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Thermal field reconstruction and
compressive sensing using
proper orthogonal
decomposition

John Matulis* and Hitesh Bindra

NuEST Lab, School of Nuclear Engineering, Purdue University, West Lafayette, IN, United States

Model order reduction allows critical information about sensor placement and
experiment design to be distilled from raw fluid mechanics simulation data. In
many cases, sensed information in conjunction with reduced order models can
also be used to regenerate full field variables. In this paper, a proper orthogonal
decomposition (POD) inferencing method is extended to the modeling and
compressive sensing of temperature, a scalar field variable. The method is
applied to a simulated, critically stable, incompressible flow over a heated
cylinder (Re = 1000) with Prandtl number varying between 0.001 and 50. The
model is trained on pressure and temperature data from simulations. Field
reconstructions are then generated using data from selected sensors and the
POD model. Finally, the reconstruction error is evaluated across all Prandtl
numbers for different numbers of retained modes and sensors. The predicted
trend of increasing reconstruction accuracy with decreasing Prandtl number is
confirmed and a Prandtl number/sensor count error matrix is presented.

KEYWORDS

compressive sensing, regeneration, scalar transport, reduced order models, proper
orthogonal decomposition

1 Introduction

Fluid flows and scalar transport are ubiquitous in nature and engineering. Consequently,
accurate modeling of flow behavior is important for obtaining a deeper understanding
of natural systems and optimizing the design of engineering systems. At a fundamental
level, fluid flows are computationally irreducible problems. They are composed of
a near-infinite number of particles, each with its own position and velocity at
every instant in time. This means that the complete characterization of any flow is
impossible for computationally bounded observers (Wolfram, 2023). Furthermore, even
if a complete snapshot in time were available, it would be impossible to predict the
state at any future time without running a complete simulation of every interaction.
Throughout the first half of the 19th century Navier and Stokes developed their
famous system of equations that model fluid flows quite well (Panton, 2013). These
equations along with the energy equation model the velocity, pressure, temperature, and
concentration fields in a fluid and provide a continuous, macroscopic representation
of the microscopic process underneath. However, no general, analytical solution exists
for these equations, so in many engineering applications today approximate solutions
are numerically evaluated. These methods are both computationally expensive and they
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generate a large amount of data which is difficult to distill for
understanding or design purposes.

The study of coherent structures in time-varying flows emerged
in the latter half of the 20th century as an attempt to simplify the
analysis of chaotic, unpredictable flows (Lumley, 1981). Coherent
structures emerge from the interaction between a flowing fluid
and the physical boundaries the fluid encounters. Structures leave
their mark on the flow, influencing its evolution over space and
time. Proper orthogonal decomposition (POD) is an analytical
technique developed by Lumley in 1967 that provides a framework
for extracting and analyzing these coherent structures (Sirovich,
1987).This technique appears to have beendeveloped independently
in several contexts and has also been called the Karhunen-
Loeve expansion or principle component analysis. Sirovich further
developed this technique, pioneering the “method of snapshots”
which takes snapshots of the fluid field as inputs andproducesmodes
forming an orthogonal basis for the flow (Sirovich, 1987; Sirovich
and Park, 1990).

Since its inception, POD has been refined and extended.
It has been applied to create reduced-order, computationally
efficient models of many different aspects of engineering systems
in fields such as fluid mechanics, heat transfer, neutronics, and
meteorology. Buchan et al. developed a POD based, reduced-order
model to simplify neutron flux calculations in nuclear reactors
(Buchan et al., 2013). They achieved a reduction in computation
time of between 87% and 99%. Epps and Krivitzky studied the
effects of noisy data on POD models of velocity in fluid flows,
considering the relation between noise level and the singular
values derived in the model (Epps and Krivitzky, 2019). Cohen
et al. applied POD to the compressive sensing and reconstruction
of velocity fields from oscillatory flow over a cylinder. They
suggested a potential method to determine sensor placement
(Cohen et al., 2003). Raiola et al. studied the effectiveness of such
POD reconstruction techniques on the vorticity field of a turbulent
flow. They demonstrated the effectiveness of the technique even
when the training data has a level of Gaussian noise applied,
as is the case in real sensed data (Raiola et al., 2015). Liu
et al. used POD to study the coherent turbulent structures in
simulated data of wind moving over a city. They developed modes
corresponding to the turbulent kinetic energy (TKE) of the wind
flow (Liu et al., 2023). Bright et al. applied the method of snapshots
and developed a “mode library” to develop a compressive sensing,
POD inferencing method capable of classifying flows based on
their Reynold’s number (Bright et al., 2013). This body of work
demonstrates the effectiveness of POD at extracting coherent
flow structures and its applicability across a variety of fluid
mechanics problems.

