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With the rise of electric vehicles and fast charging technology, electric vehicle
load forecasting has become a concern for electric vehicle charging station
planners and operators. Due to the non-stationary nature of traffic flow and the
instability of the charging process, it is difficult to accurately predict the charging
load of electric vehicles, especially in sudden major events. In this article, We
proposes a high-precision EV charging load forecasting model based on mRMR
and IPSO-LSTM, which can quickly respond to the epidemic (or similar
emergencies). Firstly, the missing data in the original EV charging load data
are supplemented, and the abnormal data are corrected. Based on this, a
factor set is established, which included five epidemic factors, including new
confirmed cases, the number of moderate risk areas, the number of high risk
areas, epidemic situation and epidemic prevention policies of the city, and other
factors such as temperature. Secondly, the processed load data and other data in
the influencing factor set are normalized, and the typical characteristic curve is
established for personalized processing of the relevant data of epidemic factors,
so as to improve the sensitivity of load response to epidemic changes and the
ability to capture special data (peak and valley values and turning points of load).
Then the maximum relevant minimum redundancy (mRMR) is used to select the
optimal feature set from the set of influencing factors. Then, the processed load
data and its corresponding optimal selection are input into the IPSO-LSTMmodel
to obtain the final prediction result. Finally, taking the relevant data of EV charging
load in a city in China from November 2021 to April 2022 (the city experienced
two local epidemics in December 2021 and March 2022 respectively) as an
example, the model is evaluated and compared with other models under the
forecast period of 1 h. Meanwhile, the performance of the model under different
foresight periods (2 h, 4 h, 6 h) is compared and analyzed. The results show that
the model has good stability and representativeness, and can be used for EV
charging load prediction under the COVID-19 pandemic.
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1 Introduction

Effective renewable friendly smart grid technologies contribute
to the development of RWJ projects, indirectly facilitating friendly
interactions between EVs and the grid (Zhong et al., 2014). The
multi-time scale short-term prediction of EV charging load is an
important reference for intraday demand-side response (Li and Pye,
2018), and can provide a reference for the optimal scheduling of the
distribution network with electric vehicles (Zakernezhad et al.,
2022), so accurate multi-time-scale electric vehicle charging load
forecasting is of great significance. At the end of 2019, the spread of
COVID-19 had an impact on the entire electricity industry and
renewable energy in many countries (Liu, 2020), and renewable
energy consumption affects economic growth (The State Council of
the People’s Republic of China). Under the general strategy of “
foreign defense against imports, internal defense against rebound”
and the general policy of “dynamic clearing” in China, people’s
willingness to travel will be reduced when the epidemic occurs, and
travel will be restricted at certain times (Xi’an Municipal People’s
Government, 2022), which will lead to significant changes in the
charging load of electric vehicles. Large-scale use of electric vehicles
can significantly reduce carbon emissions, but the load of large-scale
electric vehicles has strong randomness, which is a huge challenge
for power system security and stability (Leou et al., 2014; SALAH
et al., 2015).

At present, the main research methods of electric vehicle charging
load forecasting can be divided into two categories: model-driven and
data-driven forecasting methods. The former uses mathematical
statistics to establish a probability model, and on this basis uses
Monte Carlo simulation to predict (Iversen et al., 2017; Zhang et al.,
2018; Iwafune et al., 2020). Compared with such methods, relying on
data-driven methods for EV charging load forecasting is more
transferable and can reduce forecasting costs. The development of
IoT technology has driven the development of a large number of cloud-
based electric vehicle services (Atif et al., 2016; Chen and Chang, 2016),
and data integration platforms have been established inmany provinces
in China (Shaanxi Provincial Development and Reform Commission,
2022; State-owned Assets Supervision, 2022; State-owned Assets
Supervision and Administration Commission of the State Council,
2022). In this context, data-driven forecasting methods have received
more attention (Wang et al., 2022). Back Propagation Neural Network
(BPNN) (Dabbaghjamanesh et al., 2021), Auto-Regressive and Moving
Average (ARMA) (Wen et al., 2019), Convolutional Neural Network
(CNN) (Zhang X. et al., 2021), Long Short-Term Memory (LSTM)
(Zhu et al., 2019), and other methods are beginning to be applied to EV
charging load prediction. Since the impact of COVID-19 on EV
charging loads is not instantaneous, this requires predictive models
to remember information delivered over longer periods of time.
Therefore, this paper will continue to take advantage of the LSTM
network’s ability to learn long-range dependencies to build an effective
EV charging load forecasting model (Bayrak et al., 2020).

Under normal circumstances, the electric vehicle charging load
is similar to the power load in terms of data characteristics, and both
show periodic changes. The influence of influencing factors is often
considered in power load forecasting (Lin et al., 2021; Bian et al.,
2022). Therefore, in order to further improve the forecasting
accuracy, factors such as temperature, electricity price, and date
type have also begun to be considered in electric vehicle charging

load forecasting (Abbas et al., 2019; Feng et al., 2021; Zhang et al.,
2022). Among them (Abbas et al., 2019) used meteorological data
and historical load as influencing factors to accurately predict the
load; Literature (Feng et al., 2021) considered two related factors of
electricity price and temperature, using EMGM to predict the
charging load of electric vehicles, and using LSTM for error
correction; Literature (Zhang et al., 2022) using The multi-
channel 1DCNN extracts the load characteristics of different time
scales under the influence factors such as meteorological
characteristics and date characteristics (seasonal type, week type),
and inputs them into the TCN to establish a time-dependent
relationship for each characteristic and improve the forecast
accuracy. But the COVID-19 outbreak is a non-periodic
emergency, and its impact on EV load is contingent and
persistent. As of August 2022, the COVID-19 outbreak is
ongoing, with concentrated outbreaks continuing across China.
The establishment of a forecasting model capable of rapid
response to the epidemic (or similar emergencies) and with high
accuracy is conducive to the development of demand-side response
plans and scheduling plans (National Health Commission of the
People’s Republic of China, 2022). Therefore, during the epidemic
period, electric vehicle load not only needs to consider the impact of
temperature, electricity price and other factors, but also the impact
of epidemic-related factors.

