we can define the dynamics, denoted f(s,u,e),
as the transition from a state-action-exogenous triplet (s,u,e) ∈ S ×
U ×Ξ to another state s′ ∈ S . This decision process necessitates
information about the REC members, which are encapsulated in the
set I = {1,…, I} with I ∈ ℕ+, where i ∈ I denotes a REC member.

3.1.1 Discretisation of the time horizon
The time horizon constituting the dynamical system is split into

discrete time steps 0,…, t,…,T− 1. We assume a constant duration
equals to ΔC (e.g., 15 min) for all time intervals 0,1,…,T− 2,T− 1.We
define such a time interval as a control period.We also define ametering
period as the interval t, t+ΔM when tmodΔM = 0, where ΔM ∈ ℕ+.
We assume that control actions are applied to the controllable assets
at each discrete time step t and that repartition keys are computed
every ΔM discrete time steps. We further assume that the discrete time
step T− 1 always coincides with the end of a metering period (i.e.,
thatT− 1modΔM = (ΔM − 1)) and that at each discrete time step t, the
consumption and the production of each member, which is measured
during the control period t, t+ 1, is added to the present consumption
and production of themetering period towhich the discrete time step t
belongs. Figure 2 illustrates several features of this time discretisation
process.

3.1.2 State space
Every state s ∈ S comprises information for each REC member

i ∈ I concerning i) the controllable assets (e.g., state of charge of

the battery) represented by sci ; ii) the electricity consumed from the
grid during a metering period, represented by se−i ; iii) the electricity
produced that is injected into the grid during a metering period,
represented by se+i , and iv) the number of discrete time steps elapsed in
the present metering period, represented by sτ . For compactness, let
sc = (sc1,…, s

c
I), s

e− = (se−1 ,…, s
e−
I ), and se+ = (se+1 ,…, s

e+
I ). We denote as

st = (s
c
t , s

τ
t , s

e−
t , s

e+
t ) the state of the dynamical system at a given discrete

time step t.

3.1.3 Action space
Every action u ∈ U contains i) the actions that can be applied to

the controllable assets of each member i ∈ I , represented by uci , ii) the
export key vector uk+ of size I and iii) the import key vector uk− of size
I. The export key determines the fraction of the electricity production
surplus of each REC member to be reallocated to other members.
The import key determines the fraction of the local electricity surplus
to be reallocated to each REC members. For compactness, let uc =
(uc1,…,u

c
I), u

c = (uk−1 ,…,u
k−
I ) and uk+ = (uk+1 ,…,u

k+
I ). We denote as

ut = (u
c
t ,u

k+
t ,u

k−
t ) the action taken from the state st of the dynamical

system at a given discrete time step t.

3.1.4 Exogenous space
Every exogenous variable e ∈ Ξ contains, for all members i ∈ I ,

i) a vector of buying prices ebi associated with member i (e.g., retail
price); ii) a vector of selling prices esi (e.g., selling price to retailer)
associated with member i ∈ I , and iii) other exogenous variables eoi
associated withmember i ∈ I of the community (e.g., PV production).
For compactness, we can define these vectors as eb = (eb1,…,e

b
I ), e

s =
(es1,…,e

s
I), and e

o = (eo1,…,e
o
I ). We denote as et = (e

b
i,t,e

s
i,t,e

o
i,t) the value

of the exogenous variable at a given discrete time step t.We assume, for
all metering periods ]t, t+ΔM] where tmodΔM = 0, that e

b
i,t = e

b
i,t+1 =

… = ebi,t+ΔM
and esi,t = e

s
i,t+1 =… = e

s
i,t+ΔM

.

3.1.5 Local production surplus
The local production surplus to be shared among the REC

members at the end of a metering period is denoted by Φ and defined
as follows:

Φ = ∑
i∈I

uk+i s
e+
i . (1)

The fraction of this local production surplus allocated to member
i is defined by uk−i Φ. From these definitions, for all member i ∈ I , the
electricity consumption not covered by local production is se−i − u

k−
i Φ.

Similarly, the production exported to the main utility grid at the end
of a metering period is (1− uk+i )s

e+
i .

3.1.6 Constraints on the controllable assets actions
and on the repartition keys

We assume that the set of admissible actions that can be taken
given the current state and the current exogenous variable is given
by the mapping U:S ×Ξ→ P(U)2. While the constraints on the
controllable assets are provided at runtime, the constraints on the
repartition keys are defined as follows.

2 P is the notation for the power set.
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FIGURE 2
Illustration of the time discretization strategy of the decision process described in the problem statement starting from a given time step t and ending at
t+ΔM, where tmodΔM = 0. These two discrete time steps both corresponds to the end of a metering period.

3.1.6.1 At the end of a metering period
The repartition keys are set to values between 0 and 1.The amount

of the electricity production surplus of the REC imported by amember
cannot exceed its consumption.The sumof the import keys among the
members is equal to 1. Finally.

3.1.6.2 At others discrete time steps
The only value that can be set for the repartition keys is ∅, i.e., the

repartition keys are not defined at these discrete time steps.
The equation below summarises the above-mentioned constraint:

U (s,e) ⊆

{{{{{{{{
{{{{{{{{
{

{[uc,∅,∅] ∈U} if sτt ≠ ΔM, otherwise

{{{
{{{
{

[uc,uk+ ,uk−] ∈U |
{{{
{{{
{

uk+i ,u
k−
i ∈ [0,1] and

∑
i∈I

uk− i = 1 and

uk−i Φ ⩽ s
e−
i

}}}
}}}
}

∀i ∈ I,∀(s,e) ∈S ×Ξ.
}}}
}}}
}
(2)

3.1.7 Net electricity consumption and production
during a control period

The net electricity production or consumption is the amount of
power injected to or withdrawn from the grid during a given control
period, and are denoted by l+i,t ∈ ℝ

+ and l−i,t ∈ ℝ
+, respectively. These

values may be the realisation of any unknown, complex dynamics and
may depend, among others, on the control actions uci,t, for all i ∈ I .
Later in this paper, we will assume that at each discrete time step t, the
pair (l+i,t, l

−
i,t) is the result of a known function of the state sci,t, action uci,t

and exogenous variable eoi,t for all i ∈ I .

3.1.8 Transition dynamics
We assume the following known discrete-time transition

dynamics for the state space for all t ∈ ℕ.