Due to the ease of measuring temperature in systems through
thermocouples, IR cameras (Gould et al., 2017), andmore advanced
methods such as distributed fiber-optic optical sensors (Ward et al.,
2019; Ahmed et al., 2022), and the importance of temperature
modeling for engineering applications, many authors have explored
the effectiveness of POD for modeling temperature fields within
systems. Jiang et al. trained a PODmodel using surface temperature
measurements to study conduction in a solid body and applied the
model to develop a sparse sensing technique (Jiang et al., 2022).
Another study used POD for temperature field reconstruction from
sparsely placed sensors in an air conditioned room under varying

conditions (Jiang et al., 2017). POD has also been used to develop
a compressive sensing scheme for temperature in a combustion jet
(Chen et al., 2020).

Despite the breadth of study across applications and systems,
relatively little information exists about the dependence of
reconstruction effectiveness on the number of modes included in
the POD models or the number of sensors needed to successfully
leverage the information contained in those modes. Furthermore,
it was shown by Batchelor that the evolution of temperature
and velocity fluctuations are related and that distinct profiles
exist in the behavior of temperature, or any advected scalar,
as the Prandtl number of a flow is varied (Batchelor, 1959;
Batchelor et al., 1959).

This study aims to give a comprehensive analysis of the effect
of the number of modes and sensors on the reconstructions of
the pressure and temperature of a simple, well understood, fluid-
mechanical system: 2D incompressible flow over a heated cylinder
with various Prandtl numbers. In this paper, the method of POD
inferencing is explained, along with the aspects which distinguish
it from the more common POD projection methods. After this,
the simulation parameters which were used to generate training
and test data are detailed. Then the specific implementation of
the algorithm for the training of the model with this data and
selecting sensor locations is described. This is followed by a
description of the method of testing the model with sensed data
and the error metrics by which reconstructions from the sensed
data can be evaluated. Finally the variation of error with number
of sensors, number of modes, and Prandtl number of the fluid
is discussed in depth and problem specific error correlations are
graphically displayed.

2 Method description

In this paper, a compressive sensing and reconstruction
scheme is developed for the evolution of a fluid flow, as
modeled by the Navier Stokes equations. Only the 2 dimensional
variant is considered to expedite simulation and the execution
of the algorithm. To further simplify the problem, the flow
is also modeled as incompressible with constant density and
other material properties with no body forces acting on the
fluid. Additionally, the flow velocity is limited to Re = 1000.
These simplifications were intentionally made to maintain the
passivity of the temperature scalar, to increase reproducibility,
and to check the effectiveness of this method. Equation 1 is
the continuity equation which expresses conservation of mass,
Eq. 2 is the Navier-Stokes equation which expresses Newton’s
second law.

∇ ⋅ u = 0 (1)

∂u
∂t
+ (u ⋅∇)u = −1

ρ
∇p+ ν∇2u (2)

Energy transport is handled with T as a passive scalar.

∂T
∂t
+ u ⋅∇T = ν

Pr
∇2T (3)
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2.1 Proper orthogonal decomposition

Previously, Bright et al. presented a POD inferencing algorithm
which correlates sensed data to known behaviors of a system
(Bright et al., 2013). This is distinct from POD techniques which
project the behavior of the system onto a lower order set of
equations that are used to more efficiently resolve flow calculations
(Sirovich, 1987; Buchan et al., 2013; Liu et al., 2023). This method
involves a singular value decomposition (SVD), shown in Eq. 4, of a
matrix, A which contains snapshots of data collected from the flow
simulations as columns.