In the process of load forecasting usingmachine learningmethods, it
is necessary to perform feature selection on relevant factors. Commonly
used feature analysis methods include the covariance method, the
Pearson coefficient method, the maximal information coefficient
(MIC) (Reshef et al., 2011) and the MIC-based mRMR (Peng et al.,
2005). Among them, literature (Xie et al., 2022) used Pearson coefficients
to determine the key influencing factors of loads, whichwere regarded as
multivariate information, and then input them into LSTM to obtain a
load prediction model with multi-information fusion. However, the
Pearson coefficient can only reflect the linear correlation, but there may
be a nonlinear relationship between the EV charging load and the related
factors, and it is difficult to describe the change of EV charging load
linearly, so it is more suitable for the MIC and mRMR. Literature (Sun
et al., 2022) for the existing in different moments of each influential
factors to load the same degree of contribution to the problem, the use of
mutual information (MI) to portray differentmoments under the degree
of contribution of each factor, and then use the Bidirectional Long Short-
Term Memory (Bi-LSTM) to get the final prediction results. MIC was
applied to short-term electricity load forecasting, effectively improving
the screening effect of the feature sequence (Ge et al., 2021), and
literature (Zhang et al., 2023) utilized MIC and Akaike information
criterion to select input variables, obtain key information, and reduce the
difficulty of model training. However, the redundancy of epidemic-
related feature sequences in EV charging load in the context of COVID-
19 is high, which is not considered in the MIC, while the mRMR
incorporates the redundancy in the sequences into the screening metrics
(Dai et al., 2014), which ismore suitable for electric vehicle charging load
forecasting under the COVID-19 outbreak.

This paper aims to implement a predictive model that can
quickly respond to an outbreak (or similar emergencies) with
high accuracy. This method fully considers the impact of the
epidemic, establishes five epidemic-related influencing factors,
uses mRMR to select the optimal feature set from the set of
influencing factors including epidemic factors and meteorological
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factors, and uses IPSO-LSTM to predict the short-term load of EV
charging load with multiple foresight periods. The main novelties of
this paper are as follows:

(1) A charging load forecasting model for electric vehicles that
can quickly respond to the epidemic (or similar emergencies)
and has high accuracy is established.

(2) The epidemic-related data are processed to make the data
more suitable for the forecasting of electric vehicle charging
load during the COVID-19 pandemic, and mRMR is used to
select the best input features according to the characteristics
of the epidemic feature sequence.

(3) For the determination of model parameters, IPSO is used to
optimize the training parameters, which improves the forecast
accuracy, and the effectiveness of the proposed model is
verified by an example.

The organization of this paper is as follows: Section 2 introduces
the above methods, including mRMR, IPSO-LSTM prediction
model, and predictive performance evaluation indicators; Section
3 introduces data trends and related characteristics; Section 4 carries
out case studies; Section 5 discusses the results; and Section 6 gives
research conclusions.

2 Methods

2.1Maximum relevantminimum redundancy

In order to consider the correlation between the single feature
variable and the target variable, and consider the linear relationship
and nonlinear relationship at the same time, the MICmethod can be
selected to judge the correlation between the two sequences.

The MIC method was proposed by Reshef in 2011, which can
effectively detect linear or other functional relationships between
two variables (Li et al., 2015). The concept of using mutual
information in the MIC method can be expressed as:

I dx, dy( ) � ∫p dx, dy( )log2 p dx, dy( )
p dx( )p dy( ) (1)

Where: dx and dy are the values of the sequence x and y
respectively; I(·) is the mutual information function; p(·) is the
probability density distribution function. It is relatively difficult to
calculate the joint probability density distribution function.
Therefore, on the basis of mutual information, the MIC method
discretizes the relationship of the two variables into a two-
dimensional space to estimate the probability density function.

MIC can be calculated by formula (2) and (3):

I dx, dy( ) ≈ I dX, dY( ) � ∫p dX, dY( )log2
p dX, dY( )

p dX( )p dY( ) (2)

IMIC x, y( ) � max
ab< 0.6

I dX, dY( )
log2 min a, b( )( ) (3)

In the formula: a and b are the discretized numbers in the dX
and dY directions; IMIC(x, y) is the MIC of the sequence x and y.

The mRMR method can penalize redundant features with high
correlation among the selected features (Zhang et al., 2019). Among
all feature sequences, new feature sequences are incrementally
selected, each time the locally optimal feature is selected.

Defined D(S, y) as the correlation between all features and the
target variable y, R(S) is the redundancy of all features, where is the
feature set composed of all features, that is:

D S, y( ) � 1
m

∑
di∈S

IMIC di, y( ) (4)

R S( ) � 1
m2

∑
di,dj∈S

IMIC di, dj( ) (5)

ImRMR � max
S

D S, y( ) − R S( )( ) (6)

Where: di is the ith feature sequence; m is the number of feature
sequences in the finally selected feature set; ImRMR is the mRMR
value of the feature sequence. The final feature subset can be
obtained by solving the optimization problem shown in Eq. 6.