3.1.8.1 Controllable assets dynamics
The transition dynamics of the controllable assets of the members,

known at runtime, are defined as follows:

sci,t+1 = f
c
i (s

c
i,t,u

c
i,t,e

o
i,t) |s

c
i,0 = S

c
i,0,∀i ∈ I , (3)

where Sci,0 is the initial state value of s
c
i .

3.1.8.2 Metering period counter dynamics
The transition dynamics of the counter of the remaining discrete

time steps in the current metering period is defined as follows:

sτt+1 =
{{{{
{{{{
{

sτt + 1 if sτt < ΔM

0 otherwise

||||

|

sτ0 = 0. (4)

3.1.8.3 Meters dynamics
The transition dynamics of the production and consumption

meters for the current metering period are defined as follows:

se+i,t+1 =
{{{{
{{{{
{

se+i,t + l
+
i,t if s

τ
t ≠ 0

l+i,t otherwise

||||

|

se+i,0 = 0,∀i ∈ I . (5)

se−i,t+1 =
{{{{
{{{{
{

se−i,t + l
−
i,t if s

τ
t ≠ 0

l−i,t otherwise

||||

|

se−i,0 = 0,∀i ∈ I . (6)

We merge these functions for conciseness into a single function f
such that st+1 = (s

c
t+1, s

τ
t+1, s

e+
t+1, s

e−
t+1).

3.1.9 Cost functions
We assume the following known instantaneous cost functions.

3.1.9.1 Operational costs on controllable assets
Let ρoi (s

c
i ,u

c
i ,e

o
i , s
′c
i ) be the cost function, known at runtime, related

to the operational costs of the controllable assets of the member i ∈ I .
We define the cost function combining the operational costs of the
controllable assets of the REC members:

ρo (sc,uc,eo, s′c) = ∑
i∈I

ρoi (s
c
i ,u

c
i ,e

o
i , s
′c
i ) . (7)

3.1.9.2 Total combined value of the individual electricity bills
The cost function related to the total combined value of the

electricity bills of the REC members, known at runtime, is defined
by the function ρe(se− , se+ ,uk− ,uk+ ,eb,es) at the end of each metering
period. This value of this function is 0 at others discrete time steps.
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We merge these two costs functions into a single cost function ρ
as follows:

ρ(st,ut,et, st+1) =

{{{{{
{{{{{
{

∑
i∈I

ρoi (s
c
i,t,u

c
i,t,e

o
i,t, s

c
i,t+1) if s

τ
t ≠ ΔM,

ρe (se−t , s
e+
t ,u

k−
t ,u

k+
t ,e

b
t ,e

s
t) + ∑

i∈I
ρoi (s

c
i,t,u

c
i,t,e

o
i,t, s

c
i,t+1) otherwise.

(8)

3.2 Optimal policy search

Amapping from a given state and exogenous variables to an action
space is known as a policy. In this subsection, we define i) the structure
of the policies as well as how to evaluate their performance; and ii) the
objective function to define the set of optimal policies.

3.2.1 Formal definition and evaluation of policies
We assume that the dynamics of the exogenous variables may not

follow a Markov Decision Process (i.e, the value at t+ 1 cannot be
predicted given the value at t). Therefore, we define a policy π as a
mapping from a state and a history of exogenous variables to an action.
Accordingly, the entire set of admissible policies Π can be defined as:

Π = {π:S×HΞ→ U | π(s, (e0,…,et)) ∈ U(s,et) ,
∀(s, (e0,…,et)) ∈ S ×HΞ,∀t ∈ [0,…,T [ } ,

whereHΞ = ⋃t∈0,…,TΞ
t is the set of all possible histories of exogenous

variables for all t ∈ [0,…,T].
Given a realisation of exogenous variables ET ∈ ΞT , we can

determine the cumulative cost C of a policy π as the sum of the
observed costs at every time step t of such a trajectory:

C (s,ET−1,π) = {
T−1

∑
t=0

ρ(st,π(st,Et) ,et, st+1) |

st+1 = f (st,π(st,Et) ,et, l
+
t , l
−
t ) , s0 = s} . (9)

3.2.2 Searching optimal policies
To find the optimal policy we choose as optimisation criterion the

expected return of the policy represented by an objective functionObj3

derived from the cumulative cost C defined by Eq. 9. This objective
function requires the knowledge of the probability distribution Pci,0(⋅)
used to sample the values of the initial state sci,0. Likewise, the objective
function requires the knowledge of the probability distribution PΞT(⋅)
used to sample realisations of the sequences of exogenous variables ET
of size T.

Obj(C,π,PΞT ,Pci,0) = 𝔼
sci,0∼P

d,i
0 (⋅) ∀i∈I

ET−1∼PΞT(⋅)

C(s0,ET−1,π) . (10)

From this objective function, the goal is to find an optimal policy π*
such that

π* ∈ arg min
π∈Π

Obj(C,π,PΞT ,Pci,0) . (11)

3 The objective function might be a different one (e.g., expected value at risk).

However, since PΞT and Pci,0 are not known, the computation of Eq. 11
is not possible in practice. In the next section (Section 4), we propose
three policies, derived from the optimal one introduced in Eq. 11,
that can be applied in practice by predicting the future values of the
exogenous variables. In Section 5, these three policies are tested on a
REC constructed from synthetic data—that is, synthetic consumption
and production profiles, as well as synthetic structure. For simplicity,
during these tests we assume that the predictions of the values are
perfect, to limit the complexity of these tests to a reasonable level.
Since this paper focuses on the impact of the joint optimisation of the
flexible assets and the repartition keys, the previous assumption does
not impact on our conclusions.

4 Policies for the control of RECs

In the previous section, we have formalised the problem faced by
an ECM to find an optimal policy that minimises the total combined
value of the individual electricity bills of REC members (this problem
is summarised by Eq. 11). To find this optimal policy, the distributions
PΞT and Pci,0, which are in practice unknown, are needed since, without
them, the policy as access only to the current state st and exogenous
variable et . The known information (i.e., st and et) is sufficient to
find a sequence of actions that minimises, at each time step, the
instantaneous cost function ρ(st,ut,et, st+1). However, this sequence
of actions is not equivalent to one that minimises the sum of the
instantaneous cost function over this time horizon, as described in
Eq. 10, which represents the optimal policy. Not knowing PΞT and
Pci,0, therefore, leads to a sub-optimal policy with respect to the
optimisation problem described by Eq. 10. For this reason, in this
section we explore different approaches which can be applicable in
practice (therefore not relying on the knowledge of PΞT and Pci,0) and
yet are able to provide a better solution than simply minimising the
instantaneous cost function. To that end, we describe three policies
whose core principle is their reliance on predictions of the exogenous
variables for the time steps subsequent to t. These policies are derived
from a model predictive control scheme (Ernst et al., 2009). These
predictions can be provided by a state-of-the-art forecasting algorithm
such as N-BEATS (Oreshkin et al., 2021).