A = UΣVT (4)

Where:

• A is themxn real matrix of the data
• U is anmxm real orthogonal matrix
• Σ is an mxn diagonal matrix with non-negative real entries on
the diagonal. By convention, its entries are in decreasing order
along the diagonal
• V is an nxn real orthogonal matrix
• T denotes transpose

The columns of matrix V are the eigenvectors of ATA and the
columns of U are the eigenvectors of AAT. The values along the
diagonal ofΣ are the square roots of the non-zero eigenvalues ofATA
andAAT. Eckart andYoung (Eckart andYoung, 1936) demonstrated
that for some rank r <min (m,n), the optimal rank-r approximation
of A = UΣVT is A∗ = UΣrVT = ŪΣr

̄VT, where

Σr =

[[[[[[[[[[[[[

[

σ1 0 … 0 … 0

0 σ2 … 0 … 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … σr ⋮

⋮ ⋮ ⋱ ⋮

0 0 … … … 0

]]]]]]]]]]]]]

]m×n

U and V respectively can be truncated to Ū and V̄ where
these matrices are truncated after the rth column. From this point
forward, Σr will refer to the r× r truncation of Σ, excluding rows
and columns of zero. A clear demonstration of this is given by
Luo and Chen (Luo and Chen, 2018). This implies that, given a
matrix A for which the values of σ in Σ decay rapidly, a convincing
reconstruction of A can be obtained from a greatly truncated
factorization of A. Furthermore, assuming one is interested in
reconstructing columns of A, an association emerges between the
columns of Ū and the columns of A. ΣrV̄

T can be thought of as a
set of column vectors, each associated with a particular column of
A. For a given column of A, the rows of Ū are each dot producted
with the given column of ΣrV̄

T. Considering the columns of Ū
reveals that the new column of A∗ is the sum of the r columns
of Ū each multiplied by a scalar from ΣrV̄

T. In this way, the
columns of Ū can be thought of as modes of the columns of A.
Any column of A can be optimally reconstructed using the modes
contained in Ū and a set of values by which to scale the modes
(Eckart and Young, 1936). The modes thus form an orthogonal

basis from which columns of A can be approximated. Thus,
this technique is often called Proper orthogonal decomposition
in physical science contexts (Lu et al., 2019). The same logic
applies if the rows of A are of interest rather than the columns,
switching Ū for V̄.

Consider a matrix, A, containing flow field data for a variable
such as pressure or temperature, with row indices indicating
location and column indices indicating time. The columns of
A can be viewed as “snapshots” of the behavior of the flow.
Applying the logic above means that the modes contained in
Ū can be used to optimally reconstruct the snapshots of the
flow behavior in A. If the snapshots that make up matrix A
are diverse enough so as to fully characterize the temperature
profile, in this paper a unique Prandtl number condition, then
the modes contained in Ū will be sufficient to reconstruct any
snapshot of behavior from that profile. This implies that given a
reasonably well-resolved solution to a system of nonlinear partial
differential equations, a low-order, linear model of the system
can be constructed which approximates field variables in the
given profile.

2.2 Flow field reconstruction

Such a low-order model has a number of possible uses. It can
be used in control systems, it can be used as an emulator, and it
can be used for compressive sensing. To apply this to compressive
sensing, take a domain within which the fluid flow evolves, y =
[y1,y2,y3…yj]

T, where yi is the value of some field variable at
location i in the domain. x = [x1,x2,x3…xk]T is a subset of y with
measurements at k < j sensed locations. For known snapshots of y,
one can map from y to x with a matrixΦ.

x =Φy (5)

Due to the dimensions of Φ (k x j), when y is unknown,
this system is highly underdetermined. In other words, given
an x and a Φ, there are infinite vectors y that solve this
equation. While effective approximations of y exist in this set,
there is no way to distinguish these useful y’s from the spurious
ones apriori.

However, since y is a snapshot of the flow, the above implies that
it can be well approximated from the modes of the flow contained in
Ū and some set of scalar values. Consider some matrix containing
modes,Ψ, and store the scalar values in a vector, a.Thus, in the same
way that A = ŪΣrV̄

T,

y =Ψa (6)

Combining this with Eq. 5 means

x =ΦΨa (7)

Note that for simplicity vectors x, y, and a representing a single
snapshot are considered, however, the derivation is still valid if
these are replaced with matrices with columns containing multiple
snapshots. For the sake of concision, wewill define amatrixC =ΦΨ.
Substituting into Eq. 7 yields

x = Ca (8)
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FIGURE 1
Graphical Summary of the method implemented in the paper. It shows: 1) the generation of the snapshots used to train the model from Section 3.1, 2)
the method of proper orthogonal decomposition described in Section 2.1, 3) the method of domain extension described in Section 2.3, 4) the method
of sensor selection described in Section 3.2 and Section 3.3, 5) the method of reconstruction outlined in Section 2.2 and Section 3.4, and 6) the analysis
of the reconstructed data discussed in Section 4.