2.2 Improved particle swarm
optimization–long short term memory
(IPSO-LSTM)

2.2.1 Long short term memory
LSTM is a neural network obtained by improving RNN

(Hochreiter and Schmidhuber, 1997). Compared with RNN,
LSTM can better deal with the problem of gradient
disappearance and gradient explosion. The difference between
LSTM and RNN is that LSTM adds a memory unit Cell and
three gates (input gate, forget gate and output gate) to the
neurons in the hidden layer. The internal structure of LSTM is
shown in Figure 1.

The propagation formula of the LSTM computing node at time t
can be expressed as Eqs 7–11.

it � g Whiht−1 +Wxixt + bi( ) (7)
ct � ft · ct−1 + it · tanh Whcht−1 +Wxcxt + bc( ) (8)

ft � g Whfht−1 +Whfxt + bf( ) (9)
ot � g Whoht−1 +Woxxt +Wcoct + bo( ) (10)

ht � ot · tanh ct( ) (11)

In Figure 1, the input gate controls the information entering the
node, the forget gate controls the retention of the historical state in
the Cell, and the output gate controls the information of the
computing node output.

2.2.2 Improved particle swarm optimization
algorithm (IPSO)

The particle swarm optimization algorithm can be described as:
Assuming that there is a population of particles in the dimension
space, the velocity and position of the ith particle are respectively,
and the optimal position of the individual particle and the optimal
position of the group at time are evaluated by the objective function.
Then iteratively update the velocity and position of each particle by
the following formula (Zhang Y. G. et al., 2021).
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Vk+1
id � wVk

id + c1r1 Pk
id −Xk

id( ) + c2r2 Pk
gd −Xk

gd( ) (12)
Xk+1

id � Xk
id + Vk+1

id (13)

The inertia weight w directly affects the convergence
efficiency of the PSO algorithm. Increasing w can improve the
global convergence ability of the algorithm, and decreasing can
increase the local convergence ability of the algorithm. The
constant of the original w algorithm will not change with the
increase of the number of iterations, which will weaken the global
optimization ability of the algorithm and reduce the convergence
speed of the algorithm. A new nonlinear inertia weight w is
proposed, which makes the algorithm have better global
convergence ability in the initial stage of iteration, and
decreases w in the later stage of iteration, thereby improving
the local convergence ability of the algorithm. The form w is
as follows.

w � a · sin π

2
· 1 − k

Kmax
( )η( ) + b (14)

In the formula: w is the inertia weight; d � 1, 2,/, n;
i � 1, 2,/, m; k is the number of iterations; Vid is the velocity of
the ith particle in the dth dimension; c1 and c2 is a non-negative
constant; r1 and r2 is the maximum number of iterations; k is the
curvature adjustment parameter.

2.2.3 IPSO-LSTM model
The LSTM neural network optimized by the IPSO algorithm is

called the IPSO-LSTM model. Taking the two-layer LSTM network as
an example, the particles in the IPSO algorithm are, which represents the
number of neurons in the first hidden layer of the LSTM network, and
represents the second LSTM network. The number of neurons in the
hidden layer represents the learning rate of the LSTM network.

The flowchart of the IPSO-LSTM network model is shown
in Figure 2.

The specific steps in Figure 2 are as follows:

Step 1: Preprocess the sample data, remove abnormal data, fill in
the incomplete data, convert the input data into matrix form, and
initialize the IPSO algorithm parameters

Step 2:Define fitness. The mean square error of the predicted value
of the LSTM network is used as the particle fitness value fit;

fit � 1
n
∑ ŷ − y( )2 (15)

Step 3: Using the position information of the particles as the
parameters of the LSTM network, construct multiple LSTM networks

Step 4: Train all networks to get the fitness value of each particle.
Update individual extrema and group extremum

Step 5: Iteratively update particle velocity and position information
with nonlinear inertia weights according to individual extremum
and group extremum

FIGURE 1
The basic LSTM cell.

FIGURE 2
IPSO-LSTM flow chart.
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Step 6: Stop iterating after meeting the conditions or reaching the
maximum number of iterations, otherwise go back to Step 3

Step 7: Get the optimized parameters, increase the number of
iterations to 100, and retrain the LSTM network

Step 8: Predict through the trained IPSO-LSTM network.

2.3 A novel hybrid model based on mRMR
and IPSO-LSTM

Based on the above analysis, this section proposes a forecasting
model based on mRMR and IPSO-LSTM for the short-term
forecasting of EV charging loads during the COVID-19
pandemic, and the overall framework is shown in Figure 3.

The framework shown in Figure 3 can be summarized into three
parts, which are as follows.

Part 1: Data processing. Analyze the basic characteristics of
original data, supplement missing data, and correct extreme data
and abnormal data.

Part 2: Feature extraction. Considering the hysteresis of epidemic
factors, a factor set containing five groups of 20 epidemic factors was
established, and the feature sequence is dimensionless processed, and the
mRMR method is used to obtain the optimal feature set.

Part 3: Final forecast. The optimized LSTMmodel is obtained by
IPSO, and the elements in the optimal feature set are added to
predict the electric vehicle charging load to obtain the final
forecast result.