The three policies introduced in this section compute open-loop
sequences of actions that minimise the objective function described
in Eq. 10. This is done to find the next action to be applied to the
dynamical system. Assuming that the policies can access to the current
state st and exogenous variable et of the system, they perform the
following steps.

1) Prediction of the values of the future exogenous variables over a
look-ahead horizon K, which we refer to as the policy horizon;

2) Joint optimisation of the sequence of control actions and the
sequence of repartition keys that minimise the sum of the costs ρ
from the time step t to t+K;

3 )Application, to the REC, of the first action of the sequence.

The first of our policies simply applies these three steps. We
refer to this one as the look-ahead policy. A shortcoming of this
policy is that, the predicted sequence of exogenous variables does not
necessarily end up in a time step that corresponds with the end of a
metering period (i.e., T′(t)modΔM ≠ 0). As a consequence, electricity
prices are predicted up to t+K, but the policy computes optimal
actions—w.r.t the predicted values—taking into account only prices up
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Algorithm 1. Look-ahead policy for decision processD and policy horizon K.

to t+ΔM . This means that this policy often (when T′(t)modΔM ≠ 0)
will not consider the billing costs related to the repartition keys
when computing the actions. To improve the solution of this policy,
we introduce a second policy that can compute virtual repartition
keys up to t+K, thereby making use of all the available information
when computing optimal control actions. We call this policy the look-
ahead-billing policy. Finally, to compare the look-ahead and the look-
ahead-billing policies against the case where no joint optimisation
of control actions and repartition keys is performed, we create a
third policy that we call the look-ahead decoupling policy. This last
policy computes the sequence of control actions and repartition keys
in two stages. In the first stage, it disables the re-allocation of the
local production surplus among the REC members while optimising
the control actions. In the second stage, it optimises the repartition
keys by constraining the sequence of control actions to be equal to
the actions computed at the first stage. This policy is inspired by
the approach described in (Manuel de Villena et al., 2020b), where
an independent ex-post optimisation process is performed at the
end of the simulation period to compute the repartition keys so as
to minimise the combined total value of the electricity bills of the
members.

4.1 Look-ahead policy

The first of the policies introduced in our work, the look-
ahead policy, is formally described in this section. We assume
that this policy can predict exogenous variables up to a given
time horizon K, denoted by policy horizon, ̂et+1,…, ̂eT′(t) with
0 ⩽ K≪ T and T′(t) =min(t+K,T). With these predictions, the
policy computes an open-loop sequence of actions û*t ,…, û

*
T′(t)

that minimises the sum of costs ∑T
′(t)

t′=t ρ(st′ , û
*
t′ , ̂et′ , st′+1) at each

discrete time step t and applies the first action of this sequence.
Any suboptimality of the sequence of actions û*t ,…, û

*
T′(t) will

depend on the prediction error of the exogenous variable and the
policy horizon K. Algorithm 1 presents this policy given a full
definition of the decision process and a policy horizon. Furthermore,
Algorithm 2 illustrates the interactions between the policy and the
REC.

4.2 Look-ahead-billing policy

Improving upon the look-ahead policy, this section introduces
the look-ahead-billing policy. When using the look-ahead policy, the

Algorithm 2. REC control process with a given policy.

billing costs related to the repartition keys for the last metering period
of the optimisation time horizon are often not taken into account.
Indeed, let i ∈ ℕ+ be the lowest value such that (i+ 1)ΔM > T′(t).
If T′(t) ≠ (i+ 1)ΔM , or in others words, if T′t) does not coincide
with the end of the metering period ]iΔM , (i+ 1)ΔM], the term ρe

corresponding to this metering period would not be included in the
objective function (see Algorithm 1). In this situation, the actions
û*t may significantly differ from those which would be computed
by optimising the cost of the electricity bill including T′(t). Taking
into account a cost related to the repartition keys may improve the
quality of the policy. To this end, we introduce virtual repartition
keys, denoted by ak− and ak+ , which follow the same constraints as
uk− and uk+ as described in Section 3. They also follow the same
constraints as the variables uk− and uk+ , which are defined at the
metering period to which T′(t) belongs. However, we consider this
latter condition to be implicit so as to keep the description of the
policy below a reasonable level of complexity.These virtual repartition
keys are introduced as decision variables in the optimisation problem
solved by the look-ahead policy, whenever the last time step does not
correspond to the end of a metering period. Moreover, an extra term
ρe can be added to the objective function, depending on these new
virtual repartition keys. With such a change, the objective function
when T’(t) does not correspond to the end of a metering period
writes:

min
ut,…,uT′(t)
ak+ ,ak−

[
T′(t)

∑
t′=t

ρ(st′ ,ut′ , ̂et′ , st′+1)

+ ρe (se−T′(t), s
e+
T′(t),a

k+ ,ak− , ̂ebT′(t), ̂e
s
T′(t))]. (12)

Algorithm 3 constructs this new policy with a full definition of
the decision process and a policy horizon as inputs. Later in the
simulation, we demonstrate show and discuss the performances of the
two policies on different scenarios.

4.3 Look-ahead-decoupling policy

Depending on the complexity of the optimisation problem to be
solved at each discrete time step–especially when K is rather large–the
computation time needed for the look-ahead and look-ahead-billing
policies might not be compatible with real-time constraints of the
control actions. Indeed, these two policies jointly optimise both
control actions and repartition keys, and this optimisation procedure
creates greater complexity than optimising only the control actions.
If computational constraints are an issue, the two optimisations can
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Algorithm 3. Look-ahead-billing policy for decision processD and policy horizon

K.

be decoupled so that the control actions are first optimised and then,
based on them, an ex-post optimisation of the repartition keys can be
performed, in a similar fashion than (Manuel de Villena et al., 2020b).
This optimising procedure is computationally less intensive, but at
the expense of the quality of the solution. Consequently, a trade-off
between them emerges, which can only be assessed on a case-by-case
analysis.