Depending on the number of sensors kept and the number of modes
used to create Ψ, this system may be either overdetermined or
underdetermined.

To solve the underdetermined case of Eq. 8 which occurs
when the number of modes included in the model exceeds the
number of sensors employed, the solution which minimizes the
L1 norm of a, ‖a‖1 is sought. This corresponds to a solution
which most efficiently uses the stored modes, bypassing solutions
which, while successfully solving the equations, scale the modes
with outrageous and unrealistic values. The L1 norm of a vector
is the sum of the absolute values of the entries of the vector.
Minimizing the L1 norm is a convex optimization problem
(Candes et al., 2006). The open source package, CVXPY is used
in this work to solve this problem (Diamond and Boyd, 2016;
Agrawal et al., 2018).

For the overdetermined case, when the number of sensors
exceeds the number of modes, the solution to Eq. 8 is found using
the pseudoinverse method. When C̄+ is the pseudoinverse of C,
C̄+x = a yields a least squares optimized “solution” to the system
as described by Penrose (Penrose, 1956). The reconstructions from
this method do not perfectly reproduce the sensed data but the
best approximation that can be made from the stored modes. This
aspect of the reconstruction problem is important because the
effectiveness of compressive sensing schemes increases with the
number of sensors used. The data in Section 4 shows that sensor
schemes with more sensors than stored modes most effectively
capture the system’s behavior.

After finding a, Eq. 6 can be used to find y.

2.3 Domain extension

This method relies on a SVD being performed on A, which
becomes time consuming on large datasets. If the time dynamics of
some domain A1 and another domain A2 are sufficiently coupled,
then the time modes and singular values from A1, V1 and Σ1, along
with A2 can be used to generate position modes, U2. Since A1 =
U1Σ1VT

1 , A2 ≈ U2Σ1VT
1 . Rearranging yields

A2V1Σ−11 ≈ U2 (9)

Σ−11 andV1 can be found with standardmatrix manipulation.Thus a
good approximation ofU2 can be found using matrix multiplication
and standard operations as shown in Figure 1 pane 3. Various U2
can then be used to create Ψ2 and apply the same method above to
reconstruct from sensed data.

3 Model implementation

3.1 Numerical methods

ANSYS™ Fluent was used to solve Eqs. 1–3 and model fluid
flow over a cylinder. The domain is a rectangle with a heated
cylindrical obstruction. The boundary conditions and geometry
of the simulation are shown in Figure 2 and Table 1. As noted in
Section 2, density, viscosity, and specific heat are held constant at the
values specified in Table 1.
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FIGURE 2
Boundary conditions and mesh used for simulations, further details in Tables 1, 2.

TABLE 1 Details boundary conditions shown in Figure 2.

Parameter Value Normalized
Value

Cylinder Diameter 0.05 m 1 D

X Length 2.5 m 50 D

Y Length 1.0 m 20 D

X Position 1.0 m 20 D

Y Position 0.5 m 10 D

Inlet Velocity u∞ = 0.2915 m/s Re = 1000

Inlet Temperature 300K θ = 0

Density 1.225 kg/m3 —

Dynamic 1.7894 x —

Viscosity 10–5 kg/m∗ s —

Specific Heat 1006.43 J/kg∗K —

Heat Flux q” = 666.7 W/m2 —

In their most general mathematical form, the boundary
conditions for this work are:

1) Constant flow u = [u∞,0]T at the entrance
2) Constant pressure p = 0 at the exit of the channel
3) Neumann boundary conditions ∂u

∂n
= 0 at the upper and

lower boundaries
4) No slip condition, u = 0 on the boundary of the cylinder
5) Constant temperature, θ = 0 at the entrance
6) Constant heat flux, q″ = C on the surface of the cylinder

Lengths are normalized in terms of the diameter of the
cylinder D = 0.05 m. A mesh with element size 0.0075 m = 0.15D

was used. This was refined to 0.00075 m = 0.015D around the
cylinder. This resulted in 48,243 total nodes in the fluid domain
and 209 nodes on the perimeter of the cylinder. The mesh is
composed of quadratic nodes. The mesh can be seen in Figure 2,
though the fine mesh appears solid. The laminar viscous model
in Fluent was used, which implies no turbulent flow model
approximation.