2.4 Evaluation indicators

In this study, the mean absolute error (MAE), root mean square
error (RMSE) and symmetric mean absolute percentage error
(SMAPE) were selected as the evaluation criteria for evaluating
the forecast accuracy of each model, and the calculation formula is
shown in Eqs 16–18.

MAE � 1
N

∑N
i�1

yi
∧ − yi

∣∣∣∣∣∣ ∣∣∣∣∣∣ (16)

RMSE �

������������
1
N

∑N
i�1

ŷi − yi( )2√√
(17)

SMAPE � 100
N

∑N
i−1

ŷi − yi

∣∣∣∣ ∣∣∣∣
0.5 ŷi

∣∣∣∣ ∣∣∣∣ + yi

∣∣∣∣ ∣∣∣∣( ) (18)

Where:N is the number of samples, yi is the measured value, ŷi

is the predicted value.

FIGURE 3
Overall framework.
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3 Analysis of influencing factors of
electric vehicle charging load

The charging load of electric vehicles is mainly affected by travel
willingness, and its daily variation is mainly affected by charging
habits and charging prices. Under normal circumstances, the
production and life in an area have regularity, so the charging
load changes have periodicity, and the fluctuation of adjacent days
will not be very large. However, in some regional special events,
some traffic control measures may be taken, or some policies and
guidelines may be implemented to restrict people’s travel, which
may directly or indirectly affect the user’s travel psychology, thereby
changing the travel route or reducing the travel, and then affecting
the charging load of some regions or the whole region’s
charging station.

3.1 The influence of conventional factors on
charging load

Conventional factors mainly consider the impact of time, date
type, weather and so on.

3.1.1 Influence of time factor on charging load
Time factors mainly include seasonal, holiday and cyclical

factors. Cyclical factors can be divided into daily cyclical factors,

weekly cyclical factors, monthly cyclical factors and annual
cyclical factors. The data selected in this paper is from
November 2021 to April 2022, a total of 6 months, so only the
influence of daily cyclical factors and weekly cyclical factors are
considered. The correlation between time factor and charging
load is shown in Figure 4.

Figure 4 shows the degree of correlation between the load of
the previous day and the load of the previous week and the
current load at the current time, in which the load of the previous
day and the current load show an obvious positive correlation,
while the correlation between the previous week and the current
load is not obvious, and the three factors also have
mutual influence.

3.1.2 The impact of date type on charging load
The user’s travel habits may be affected by the date type, and

there is a difference between non-working days such as weekends or
holidays and working days, which will cause changes in the charging
load. Load statistics are collected fromMonday to Sunday, as shown
in Table 1.

As can be seen from Table 1, the load varies from Monday to
Sunday. The maximum load from Monday to Friday is 218000 kW
(Tuesday), which is larger than the load on Sunday, while the
minimum load is 159000 kW (Monday), which is smaller than
the load on Saturday, with no obvious difference. Therefore, the
effect of date type on charging load needs further study.

FIGURE 4
Correlation between time factor and charging load.

Frontiers in Energy Research frontiersin.org06

Xie et al. 10.3389/fenrg.2024.1341246

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1341246


3.1.3 The influence of meteorological factors on
the charging load

The charging load of electric vehicles will be affected by users’
willingness to travel. For example, when encountering extreme
weather, users will reduce unnecessary travel, leading to a
decrease in charging load, while weather types will affect
temperature, relative humidity and air quality index. For
example, when there is heavy rain, it may cause a decrease in
temperature, an increase in relative humidity, a decrease in air
quality index and a decrease in wind. The temperature will affect the
driving range of electric vehicles, the longest driving range when the
temperature is moderate, the shortest driving range when the
temperature is too high or too low, and the temperature will also
affect the use of air conditioning in the car, the use of air
conditioning will increase power consumption. Figure 5 shows
the correlation between temperature, relative humidity, wind, air
quality index, and charging load.

As shown in Figure 5, there is a strong positive correlation
between temperature and load. As the temperature rises, the use of
air conditioning in the car increases the load. However, it can also be
seen that when the temperature is low, the load is also at a higher
level due to the increase in vehicle power consumption. There is a
strong negative correlation between relative humidity and load,
because the change of humidity is related to precipitation in
many cases, when the weather is not good, it will affect the
desire to travel, avoid unnecessary travel and lead to load
reduction. When the weather is particularly good, travel
enthusiasm is strong, and the increase of vehicle frequency leads
to the increase of load. There was no significant correlation between
wind and air quality index and charging load.

3.1.4 Influence of time-of-use price on
charging load

Most of the public charging stations in the city adopt time-
of-use (TOU), and the implementation of TOU is of great
significance to guide the orderly charging of electric vehicles
and reduce the pressure on the grid. The charging price of
charging stations using TOU is mostly divided into 6 periods
(the price may be different), each period and the corresponding
price are shown in Table 2. The price in the table is electricity,
excluding service fee.

As can be seen from Figure 6, the peak daily load of electric
vehicle charging load appears at 0, and the trough price is just from
23 to 6. During this period of time, the load is high inmost cases, and
the charging price during the time of 11:00–18:00 is medium, but
after a morning of power consumption, some vehicles that need to
supplement the power during the day will choose to charge at this
time, and after 18:00 is the rush hour, some commuter cars will

TABLE 1 Date type and charging load statistics.

Date type Maximum load/ Average load/

Monday 1.59 5.59

Tuesday 2.18 6.22

Wednesday 1.49 5.14

Thursday 1.48 5.24

Friday 1.93 5.98

Saturday 1.62 4.97

Sunday 2.00 5.56

FIGURE 5
Correlation between temperature, relative humidity, wind, air quality index and charging load.
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charge at this time, so the load is larger. However, on the whole, it
basically conforms to the characteristics of large load when the price
is high and small load when the price is low.