According to these principles, a new policy can be defined,
namely the look-ahead-decoupling policy. This policy requires the
export key uk+ to be restricted to zero during the computation
of the sequence of actions. Then, given this sequence of actions,
the sequence of repartition keys is optimised. This policy is
inspired by (Manuel de Villena et al., 2020b) and adapted to our
work. Algorithm 4 describes the look-ahead-decoupling policy.
Note that, in practice, the computation of the repartition keys
can be done outside the REC control process described in
Algorithm 2 so as to further decrease the complexity of this
policy.

4.4 Computing open-loop sequences of
actions for the three policies

To compute open-loop sequences of actions for each of the
policies, we assume that, at each discrete time step t, all the policies
have access to the exogenous variables et ,…,eT′(t) for all look-ahead
horizons K ∈ ℕ+ and for all time horizons T ∈ ℕ+. Moreover, to
encode this problem as a linear or mixed-integer linear program,
we need to linearise the transition dynamics, constraints and cost
functions. Then, the policies can exploit any available mixed-integer
linear program solver such as CPLEX (Cplex, 2009) to compute open-
loop sequences of actions in a time-receding horizon fashion during
the control process of this REC.This section presents the linearisations
needed to encode and solve the problem using such an off-the-shelf
MILP solver.

Algorithm 4. Look-ahead-decoupling policy for decision process D and policy

horizon K.

4.4.1 Linearisation of the transition dynamics
functions

Let us first define the indicator function 1=0(x), indicatingwhether
x is zero:

1=0 (x) =
{{{{
{{{{
{

1 if x = 0,

0 otherwise.

(13)

Since the value of sτ is known, the transition functions fe+ and fe+
can be transformed into equivalent linear functions as follows.

fe+ (se+i , l
+
i ) = 1=0 (s

τ) se+i + l
+
i ,∀i ∈ I ,∀s ∈ S , (14)

fe− (se−i , l
−
i ) = 1=0 (s

τ) se−i + l
−
i ,∀i ∈ I ,∀s ∈ S . (15)

4.4.2 Linearisation of the constraints
Let us derive U ′ from U by replacing import and export key uk−

and uk+ by electricity imported from retailer u′r− , electricity exported
to retailer u′r+ , electricity imported locally u′l− , and electricity
exported locally u′l+ . Let U′ be a set of admissible actions equivalent
to U for all (s,e) ∈ S ×Ξ.

U′ (s,e) ⊆

{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{

{[(uc1,…,u
c
N) ,∅,∅] ∈ U ′} if sτt ≠ 0,

{ [(uc1,…,u
c
N) ,u
′r+ ,u′r− ,u′l+ ,u′l−] ∈ U ′ |

(u′r+i ,u
′r−
i ,u
′l+
i ,u
′l−
i ) ∈ ℕ

+ and

u′r+i + u
′l+
i ⩽ s

e+
i and

∑
i∈I

u′l+ i =∑
i∈I

u′l− i and

(u′r−i + u
′l−
i ) − (u

′r+
i + u

′l+
i ) = s

e−
i − s

e+
i ,∀i ∈ I} otherwise.

.

(16)
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We then can replace, for all i ∈ I , the constraints on the repartition
keys described by Eq. 2 with the following constraints.

ur+i = 0, (17)

ur−i = 0, (18)

4.4.3 Linearisation of the whole cost function
Since the value of fτ(sτ) is known, the cost function ρ can be

transformed into an equivalent linear function as follows:

ρ(st,ut,et, st+1) = 1=0 ( fτ (sτ))ρe (s
e−
t , s

e+
t ,u

k−
t ,u

k+
t ,e

b
t ,e

s
t)

+∑
i∈I

ρoi (s
c
i,t,u

c
i,t,e

o
i,t, s

c
i,t+1) . (19)

5 Testing the policies on a REC decision
process constructed from synthetic
data

In this section, we illustrate and test the three policies proposed in
Section 4. To that end, we employ various policy horizons and three
different RECs (Cases 0, I and II). The former, detailed in Section 5.1,
is a simple REC with two members, a producer equipped with a
battery and a consumer, so as to illustrate the working principle of the
three policies.The two others are constructed from synthetic data, and
inspired from a real-life case of REC that was in operation from 2017
till 2021 in themunicipality ofMéry, Belgium (Cornélusse et al., 2017).

Case I The first REC includes six members: four consumers, one
producer based on a solar photovoltaic (PV) installation,
and the owner of a large lithium-ion battery. The latter is,
therefore, the only controllable asset of the REC.

Case II The second case is similar to the first, but differs on specific
points: i) the lithium-ion battery is replaced by a long-term
storage device with larger capacity but less power capacity,
and ii) the PV producer also owns a small lithium-ion battery,
suitable for short-term storage. Hydrogen-based storage
systems can be used as long-term storage whereby relatively
large amounts of energy can be economically stored since the
container is inexpensive. However, due to the high costs of
electrolytes and cells, their power is usually limited. On the
other hand, lithium-ion batteries are relatively expensive at
high capacities, but they provide relatively inexpensive input
and output power, which make them good candidates for
short-term electricity storage. This second REC is inspired
by the single user off-grid microgrid set-up described in
(Francois et al., 2016).

Finally, we display and discuss the results, particularly highlighting
the difference in terms of performances between jointly optimising the
controllable assets and the repartition keys, and optimising only the
controllable assets. We also report the runtime of the three policies
tested in the two REC cases with a Dell XPS 15, equipped with a
Intel Core i7 3.5 GHz CPU and 16 GB of DDR4 RAM. Note that the
computational complexity of each policy correspond to the underlying
linear solver we have used (Cplex, 2009) which itself has a complex

TABLE 1 Size (in financial terms) of the electricity bill of member C by testing
the three policies with several policy horizons for the simple REC, compared
with the optimal policy (equivalent to the look-ahead policy with K = T = 24).
The electricity bill of PVB is not shown in this table; its value is 0 for all policies
tested.

Policy K C

optimal N/A 3.56

look-ahead 4 3.96

8 3.76

12 3.56

look-ahead-billing 4 3.82

8 3.66

12 3.56

look-ahead-decoupling 4 4.29

8 4.29

12 4.29

Bold value is sufficient to highlight.

behaviour depending on the number of variables and the general shape
of the model.