Initial conditions were obtained by running the simulation
until stable flow conditions were obtained, noting the time steps,
t required to do this and then running for another 1.5t time
steps to ensure truly stable behavior was captured. Constant time
steps of 0.0005 s leading to a Courant number of 0.2 were used
in the simulation to ensure consistency and high-resolution data
in the time domain, though these are not strictly necessary with
the method of snapshots. The minimum requirement is that the
training data cover the domain of possible states with sufficient
temporal resolution. Using a constant time step that was adapted to
the period of the Strohaul number is a convenient and easy way to
ensure this. Since the SVD execution time depends mostly on the
minimum dimension in the A matrix, the inclusion of an excessive
number of snapshots ensures adequate domain coverage without
significantly impacting runtime. Once stable behavior was achieved,
the simulation was continued and data was collected. Pressure and
temperature data on the cylinder surface and in the flow volume
was sampled every 16 time steps over 32,000 time steps for a total
of 2000 snapshots. Increasing the number of snapshots included in
the training set beyond 1000 did not noticeably affect results and
so 1000 stationary time steps were captured as training data and
another 1000 were captured as a test set. The test data in this work
is taken directly from the simulation with no accounting for sensor-
induced noise. However, in real sensing applications, there is a level
of uncertainty in the readings from sensors.This is typicallymodeled
as a layer of Gaussian noise added on top of the sensed signal in
controls and sensing applications. Raioli et al. demonstrated that the
POD methods used in this paper are still valid when the sensed
signal has interference from a Gaussian noise component. They
validate a method by which this additional error can be considered
and calculated (Raiola et al., 2015). The technique presented in this
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TABLE 2 Thermal conductivity values used to achieve Prandtl numbers.

Prandtl
Number

Thermal
Conductivity

W/m∗K

100 0.00018

10 0.00180

0.744 0.02420

0.1 0.18009

0.01 1.80091

0.001 18.0091

paper should be coupled with Raioli’s method for implementation in
a real-world system.

The simulations were conducted with varying Prandtl numbers
to achieve different temperature profiles. To study the effect of
varying Prandtl numbers, the thermal conductivity of the fluid in the
simulation was varied as detailed in Table 2. A visual representation
of this step can be found in Figure 1 pane 1.

3.2 Training the model

A trainedmodel consists of twomatrices,Φ andΨwhich will be
defined subsequently. Given an a priori list of sensors to include, the
matrices Ψ and Φ can be calculated independently of one another.
However, since the method of selecting sensors used in this work
relies on knowledge ofΨ, its calculation is outlined first here.

After the simulations are complete, the data is imported into
Python. The data from the cylindrical surface is sorted by angle.
This is stored in a matrix, A1 where columns are snapshots in time
and rows are angular position. The data from the rest of the volume
is processed by a binning technique for ease of computation and
visualization. The domain is divided into 25,000 bins forming a
250× 100 uniform grid. Then each datapoint is labeled by what bin
it falls into. Then all of the datapoints in each bin are averaged and
that average is the stored value for the bin. The data for the volume
is imported and matrices containing the x and y coordinates are
stored for later visualization. The data is then stored in a matrix
A2 where columns are snapshots in time and rows correspond to
locations. After the data is stored in matrices A1 and A2, SVD is
performed on matrix A1 resulting in matrices U1, Σ1, and V1. This
process is repeated for each Prandtl number for which data has
been collected.

Now the number of modes to be kept from each profile must be
determined. This is typically done by computing the proportion of
the energy, p kept by keeping nmodes and finding n for which some
threshold of energy pmin, e.g., 0.99, 0.999, 0.9999 is kept. Letting the
diagonal of Σ = [σ1,σ2,… ,σr], p can be calculated as,

p =
σ21 + σ

2
2 +⋯+ σ

2
n

σ21 + σ
2
2 +⋯+ σ

2
r
≥ pmin (10)

In this work, the number of modes used is varied as an
independent variable and Eq. 10 is used merely to evaluate these
selections. Regardless, once the number of modes to be retained for
each profile has been determined, ̄U1 for each profile can be formed.

Now that the dominant modes have been determined, the
corresponding modes of the volume domain can be calculated and
stored. For a given profile, the modes of the volume domain are
calculated using Eq. 9. The modes are stored in ̄U2 andΨ2.