3.2 The influence of unconventional factors
on charging load

In addition to the routine factors mentioned in 3.2, taking into
account the key events in recent years in China, the novel
coronavirus epidemic, which has had a huge impact on people’s
production and life in the past 3 years, is selected as the main
unconventional factors to study from four aspects: the number of
new confirmed cases, the number of high-risk areas, the number of
medium-risk areas, and epidemic prevention policies. The
correlation between epidemic factors and charging load is shown
in Figure 7.

As can be seen from Figure 7, the number of newly confirmed
cases, the number of high-risk areas, the number of medium-risk
areas, and epidemic prevention policies are negatively correlated
with the charging load. The more new confirmed cases, the more
serious the outbreak. The greater the number of high risk areas
indicates the greater the number of areas seriously affected by the
epidemic, which indicates the depth of the development of the
epidemic to a certain extent. The more at-risk areas, the more areas

affected by the epidemic, to a certain extent indicates the breadth of
the epidemic development, and the more stringent epidemic
prevention policies, indicating that the more areas are sealed and
controlled, the more restrictions on people’s travel, all of which will
reduce the load. The new confirmed cases were negatively correlated
with the epidemic prevention policy, indicating that the epidemic
prevention policy has been dynamically adjusted in strict accordance
with the development of the epidemic situation, and the epidemic
prevention policy has indeed prevented the further spread of the
epidemic, which is in line with the development law of the epidemic,
and is suitable for epidemic prevention and control. The number of
high-risk areas and the number of medium-risk areas is positively
correlated with epidemic prevention policy. According to China’s
epidemic prevention policy, according to the number of newly
confirmed cases, regions can be divided into high-risk areas and
medium-risk areas, and at some times, they are also divided into
prevention areas, while high-risk areas will be banned or restricted to
go out (by time or by number of people), indicating that the more
the number of medium-risk areas, the more the number of high-risk
areas, the more the number of high-risk areas. The more stringent
the epidemic prevention policy. Therefore, when making
predictions, it is very necessary to consider such unconventional
factors as the epidemic.

4 Case analysis

4.1 Data sources

In this paper, the load of electric vehicles under the influence of
COVID-19 in a city in China is taken as the research object. In recent
years, the city’s new energy vehicle industry has developed rapidly.
The province’s electric power company built a new energy vehicle
intelligent monitoring platform in July 2019, which can monitor the
operation of charging piles in real time. This article obtained the
electric vehicle load data for a total of 181 days in the capital city of
the province from 1 November 2021 to 30 April 2022 through this
platform, and obtained meteorological data such as temperature on
the website of the city’s meteorological bureau. The data sampling
interval for 1 h, a total of 4,344 samples were collected. The
epidemic-related data was obtained on the website of the
Provincial Health and Health Commission. The data sampling
interval was 1 day, and a total of 181 samples were collected. In
this process, there may be data missing and data mutation. In this
paper, the interpolation method is used to ensure the smoothness of
the data. When it is judged that the original data is 0 or abrupt, the
data average of the previous time and the next time is used to replace
the missing data. If the continuous data is 0, the data of the previous
moment will be uniformly used instead.

d′
t �

0.5 dt−1 + dt+1( ) dt � 0, dt+1 ≠ 0
dt+1 dt � 0, dt+1 � 0
dt dt+1 ≠ 0

⎧⎪⎨⎪⎩ (19)

Where: dt−1 is the data at the previous moment; dt+1 is the data
at the next moment; dt and d′t are the data before and after the
correction at the current moment, respectively.

During this period, the city experienced two local outbreaks in
December 2021 and March 2022 respectively, among which the

TABLE 2 Electric vehicle charging station price information.

Time Price (Yuan/degree)

0:00–6:00 0.25

6:00–8:00 0.60

8:00–11:00 0.95

11:00–18:00 0.60

18:00–22:00 0.95

22:00–24:00 0.25

FIGURE 6
Time division tariff and its corresponding load change.
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outbreak on 9 December 2021 was the most severe outbreak in the
city since the COVID-19 outbreak in 2019. The load in the period
with and without confirmed cases is shown in Figure 8.

It can be seen from Figure 8 that COVID-19 has a significant
impact on EV load, and the two impacts have different degrees, with the

impact of the December epidemic being greater than that of the March
epidemic. COVID-19 indirectly affects EV load by affecting people’s
travel conditions to a certain extent. Compared with other factors, this
impact is more complex, irregular, non-cyclical and has a lag. Table 3
shows the electric vehicle load and epidemic statistics in the city.

FIGURE 7
Correlation between epidemic factors and charging load.

FIGURE 8
The load in the period with and without confirmed cases.
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The data presented in Table 1 can be seen as follows: (1) For the
charging load of electric vehicles, its maximum value is large,
indicating that the city has a high ownership of electric vehicles.
There is a huge difference between the maximum value and the
minimum value, and the standard deviation is large, and the ratio to
the average value is also large but less than 1, indicating that the load
is volatile. (2) For the new confirmed cases and the number of
medium-risk areas, the two types of data had a large maximum
value, indicating that there was a large-scale epidemic in the city in
some periods. There is a big difference between the maximum value
and the minimum value, and it has a large standard deviation. The
ratio of the standard deviation and the average value is between two
to three, indicating that these two types of data are highly volatile,
which can reflect the impact scope of the epidemic to a certain
extent, and their changes may cause some epidemic prevention
policy changes. (3) For the number of high-risk areas, the maximum
value is not large, and there is little difference between the minimum
value and the maximum value. The standard deviation is also small,
but the ratio to the average is large, which indicates that the data is
highly volatile and reflects the severity of the epidemic to a certain
extent. The change of the data may also cause some epidemic
prevention policy changes.