Due to the scarcity of the available data and the fact that the
computation of the policies are deterministic at runtime, we focus
our experiments on a single consumption and production profiles for
each REC member. However, as shown by results in Sections 5.2.4
and 5.3.3, the performance of the policies are sufficiently different
to compare them, particularly between the look-ahead policy and the
look-ahead-decoupling policy.

5.1 Description of case 0

In this section, we formalise a simple REC composed of N = 2
members. The first member, named C, is a consumer. The second
member, named PVB, is a PV producer equipped with a battery.

5.1.1 Discretisation of the time horizon
We assume that the duration between two discrete time steps ΔC

is set to 1 h and that the number of time steps in a metering period ΔM
is 4. We assume that the time horizon T is 24 h.

5.1.2 State space
The member C has no controllable asset, so sc1 is empty. The

member PVB has a battery and its state sc2 ∈ ℝ+ is its state of charge,
expressed in kWh.

5.1.3 Action space
Since the member C has no controllable asset, the action uc1 is

empty. The battery of the member PVB can be charged by the action
uc+2 ∈ ℝ+ and discharged by the action uc−2 ∈ ℝ+. Both actions are
expressed in kW.The action uc2 ∈ ℝ

2
+ is defined as (uc+2 ,u

c−
2 ).

5.1.4 Exogenous space
Figure 3 shows the consumption profile of member C and the

production profile of member PVB. The values of the exogenous
variables eot,1 ∈ ℝ+ and eot,2 ∈ ℝ+ correspond to these respective
profiles.
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FIGURE 3
Consumption profile of the member C and production profile of the member PVB for the REC of Case 0.

The retailer contracts of the members C and PVB specify
that they are charged at 1€/kWh and 2€/kWh for electricity
consumption, respectively. These retailer contracts also specify that
the surplus of electricity production of these members injected into
the network is not bought back. In other words, the selling prices
are 0.

The values of ebi = [e
rb
1 ], e

b
2 = [e

rb
2 ], e

s
1 = [e

rs
1 ], e

s
2 = [e

rs
2 ] are set

accordingly.

5.1.5 Constraints on the action space
The actions related to the battery of member PVB are bounded by

the content and power capacities as follows.

sc2 − u
c+
2 ⩾ 0, (20)

sc2 + u
c−
2 ⩽ 1, (21)

uc+2 ⩽ 0.05, (22)

uc−2 ⩽ 0.01. (23)

5.1.6 Net electricity consumption/production
during a control period

The net electricity production and consumption of the member C
are based on its consumption profile. More formally, the values of l+1
and l−1 are set to 0 and eo1, respectively. The net electricity production
and consumption of the member PVB are based on its production
profile and the activity of its battery. More formally, the values of l+2
and l−2 are set to e

o
2 + u

c+
2 and uc−2 , respectively.

5.1.7 Transition dynamics
Since the member C has no controllable asset, no transition

dynamics is associated to him. The transition function associated to
themember PVB, which continuously charge and discharge its battery,
is defined as follows:

fc2 (s
c
2,u

c
2,e

o
2) = s

c
2 + u

c+
2 − u

c−
2 . (24)

The initial state Sc2 is set to 0.33.

5.1.8 Cost functions
Since the member C has no controllable asset, the operational cost

ρo1 of thememberC is fixed to 0.The operational cost ρo2 of themember
PVB is defined as ρo2(s

c
2,u

c
2,e

o
2, s
′c
2 ) = 10

−6uc−2 so as to introduce mutual
exclusion between charge and discharge commands (see Section 5.2.1
for a detailed explanation).

The total combined value of the individual electricity bills
depending on the repartition keys ρe is defined as:

ρe (se− , se+ ,uk− ,uk+ ,eb,es) =
2

∑
i=1
(se−i − u

k−
i Φ)e

rb
i

− (1− uk+i s
e+
i )e

rs
i . (25)

See Section 5.2.3 for the linearisation of this cost function.

5.1.8.1 Illustrating the policies through case 0
Table 1 shows the results of testing the three policies with

K ∈ {4,8,12} and the optimal policy (equivalent to K = T = 24).
Note that the total combined value of the individual electricity
bills only corresponds to the electricity bill of the member C.
Figure 4 shows the evolution of the state of charge of the battery
by testing the three policies with K ∈ {4,8} and the optimal
policy.

The optimal policy handles at best the intermittence of the solar
production of the member PVB by charging at most during the
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FIGURE 4
State of the battery and total electricity consumption covered by surplus of electricity production (local electricity net consumption) at each discrete time
step for Case 0.

TABLE 2 Net electricity production and consumption of RECmembers for
Case I.

REC member i l+i,t l−i,t
Consumer members ∈ {1,…,4} 0 eoi,t

PV producer 5 eoi,t 0

Battery provider 6 ΔCu
c−
i,t ΔCu

c+
i,t

production peak and discharging at the consumption peak that occurs
later in the day. In the other hand the look-ahead-decoupling policy,
which has the worst performance, does not use at all the battery.
In this case, the look-ahead-billing policy is consistently, slightly
better than the look-ahead policy. At K = 4, the look-ahead policy

completely discharges the battery to satisfy the first consumption
peak and do not use the battery afterwards, while the look-ahead-
billing policy uses a little fraction of the production peak to
charge the battery before discharging at the end of the day. As K
grows, the behaviour of the two policies gets closer to the optimal
policy.

5.2 Description of case I

5.2.1 Formal description of the decision process
This section completes the formulation of the decision process

associated with the first REC, composed of N = 6 members, where
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TABLE 3 Synthetic pricing plans for Cases I & II.

REC member i Buying price erbi Selling price ersi
6AM-9PM 9PM-6AM 6AM-9PM 9PM-6AM

Consumer C1 1 0.165 0.133 ∅ ∅

Consumer C2 2 0.163 0.130 ∅ ∅

Consumer C3 3 0.161 0.146 ∅ ∅

Consumer C4 4 0.210 0.135 ∅ ∅

Producer PV 5 0.325 0.272 0.046 0.028

Battery owner B 6 0.335 0.277 0 0

TABLE 4 Size (in financial terms) of the electricity bill in total and also for eachmember by testing the three policies with several policy horizons for the first REC,
compared with the optimal policy (equivalent to the look-ahead policy with K = T = 720). Since the size of the electricity bill of themember 6 is 0 regardless of the
tested policy, the corresponding column is not reported.