We must also construct the matrix Φ which maps from the full
domain y with j entries, to the partial, sensed domain x with k
entries. To construct Φ from a list of sensors to be kept, create a
sparse k× j matrix with a single ‘1′ in each row. Each of these ‘1’s’
should be the only ‘1′ in its column and should correspond to a
unique sensor being kept. For example, if y5, y38, and y97 are the
sensed locations, thenΦ should have a “1” only in its fifth, 38th, and
97th columns. Figure 1 pane 4 visually describes this process. Now
thatΨ andΦ these have been determined, they can be used to create
reconstructions from sensed data.

3.3 Sensor selection

The sensor set used throughout this work was determined
by examining the locations in the cylinder domain where the
modes included in Ψ1 had absolute maxima and minima. For each
temperature profile, the sensor corresponding to the maxima and
minima for each mode were listed in order of the mode they came
from in a master sensor set. Duplicate sensors were removed. Then,
to create shorter sensor sets for analysis, the first n sensors in the
list are used, with n being the desired number of sensors for the
test. This method has been previously applied to the sensor location
problem by Cohen et al. and more recently by Bright et al. and is
the generally accepted method for sensor selection in POD based
reduced order models (Cohen et al., 2003; Bright et al., 2013). This
method is favored in this work because it allows for consistency
between the sensor sets and because it is far less computationally
intensive than performing the analysis on many random sensor sets
that would be required to empirically find better sensor sets.

3.4 Model testing

To test the model,A1test andA2test datasets containing snapshots
with data at all locations are generated andprocessed in the sameway
as the training data. Additionally, an X dataset containing only the
data from the sensed locations with each column ofX, xi containing
sensed data for a snapshot.

Then for each snapshot, solve Eq. 8 using the methods outlined
in Section 2.2. This results in a vector a which contains information
about how useful each mode in Ψ1 is in creating sensor output xi.
a can then be used along with Eq. 9 to solve Eq. 6 and find Y2 with
each column containing a snapshot of the field reconstructed from
the sensed data. This step is shown in Figure 1 pane 5.

4 Results

To produce the results presented in this section, the following
analysis process was performed for the various datasets generated.
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FIGURE 3
Sensed data is used to find scaling values for modes which are then summed to generate a reconstructed field.

As described in Section 3.1, 1000 snapshots of the pressure or
temperature field on the cylinderwere collected from the simulation.
They were formed into a matrix, A and the POD was performed
to extract the modes. The method outlined in Section 3.2 was then
used to create modes for the pressure or temperature within the
volume. A sensor set was then formed using the method outlined in
Section 3.3. 23 differentmodels were created, incorporating between
4 and 26 modes. This range of modes was chosen such that a model
that retained all but 1e-6% of the energy as calculated by Eq. 10 was
included for all cases tested. Each model was then tested with data
collected from 21 sensor sets, xi for 7 ≤ i ≤ 27 where xi contains the
first i sensors in the overall sensor set. Extra sensors were included
for some cases. Eachmodel and set of sensors was tested on 1000 test
data snapshots using the method presented in Section 3.4 and the
statistics described in Section 4.1 were collected. Figure 3 illustrates
the testing procedure.

4.1 Error evaluation

Two error metrics are considered to provide a basis for
quantitative comparison between reconstructions and snapshots.
Before implementing either error metric, the data is normalized as
θ = x−xmin

xmax−xmin
where x is the quantity being analyzed. xmax and xmin are

evaluated over all test snapshots so that θ is a normalized scale with
range 0–1 across the whole domain being studied.

The L2 error norm,

ε = ‖θref − θcalc‖2/‖θ
ref‖2 (11)

where θref is the snapshot of the field produced by the simulation
discussed in Section 3.1 and θcalc is the reconstructed snapshot
provides a measure of how similar the reconstruction is to the
reference overall. Both θ′s are vectors with dimension equal to the
number of points in the field, in this case 25,000.The L2 norm is the
length of a vector in that 25,000 dimensional space. ɛ is therefore
the distance between the reference value and calculated value in that
space, divided by length of the reference value and gives a sense

FIGURE 4
Variation of ɛmean with number of sensors for Pressure data. Black
circles indicating the beginning of asymptotic behavior.

of the overall similarity between snapshots (Fukami et al., 2021;
Zhong et al., 2023).

The absolute error at a grid point (i,j), |ei,j| ≡ |θ
ref
i,j − θ

calc
i,j |. The

maximum absolute error (MAE) is the maximum |ei,j| over all grid
points in a given snapshot. The MAE of a snapshot indicates how
well the reconstruction matches the reference value at its worst
grid point. This error metric gives a bound on the accuracy of the
reconstructed values at each point whereas the L2 error norm from
Eq. 11 only gives an overall sense of similarity and can thus smooth
over large inaccuracies at individual points (Jiang et al., 2017).