4.2 Feature selection based on mRMR

There are many kinds of feature sequences in EV load
forecasting, and it is necessary to calculate the correlation
between these feature sequences and the load series to be
predicted, and select an appropriate set of feature sequences as
the input of the forecasting model. The influence of meteorological
factors such as temperature and date types are usually considered in
the prediction of power load. It is assumed that these factors will also
have a certain impact on the charging load of electric vehicles.
Therefore, these influencing factors and the impact of COVID-19
are taken into account in this paper. Considering the hysteresis of
epidemic factors, it is assumed that EV charging load will be affected
by epidemic factors 1–3 days before the current day, and the
influencing factor set is established as shown in Table 4.

Take Pt、 DLt and CCt in the table as examples, P0 represents
the current electricity price, P1 represents the electricity price 1 h
ago; DL1 represents the load value at the same time 1 day ago, DL2
represents the load value at the same time 2 days ago,CC0 represents
the new confirmed cases of the day, CC1 represents the new
confirmed cases of the day before.

Before feature selection, data should be processed dimensionless
to make the data have the same specification and accelerate the
convergence of neural network. Electric vehicle load, meteorological

series and electricity price data can be normalized to the interval
[−0.5, 0.5] to achieve dimensionless. Different from the common [0,
1] interval, neural networks tend to input data centered on 0.
Therefore, setting the center of the normalized interval as 0 is
conducive to the convergence of neural networks, and
normalization is shown in Eq. 20.

d � d − dmax+dmin
2

dmax − dmin
(20)

Where: dmax and dmin are the maximum andminimum values of
d respectively.

The date type sequence defines working days as 0, weekends as 1,
and holidays as 2 to identify the load characteristics of different
date types.

Since the time granularity of epidemic data was inconsistent
with EV charging load data, MIC was first used to analyze the
correlation between epidemic data and daily average load. The
results showed that MIC values of 20 epidemic related
information were all above 0.8, showing strong correlation. In
order to improve the sensitivity of intra-day load to epidemic
information, the charging load of electric vehicles was divided
according to whether there was an epidemic (the first confirmed
case was regarded as the beginning of an epidemic, and the 7-day
absence of new cases was regarded as the end of an epidemic). The
average value of the two groups of data was respectively taken as the
typical characteristic curve of epidemic period and non-epidemic
period. Thus, the proportion of load at eachmoment in the total load
of a day can be obtained, that is, the proportion of epidemic period
and non-epidemic period. Then, multiply the epidemic information
to get the epidemic data with unified time granularity. For such data,
if the interval −[−0.5, 0.5] is used, the discrimination degree is low.
Therefore, the interval of epidemic data is mapped to [0,10] to
improve the sensitivity to epidemic information with a larger
interval range.

In order to consider the correlation between the single characteristic
variable and the target variable, as well as the linear and nonlinear
relationships, MIC method can be chosen to judge the correlation
between two sequences. The correlation between each sequence is
shown in Figure 9.

The MIC value of some sequences in Figure 9 and itself is not 1,
because it is necessary to grid dX and dY when calculating the MIC.
When the series is discrete data and the distribution is very uneven,
the MIC value of the same series is likely to be different from 1,
which is a normal situation and does not affect the conclusion. The
feature set with MIC values greater than 0.6 were selected from high
to low according to the MIC, as shown in Table 5.

As can be seen from Figure 9, the feature subset selected
according to the MIC method in Table 3 have a lot of redundant

TABLE 3 Statistics of electric vehicle load and epidemic situation.

The data type Data length Maximum value Minimum value Average value Standard deviation

Electric vehicle load 4,344 283871.68 51.04 41961.76 34491.67

New confirmed cases 181 255 0 13.34 39.15

Number of moderate risk areas 181 150 0 11.03 26.85

Number of high risk areas 181 3 0 0.31 0.76
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TABLE 4 Influencing factor set.

Factors type Influencing factors Display method

Meteorological factors Temperature T

Relative humidity H

Wind W

Air quality index A

Electricity prices Current time and previous 1 h electricity price Pt

The date type Date type D

Historical load value Load value 1–3 h before the current time HLt

Load value 1–3 days before the current time DLt

Load value 1–3 weeks before the current time WLt

Epidemic factors New confirmed cases in the city on that day and the previous 1–3 days CCt

Number of medium risk areas in the city for the day and the previous 1–3 days NMt

Number of high risk areas in the city for the day and the previous 1–3 days NHt

Whether the city was infected on that day and 1–3 days before YNt

Epidemic prevention policy of the City for the day and the previous 1–3 days (Lockdown/No-lockdown) EPt

FIGURE 9
MIC between each sequences.
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information. For example, the correlation of: YN1 and YN0、

YN2, YN3 and YN2 are very high (0.83), and the information is
almost completely repeated. They should not exist in the feature

subset at the same time. Therefore, in order to reduce the
redundancy of feature sequences, mRMR method is selected
on the basis of MIC to achieve feature selection (Xie et al., 2017).
The feature subset selected by mRMR is shown in Table 5.