Policy K Total C1 C2 C3 C4 PV

optimal N/A 651.75 157.27 250.25 154.65 220.81 −131.23

look-ahead 12 683.09 163.62 256.11 156.96 237.09 −130.69

18 681.91 163.52 255.66 156.85 236.22 −130.33

24 671.96 161.82 254.04 155.34 231.63 −130.86

36 662.45 159.81 253.03 154.81 225.77 −130.98

48 651.8 157.27 250.33 154.65 220.81 −131.27

look-ahead-billing 12 682.39 163.64 255.92 157.0 236.55 −130.73

18 677.85 162.92 255.0 156.2 234.54 −130.81

24 673.01 162.06 254.12 155.39 232.29 −130.85

36 662.29 159.68 253.13 154.83 225.61 −130.96

48 654.05 157.92 251.37 154.65 221.14 −131.04

look-ahead-decoupling 12 854.91 180.46 302.24 199.86 268.96 −96.61

18 854.91 180.46 302.24 199.86 268.96 −96.61

24 854.91 180.46 302.24 199.86 268.96 −96.61

36 854.91 180.46 302.24 199.86 268.96 −96.61

48 854.91 180.46 302.24 199.86 268.96 −96.61

Bold value is sufficient to highlight.

i) 1,…,4 are the indexes referring to four consumers named
C1,…,C4, ii) the 5th member is a PV producer named PV,
and iii) the 6th member is a battery owner named B who
does not consume or produce electricity via non-controllable
assets.

5.2.1.1 Discretisation of the time horizon
We assume that ΔC = 0.25 h and that ΔM = 4. We assume that

T = 720, which corresponds to 7.5 days.

5.2.1.2 State space
The state sci for members i ∈ {1,…,5} is represented by an empty

state s∅.The state sc6 ∈ ℝ+ is the state of charge of battery of themember
6, expressed in kWh.

5.2.1.3 Action space
The action uci for members i ∈ {1,…,5} is represented by an empty

action u∅. The action uc6 ∈ ℝ
2
+, defined as (uc+6 ,u

c−
6 ), is a pair of

charge/discharge commands of the battery owned by member 6, both
expressed in kW.

5.2.1.4 Exogenous space
The exogenous variable eot,i ∈ ℝ+ is the amount of energy

consumed by the non-controllable assets of member i at time step
t expressed in kWh, for all members i ∈ {1,2,3,4} and for all time
steps t = 0,…,T− 1. The exogenous variable eot,5, for all time steps
t = 0,…,T− 1, corresponds to the amount of energy produced by
the photovoltaic installation of member five at time step t. Member
six is not equipped with any non-controllable asset. Therefore, we
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TABLE 5 Runtime (in seconds) of the three policies tested in the first REC.

Policy K Runtime

look-ahead 12 67

18 94

24 117

36 226

48 354

look-ahead-billing 12 71

18 102

24 124

36 247

48 377

look-ahead-decoupling 12 63

18 90

24 110

36 202

48 322

set its exogenous variable eot,6 to 0 for all time steps t = 0,…,T− 1.
The consumption profiles of members 1,…, four and the production
profile of member five are constructed from real-life consumption
data4. The exogenous variables related to the price vectors of buying
electricity for allmembers i ∈ I are defined as ebi = [e

rb
i ]where e

rb
i ∈ ℝ+

is the retailer’s buying price for member i expressed in €/kWh. The
exogenous variables related to the price vectors of selling electricity for
allmembers i ∈ I are defined as esi = [e

rs
i ]where e

rs
i ∈ ℝ+ is the retailer’s

selling price for the member i expressed in €/kWh. Purchasing retail
prices for all members i ∈ I and the selling retail prices for members
5 and 6 are detailed in Section 5.2.2 for all discrete time steps
t = 0,…,T− 1.

5.2.1.5 Constraints on the action space
The set of admissible actions U(s,e) for all pairs of states and

exogenous variables (s,e) ∈ S × E is described by the following set of
inequations.

sc6 −ΔC (η
+
6u

c+
6 ⩾ S
⌊c⌋
6 , (26)

sc6 +
ΔCu

c−
6

η−6
⩽ S⌈c⌉6 , (27)

uc+6 ⩽ U
⌈c+⌉
6 , (28)

uc−6 ⩽ U
⌈c−⌉
6 , (29)

where η+6 is the charging efficiency of the battery of member 6 and
η−6 is the discharging efficiency of the battery of member 6, S⌊c⌋6

4 Consumption and production profiles are publicly available on Zenodo, see
(Aittahar et al., 2022). Consider only the column 1st week of each file.

and S⌈c⌉6 are lower and upper bounds of the state of charge of the
battery of member 6 expressed in kWh, respectively, and U⌈c+⌉6 and
U⌈c−⌉6 are both upper bounds of the charge and discharge commands
of the battery of member 6 expressed in kW, respectively. Eqs 26,
27 specify the upper and lower limits of the state of charge of the
battery of member 6, respectively. Eqs 28, 29 specify the upper limits
of the charge and discharge commands of the battery of member 6,
respectively.

5.2.1.6 Net electricity consumption/production during a control
period

Thevalues of l+i and l
−
i for all members i ∈ I are defined byTable 2.

5.2.1.7 Transition dynamics
Transition dynamics for allmembers exceptmember 6, are defined

as follows:

fci (s
c
i ,u

c
i ,e

o
i ) = s

c
i , ∀i ∈ {1,…,5} .

Transition dynamics specific to the charging/discharging
dynamics of the battery of the member 6 are defined as follows:

fc6 (s
c
6,u

c
6,e

o
6) = s

c
6 +ΔC(η

+
6u

c+
6 −

uc−6
η−6
). (30)

5.2.1.8 Cost functions
We define the operational cost functions of all members i ∈
{1,…,5} as ρo6(s

c
i ,u

c
i ,e

o
i , s
′c
i ) = 0.We define the operational cost function

for member 6 as ρo6(s
c
6,u

c
6,e

o
6, s
′c
6 ) = ϵu

c−
6 , where ϵ = 10–6. This cost

function is a small penalty on the discharge command of the battery
so as to introduce a mutual exclusion between charge and discharge
commands. Without such a penalty, applying null commands to
the battery (i.e., uc+6 = 0 and uc−6 = 0) would be equivalent with
respect to the optimisation objective defined in Eq. 10 to apply
charging/discharging commands that cancel each other (i.e. η+6u

c+
6 −

uc−6
η−6
= 0), according to Eq. 30.
The total combined value of the individual electricity bills

depending on the repartition keys ρe is defined as:

ρe (se− , se+ ,uk− ,uk+ ,eb,es) = ∑
i∈I
(se−i − u

k−
i Φ)e

rb
i

− (1− uk+i s
e+
i )e

rs
i . (31)

5.2.2 Values from synthetic data for case I
The sequences of exogenous variables related to the energy

buying prices from retailers erbi and to the energy selling prices
to retailers ersi for all members i ∈ I , expressed in €/kWh,
are also constructed from synthetic pricing plans as shown in
Table 3.
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FIGURE 5
State of the battery and total electricity consumption covered by surplus of electricity production (local electricity net consumption) at each discrete time
step for Case I.