The test data set for each temperature profile contains 1000
snapshots. 1000 values for ɛ and MAE are thus calculated for each
sensor andmode configuration tested.Themaximumvalues of ɛ and
MAE over these 1000 snapshots are reported as ɛmax and MAEmax.
Likewise the mean values over 1000 snapshots are reported as ɛmean
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FIGURE 5
Asymptotic and sensor error comparison for pressure and temperature. (A) Asymptotic error values for pressure. (B) Asymptotic error values for
temperature data, Pr = 0.744. (C) Best case error for a given number of sensors for pressure data. (D) Best case error for a given number of sensors for
temperature data, Pr = 0.744.

and MAEmean. These composite error metrics provide information
about the reconstruction success across all snapshots.

4.2 Reconstruction of pressure fields from
sensed pressure data

For a given number of modes, ɛmean decreases as sensors are
added up to a cutoff point, after which the addition of sensors made
little difference. Figure 4 shows this behavior for models containing
select numbers of modes with black circles roughly indicating the
point of diminishing return. For relatively low numbers of included
sensors, the models containing fewer modes yield the lowest error
as they reach the point of diminishing return quickly and display
asymptotic behavior over most of the range of sensors. ɛmean for
a given number of sensors tends to be higher when more modes
are included in the model if those models do not include sufficient
sensors to their asymptotic ɛmean. ɛmean generally decreases with the
number of sensors included before reaching its asymptotic value.
For increasing numbers of modes included in a model, the number
of sensors required to reach asymptotic ɛmean increases while that
asymptotic value of ɛmean decreases, indicating an improvement in
flow field reconstruction.

The asymptotic behavior indicates that, for a desired level of
error in the reconstructions from a sparsely sensed system, there
is a minimum number of modes and a corresponding minimum
number of sensors required to produce reconstructions with that

level of error. Figure 5A displays the relationship between the
number of modes included in the model and the asymptotic error
resulting from the model. While all measures of error decrease with
increasing numbers of modes, ɛmean and MAEmean are noticeably
smoother and monotonically decrease. The relation between the
number of sensors included in the model and the resulting error,
shown in Figure 5C displays similar behavior but is discontinuous
at points, with sudden decreases in achievable error. The error
decreases relatively little as less necessary sensors are added but
then falls sharply when a particularly useful sensor is added
which allows the model to leverage more modes. When considered
together Figures 4, 5A characterize the relation between sensors,
modes, and reconstruction accuracy for the model when trained on
pressure data.

4.3 Reconstruction of temperature fields
from sensed temperature data for Pr =
0.744

With the model and method of analysis now developed for the
pressure case, the procedure of Section 4.2 is applied using training
and test sets composed of temperature data for Pr = 0.744, which
corresponds to air. Figures 5B, D show the relationship between
the number of modes and sensors included in the model and the
resultant error analogous to Figures 5A, C.The relation between the
number ofmodes included in themodel to error for the temperature

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1336540
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Matulis and Bindra 10.3389/fenrg.2024.1336540

FIGURE 6
Asymptotic MAEmean for different Prandtl numbers.

FIGURE 7
Asymptotic ɛmean for different Prandtl numbers.

data is similar in shape to that for the pressure data. All measures of
error, especially the mean measures, decrease with the number of
modes included in the model. However, the temperature data yields
far lower MAE and ɛ than the pressure data. MAEmean varies from
0.022 to 0.00032 for the temperature data and 0.121–0.0030 for the
pressure data.The discrepancy is similar for ɛmean, which varies from
0.0041 to 0.0000173 for the temperature data and 0.0087–0.00021 for
the pressure data.