4.3 Electric vehicle charging load forecast
based on IPSO-LSTM

Set the data according to 6: 2: 2 is divided into training set,
validation set and testing set, where the data of training set is the first
109 days (data volume is 2,616, accounting for 60.22%), validation
set is the middle 36 days (data volume is 864, accounting for
19.89%), and testing set is the last 36 days (data volume is 864,
accounting for 19.89%), as shown in Figure 10.

In Figure 10, blue is the training set, green is the validation set, and
red is the testing set. Both the training set and the testing set included
epidemic period and non-epidemic period, which ensured the accuracy
of the model establishment and the reliability of the test. The validation
set is used to determine the number of input features and the input
parameters in the IPSO-LSTM model.

The initial parameters in the IPSO-LSTM model were set as:
the number of individuals in the population was 10; The iteration
number Kmax is 20; The value range of neuron number l1i and l2i
in hidden layer of particle Xi(l1i, l2i, εi) is (The State Council of
the People’s Republic of China; Peng et al., 2005); The value range
of learning rate ε is [0.005,0.05]; The value range of velocity of
each dimension is [−1,1], [−1,1], [−0.002,0.002]; a � 0.6; b � 0.3;
η � 1.7; The optimizer is Adam; The number of input neurons is
three load values and their corresponding characteristics; The
number of output neurons is 1 (Zhang Y. G. et al., 2021). IPSO
was used to optimize the three parameters in LSTM, and the

FIGURE 10
The load value of training and testing data set ranged from 1/11/2021 to 30/4/2022.

TABLE 5 Feature sets obtained by feature selection (MIC and mRMR).

The sorting Feature selection method

MIC mRMR

1 YN2 DL1

2 YN1 DL2

3 DL1 YN2

4 YN3 HL1

5 YN0 EP3

6 NH0 NH3

7 NH2 NM3

8 DL2 CC3

9 NH3 T

10 NH1 DL3

11 DL3 EP0

12 EP3 A

13 EP2 H

14 EP1 WL1

15 HL1 WL2

16 EP0 HL2
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fitness function was set to the minimum MAE. The curves of
fitness, the number of neurons in the two hidden layers and the
learning rate obtained in the optimization process were shown
in Figure 11.

As can be seen from Figure 11, the fitness value tends to be
stable at the eighth iteration after two declines, and the optimal
parameter after IPSO optimization is as follows: the number of
neurons in hidden layer 1 is 27, the number of neurons in hidden
layer 2 is 28, and the learning rate is 0.0064.

The influencing factors in Table 5 were input into the forecasting
model one by one in order, and the minimum number of input
features of SMAPE was taken as the optimal feature set. The
relationship between the error on the validation set and the
number of input features is shown in Figure 12.

In Figure 12, SMAPE values are different under different
number of input features. When the number of input features is
1–12, the SMAPE value fluctuates continuously, and when the

number of input features is 6, the SMAPE value is the smallest.
When the number of input features is greater than 12, the SMAPE
value increases rapidly, which indicates that the more input features
is not the better, and too much input will make the model not
selective. Therefore, the number of input features is chosen to be 6.

Finally, the optimal feature set of the forecasting model is
DL1, DL2, YN2, HL1, EP3, NH3{ }. The electric vehicle load
forecast results of the city based on the IPSO-LSTM model and
the optimal feature set considering the impact of the epidemic are
shown in Figure 13.

As can be seen from Figure 13A, the forecast effect at the peak
is poor, while the prediction effect at other points is good. In
Figure 13B, when the load value is greater than 120000 kW, the
point is far away from the dashed line, which also verifies the
deficiency of peak prediction. When the load value is less than
120000 kW, the predicted point falls near the dashed line, which
has good accuracy.

FIGURE 11
Adaptation and hyperparameter variation curves. (A) Fitness. (B) Learning rate. (C) Hidden layer 1. (D) Hidden layer 2.
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5 Comparative analysis and discussion

In order to verify the forecast accuracy and stability of the
proposed model in multiple dimensions, three experiments are
compared in this section.

5.1 Comparison of forecasting models

In order to verify the forecast accuracy and stability of the
proposed model, four different forecasting models, namely, BPNN,
ARMA, LSTM and IPSO-LSTM, are used for comparison. Figure 14
shows the forecast results of the four forecasting models.

It can be seen from Figure 14 that the IPSO-LSTM model is
better than BPNN, ARMA and LSTM. However, in general, the
errors of the four models are larger when the load value is greater
than 100000 kW. As a whole, the forecast effect increases with the

increase of the load value, and the forecast effect further decreases
when the peak value is large.

Table 6 shows the forecast performance indexes when the four
forecasting models are adopted.

According to the forecast performance index results in Table 4, it can
be seen that IPSO-LSTM>LSTM>ARMA>BPNNas awhole in terms
of forecast effect. In terms of MAE value, IPSO-LSTM decreased by
25.02%, 18.63% and 2.41% compared with BPNN, ARMA and LSTM,
respectively. In terms of RMSE and SMAPE, IPSO-LSTM is also 2%–
13% lower than BPNN, ARMA and LSTM, respectively. This shows that
LSTM can better learn the long-distance dependence relationship
depending on its own advantages, which is suitable for application in
EV charging load forecasting.

5.2 Comparison of different sets of
influencing factors

To measure the influence of COVID-19 epidemic related factors
on EV load forecasting, this paper divides the influencing factor set
into two categories: one is all factors except epidemic factors in
Table 2, which is represented byΩ1 for convenience; One category is
all the factors shown in Table 2, which is denoted by Ω2 for
convenience. Figure 15 shows the forecast results of EV charging
load in the city under different influencing factor sets.