The values for parameters described in Section 5.2.1 and initial
states are:

Sc6,0 = 300kWh,

η+6 = η
−
6 = 88%,

S⌊c⌋6 = 40kWh,

S⌈c⌉6 = 160kWh,

U⌈c+⌉6 = 176kW,

U⌈c−⌉6 = 352kW.

5.2.3 Computing open-loop sequences of actions
for each policy

The total combined value of the individual electricity bills defined
by Eq. 31 can be transformed into an equivalent linear function using
action space U ′ as follows.

ρe (se− , se+ ,u′r− ,u′r+ ,u′l− ,u′l+ ,eb,es) = ∑
i∈I

u′r−i erbi − u
′r+
i ersi . (32)

5.2.4 Testing the policies for case I and discussion
on results

The three policies discussed in Section 4 are tested in this section
for Case I with varying policy horizons K ∈ {12,24,36,48}. More
specifically, we compare the results of the look-ahead and look-
ahead-billing policies, which jointly optimise controllable assets and
repartition keys over the policy horizon K, against the optimal
policy–the equivalent to look-ahead with K = 720 and perfect
information concerning all exogenous variables–and the look-ahead-
decoupling policy which only optimises the controllable assets over the
policy horizon K. Table 4 shows the results of this test. Table 5 shows
the runtime of the policies during the tests, which essentially grows
with K, the difference between the policies being very slight.

The combined total value of the electricity bills of the members
obtained by using the look-ahead policywith the policy horizonK = 12
is close to the one obtained using the optimal policy—the difference
being less than 30€, and this difference decreases as K grows. At
K = 48, the difference with the optimal policy is less than 0.05€. These
results suggest that near-optimal open-loop sequences of actions can
be computed with the look-ahead policy with a rather small policy
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horizon, provided that the prediction error on the exogenous variables
is low.

The combined total value of the electricity bills of the members
obtained by using the look-ahead-billing policy with the policy horizon
K = 12 is lower than the look-ahead policy (by around 1€).This suggests
that the look-ahead-billing policy, which computes virtual repartition
keys at the last time step T′(t)might output better quality actions than
the look-ahead policy. When K grows, we make the same observations
as in the results of Case I.

Regardless of the policy horizon K, the combined total value
of the electricity bills of the members obtained by using the look-
ahead-decoupling policy is significantly higher than the one obtained
using the optimal policy (by around 200€). Since this amount is
also significantly higher compared to the other policies within the
same REC configuration, it clearly shows the importance, for any
efficient open-looppolicy, of computing sequences of actions by jointly
optimising the controllable assets and the repartition keys through the
control process of a REC.

To better understand the difference in terms of the combined
total value of the electricity bills of the members across the policies,
Figure 5 shows the evolution of the state of charge of the battery of
member 6.We notice that, while the optimal policy and the look-ahead
policymake use of the battery of member 6 the look-ahead-decoupling
policy does not use it at all. This is expected since the look-ahead-
decoupling policy cannot compute the repartition keys in real time, and
therefore cannot use the demand and production of the community to
charge and discharge the battery.

Results also show the individual electricity bills. Note that
repartition keys implicitly define a rule to redistribute the global
electricity bill among the members. At the end of each metering
period, the look-ahead policy, look-ahead-billing policy and the optimal
policy redistribute the local production surplus generated bymembers
5 and 6 to the other members. The way they redistribute it depends
on their consumption profiles and their retailer tariffs. Indeed,
according to Eq. 31, the import key allocated to members with higher
retailer tariffs should be higher than the others, following a global
minimisation criterion of the combined total value of the electricity
bills.

5.3 Description of case II

5.3.1 Differences with the decision process of
case I

This section describes the decision process associated with the
second REC (case II), which only differs from the first one in that
member 5 of the REC (i.e., the solar-based electricity producer)
owns a small battery, and that the configuration of the battery of
member 6 differs in terms of capacity, power and energy efficiency.
More precisely, we describe the components of the decision process
associated with this second REC which differs from the first
one.

Spaces State sc5 and action u
c
5 share the same definitions as sc6 and u

c
6,

respectively.
Constraints Upper and lower bounds on sc5 and action uc5 share the
same definition as sc6 and uc6.
ProductionThe variable l+5 is equal to e

o
i +ΔCu

c−
i .

ConsumptionThe variable l−5 shares the same definition as l−6 .

Dynamics The transition dynamics function fc5 shares the same
definition as fc6.
Cost functionsThe cost function ρo5 shares the same definition as ρo6.

5.3.2 Values from synthetic data for case II
The values for parameters described in Sections 5.2.1 and 5.3.1 as

well as initial states are set as follows.

Sc5,0 = 37kWh, (33)

η+5 = 99%, (34)

η−5 = 99%, (35)

S⌊c⌋5 = 15kWh, (36)

S⌈c⌉5 = 60kWh, (37)

U⌈c+⌉5 = 37kW, (38)

U⌈c−⌉5 = 97kW, (39)

Sc6,0 = 250kWh, (40)

η+6 = 83%, (41)

η−6 = 83%, (42)

S⌊c⌋6 = 100kWh, (43)

S⌈c⌉6 = 400kWh, (44)

U⌈c+⌉6 = 441kW, (45)

U⌈c−⌉6 = 882kW. (46)

5.3.3 Testing the policies for case II and discussion
on results

As in Section 5.2.4, we test the three policies discussed in
Section 4 in the secondREC (case II) with varying policy horizonsK ∈
{12,24,36,48}. Table 6 shows the results of these tests. Table 7 shows
the runtime of the policies during the tests, with the same observations
as the first REC. However, the runtime of the policies are higher than
for the first REC, which is expected since the number of variables is
higher.