These metrics suggest that the temperature field can be
reconstructed with about 1/10th the error of the pressure field. In
the wake region, the low points in pressure correspond to vortices
shed from the cylinder. These vortices are coherent and persist in
the flow long after they leave the simulated region. Error values
are relatively high when the algorithm predicts the locations or
intensities of one or many of these vortices poorly. Since relatively
large perturbations are present in the pressure field from the edge of
the cylinder to the edge of the simulation, there are many points at
which the reconstructionmay depart from the test data significantly,
thus producing relatively high error values. In the temperature field,

FIGURE 8
Shows the MAEmax over a range of Prandtl numbers and numbers
of sensors.

hot spots form from contact with the cylinder as the vortices are
formed. The hot spots cool quickly as thermal energy diffuses into
the surrounding cooler fluid. By the time the vortices reach the
simulation boundary, much of the thermal energy has diffused into
the surrounding fluid. This means that, compared to the pressure
field which has persistent low-pressure peaks all the way to the
edge of the simulation, the temperature field contains a few similar
high-temperature eddies in the immediate wake of the cylinder
which become lower-temperature eddies as they move away from
the cylinder. When these lower-temperature eddies are predicted
poorly, they do not result in as large of an impact on the error
as a poorly predicted high-temperature eddy would. Thus ture
fluctuations compared to that of pressure fluctuations.

4.4 Reconstruction of temperature fields
from sensed temperature data for varying
Prandtl number

To test the hypothesis of thermal energy diffusion leading to
better reconstructions for temperature than for pressure, flows of
varying Prandtl number are considered. At a high Prandtl number,
ν≫ α, meaning the conduction of heat away from the vortices is held
to aminimum.The high Prandtl numbermostly inhibits the effect of
thermal diffusion that is postulated to disrupt comparison between
pressure and temperature reconstructions.

To provide a deeper understanding of the effects of Prandtl
number on temperature field reconstruction from sparsely sensed
data, flows with Pr = 50, 10, 0.744, 0.1, 0.01, and 0.001 are
considered. Because constant material properties were used in the
simulation, temperature fluctuations have no effect on momentum
transport between the simulations, and thus the pressure field from
Section 4.2 is the pressure field for all cases.

Figure 6 shows the MAEmean for the different systems studied
and Figure 7 shows the ɛmean. Both the MAEmean and ɛmean
are very similar between the pressure and the temperature
for flows with Pr = 50 and 10, especially when 10 or more
modes are included in the model. The similar reconstruction
success between temperature in high Prandtl number flows
and pressure confirms the hypothesis from Section 4.3.
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Figure 8 gives a summary of the MAEmax for temperature
reconstruction in terms of number of sensors included in the model
and the Prandtl number of the fluid. It confirms the trend of
decreasing error as the number of sensors increases and the Prandtl
number of the fluid decreases. Reporting the value of MAEmax in
terms of the number of sensors leaves the result somewhat sensitive
to the effect of sub-optimal sensor sets. Results incorporating a
better sensor selection method would yield lower error and would
likely create a more uniform gradient. However, the data as reported
is more useful as a baseline for the reader that wishes to apply
this technique with their own experimental or simulated data.
MAEmax indicates the severity of a worst case scenario prediction
allowing the user to calibrate their application of this technique to
their needs.

5 Conclusion

In this paper, the POD inferencing technique was successfully
applied to temperature and pressure fields, and a pseudoinverse
solving technique was implemented to extend this method from
classification to a focus on reconstruction of the field variables. The
refined algorithm was tested on pressure and temperature data from
flows with Prandtl numbers varying between 0.001 and 50. POD
inferencing models with 4 and 26 modes were trained and their
performance was tested over sensor sets containing between 7 and
27 sensors. The MAEmean and ɛmean error metrics were considered
and applied to evaluate the performance of the algorithm for varying
Prandtl numbers, numbers of modes, and numbers of sensors. All
error metrics were found to vary heavily as the Prandtl number was
changed with low Prandtl numbers resulting in the lowest error.
This implies that fewer sensors are required for accurate temperature
field reconstruction for low Prandtl number fluids. Models with
more modes generally outperformed those with fewer modes as
implied bymeasures ofmode energy content. For a given dataset and
number ofmodes, an increase in the number of sensors was found to
improve prediction accuracy up to a point, afterwhich the additional
sensors had little impact. This is valuable information for design, as
it indicates that in applications where a given reconstruction error
is desired, the number of modes required to yield that error can
first be determined. Then the number of sensors, now limited by
the number of modes, and their locations can be determined. The
reconstruction error was shown to be comparable between pressure
and temperature in high Prandtl number fluids. Inmoderate Prandtl
number fluids such as air, and low Prandtl number fluids, thermal
dissipation smooths temperature gradients, leading to lower error
in temperature reconstruction relative to pressure. Future work
will study the application of this method to turbulent flow data

and attempt to generalize the relation between Prandtl number,
reconstruction error, and mode energy content.
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