The combined total value of the electricity bills of the members,
obtained by using the look-ahead policywith the policy horizonK = 12
is similar to the one obtained using the optimal policy—the difference
is less than 10€, and this difference decreases as K grows. At K = 48,
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TABLE 6 Size (financial) of the overall electricity bill and those for each individual member by testing the three policies with several policy horizons for Case II,
compared with the optimal policy (equivalent to the look-ahead policy with K = T = 720). Since the size of the electricity bill of themember 6 is 0 regardless of the
tested policy, the corresponding column is not reported.

Policy K Total C1 C2 C3 C4 PV

optimal N/A 513.34 153.48 242.34 150.18 216.98 −249.63

look-ahead 12 522.46 154.42 245.94 157.07 217.06 −252.02

18 518.43 154.42 243.77 153.85 217.06 −250.67

24 516.11 154.21 243.26 152.24 217.03 −250.64

36 515.15 154.16 243.23 151.23 217.02 −250.49

48 514.62 154.01 243.14 150.76 216.99 −250.28

look-ahead-billing 12 521.34 154.42 244.93 156.55 217.06 −251.62

18 518.6 154.42 243.69 153.94 217.06 −250.51

24 516.62 154.21 243.29 152.67 217.03 −250.58

36 515.15 154.16 243.23 151.23 217.02 −250.5

48 514.81 154.01 243.14 151.02 216.99 −250.36

look-ahead-
decoupling

12 570.82 157.05 263.12 166.43 217.08 −232.86

18 570.82 157.05 263.12 166.43 217.08 −232.86

24 570.82 157.05 263.12 166.43 217.08 −232.86

36 570.82 157.05 263.12 166.43 217.08 −232.86

48 570.82 157.05 263.12 166.43 217.08

Bold value is sufficient to highlight.

TABLE 7 Runtime (in seconds) of the three policies tested in the second REC.

Policy K Runtime

look-ahead 12 107

18 114

24 124

36 239

48 375

look-ahead-billing 12 113

18 120

24 133

36 259

48 394

look-ahead-decoupling 12 71

18 101

24 117

36 223

48 352

the difference with the optimal policy is less than 1€.This corroborates
that the near-optimal open-loop sequences of actions can be computed
with the look-ahead policywith a rather small policy horizon, provided
that there is a low prediction error of the exogenous variables.

The combined total value of the electricity bills of the members,
obtained by using the look-ahead-billing policy with the policy
horizon K = 12 is lower than the look-ahead policy (around 1€).
As in the previous policy, as K grows, the difference between their
sub-optimalities decreases. Indeed, the combined total value of the
electricity bills of themembers obtained by using the look-ahead billing
policy with the policy horizon K = 48 is lower than that obtained
through the look-ahead policy. It is also interesting to note that across
the values ofK, the combined total value of the electricity bills obtained
by the look-ahead billing policy is lower than the one obtained by the
look-ahead policy, which validates the hypothesis that the look-ahead
billing policy can improve the quality of the control actions compared
to the look-ahead policy.

Regardless of the policy horizon K, the combined total value of
the electricity bills of the members obtained by using the look-ahead-
decoupling policy is significantly higher than the one obtained using
the optimal policy (by around than 50€).

To better understand the difference in terms of the combined
total value of the electricity bills of the members across the policies,
Figure 6 shows the evolution of the state of charge of the battery
of member 6. As in the first REC, we notice that the look-ahead-
decoupling policy does not use the battery at all, unlike the two
other policies. However, the battery owned by member 5 is also
used by this policy, and it is used in a different way to the two
other policies. The pattern of the state of charge of the battery
suggests that this battery discharges its energy to sell it to its own
retailer when the selling price is higher than outside this time
interval.
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FIGURE 6
State of the batteries and total electricity consumption covered by surplus of electricity production (local electricity net consumption) at each discrete time
step for Case II.

6 Conclusion and perspectives

In this paper, we have proposed a generic formulation of the
decision process associated with renewable energy communities,
which enables one to jointly optimise the controllable assets of
each member and the repartition keys used to allocate the local
production among the members in order to minimise the total
combined value of their individual electricity bills. We have proposed
two policies that exploit both the structure of the REC and the
available predictions of the future production and consumption of
each member to perform this joint optimisation in a time-receding
horizon fashion. Furthermore, a third policy that only optimises
the controllable assets is proposed. We have tested these algorithms
on two REC control problems constructed from synthetic data
with 6 members–4 consumers, one producer and a battery. Our
results highlight the importance of the joint optimisation of the
controllable assets and the repartition keys, as higher total combined
value of individual electricity bills have been observed for the third
policy.

The contribution of this paper could be extended along several
directions. First, let us observe that the control policies we have
proposed have been using linear programming techniques since the
dynamics and the cost functions associated with the REC constructed
from synthetic datawere linear - this is often not the case for real RECs.
In such context, we could use more advanced techniques such as non-
linear programming techniques (e.g., interior point methods) in these
open-loop policies or even use closed-loop policies. Reinforcement
learning techniques (Bellman, 1954), especially by exploiting the
expressiveness of deep neural networks (François-Lavet et al., 2018)
(Mnih et al., 2015) (Lillicrap et al., 2015), are excellent candidates
to construct these closed-loop policies, since these techniques have
been successfully tested on challenging control problems related
to microgrids and power systems (Tomin et al., 2019; François-
Lavet et al., 2016; Glavic et al., 2017). Another interesting avenue for
future research would also be to conduct a extensive benchmark on
the look-ahead and the look-ahead-billing policies to extract an insight
on which situations one of the policies is more efficient than the other
one.
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Finally, the repartition keys, introduced by the decision process
developed in Section 3, implicitly describe a mechanism to
redistribute the revenues generated from the REC, which corresponds
to the difference between the combined total value of the individual
electricity bills without the REC and the combined total value of the
individual electricity bills with the REC. However, this redistribution
of the REC revenues is biased by the electricity tariffs imposed by
the retailers on each member. Indeed, as observed by the simulation
results in Section 5, whenever the buying retail tariff of a member is
higher compared to othermembers, the size of its individual electricity
bill is lower compared to these members. By design, other factors that
could influence this redistribution in another way (e.g., investment
participation of amember to build the REC, subsides brought by some
members) are not taken into account at optimisation stage. An ex-post
procedure could be developed to compute alternative redistributions
schemes as to better incentivise the members to join the RECs.
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