It can be seen from Figure 15 that the forecast effect is not
significantly improved when the influencing factor set is Ω1,
compared with that without considering the influencing factors.
However, when the influencing factor set is Ω2, the forecast effect of
the high-load area is significantly improved. Figure 10B clearly
shows that in the region of 15000KW-21000 kW load value,
there is a significant gap with the influencing factor set Ω1.
Compared with Figure 10A, it can be seen that the load in this
range is the peak load point of non-epidemic period after the
epidemic ended in March. These results show that: (1) adding
epidemic factors to EV charging load forecasting can improve the
forecast effect; (2) Adding epidemy-related factors can improve the
forecast effect from areas with high load values, the essence of which

FIGURE 12
SMAPE with different number of input features.

FIGURE 13
Final forecast results. (A) Forecast result chart, (B) Forecast scatter plot.
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is to identify the sudden change point of load by quantifying the
influencing factors of epidemic.

Table 7 shows the forecast performance indexes under different
sets of influencing factors.

As can be seen from Table 5, when the influencing factor set isΩ1,
MAE, RMSE and SMAPE are reduced by 6.50%, 0.26% and 10.70%,
respectively, compared with when the influencing factors are not
considered. When the influencing factor set is Ω2, MAE, RMSE and

SMAPE are reduced by 16.45%, 38.43% and 6.57%, respectively,
compared with that when the influencing factor set is Ω1. These
results show that: (1) adding influencing factors to EV charging load
forecasting can improve the forecast effect; (2) The improvement of the
forecast effect by adding traditional influencing factors may be
universal, that is, it is reflected in the low-load value area without
mutation. That is, the top two-thirds of Figure 15A, and the lower load
in the bottom third, but it is difficult to capture the turning point from

FIGURE 14
Comparison of the forecast results of the four forecasting models. (A) Forecast result chart, (B) Forecast scatter plot.

TABLE 6 Forecast performance indexes of the four forecasting models.

Forecasting model MAE RMSE SMAPE

BPNN 14446.80 23083.79 36.95

ARMA 13312.23 22606.67 31.64

LSTM 11099.78 20332.21 27.80

IPSO-LSTM 10831.79 20259.53 27.10

TABLE 7 Forecast performance indexes under different sets of influencing
factors.

Set of influencing factors MAE RMSE SMAPE

— 10831.79 20659.53 27.10

Ω1 10127.67 20604.54 24.20

Ω2 8461.82 12686.39 22.61

FIGURE 15
Comparison of forecast results under different influence factor sets. (A) Forecast result chart, (B) Forecast scatter plot.
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epidemic to non-epidemic period; (3) The addition of epidemic factors
significantly improved the forecast effect.

The above research shows that the model proposed in this
paper has a satisfactory effect on single-step forecasting.
However, in addition to focusing on the accuracy of the
forecast, the forecast results of different foresight periods are
of great significance for the intraday demand-side response with
EV charging loads.

5.3 Comparison of different forecast periods

The model proposed in this study is taken as an example to
illustrate the impact of different forecast periods on the forecast
results. Figure 16 shows the forecast results for the different forecast
periods (2 h, 4 h, 6 h).

As can be seen from Figure 16, with the growth of the foresight
period, the deviation on the peak and valley value gradually
increases. This is due to the gradual accumulation of errors as
the forecast period increases, which reduces the forecast accuracy. In
addition, the accuracy of the forecasting at the turning point of the
epidemic also decreased, which may be because the sensitivity of the
quantitative treatment of epidemic factors for longer time changes is
not obvious. Table 8 lists the evaluation index values of the
forecasting model for the different forecast periods.

In Table 8, the MAE, RMSE and SMAPE all increase with the
growth of the foresight period, which is consistent with the results
in Figure 16.

6 Conclusion

The main purpose of this study is to design an EV charging load
forecasting model with high accuracy that can quickly respond to
epidemic situations (or similar emergencies). In the case study, we
test the performance of the proposed model using measured data
during the COVID-19 in a city in China. The results show that:

(1) Aiming at the determination of hidden layer parameters and
learning rate in LSTM, IPSO was used to optimize the training
parameters, and the best parameters suitable for such data
were determined in the validation set, which improves the
prediction accuracy. The example showed that the accuracy of
the LSTMnetwork optimized by IPSO can be improved by 2%
compared with that before optimization, which proves the
effectiveness of the proposed model.

(2) By affecting travel, the epidemic has affected charging loads of
electric vehicles. The charging load of electric vehicles in the
two epidemic periods showed great changes compared with
the non-epidemic period, but the changes were different. It
can be considered that COVID-19 has a very important
impact on the charging load of electric vehicles, and the
impact results are related to the severity and spread of the
epidemic. It is therefore reasonable to take epidemic factors
into account in such forecasting problems in the context of
the COVID-19 pandemic.

(3) In the process of data processing, the epidemic factors were
personalized, and the proportion coefficient of the
corresponding moment was obtained by taking the typical
characteristic curves of the epidemic period and the non-
epidemic period to unify the time granularity. Increasing the
range of the mapping interval to improve the sensitivity of
epidemic information is conducive to capturing the amount
of mutations, improving the forecast effect of peak and valley
values and turning points, focusing on improving the
prediction ability of high-load areas in non-epidemic
periods, and thus achieving the purpose of overall forecast
accuracy. Compared with the forecasting model without

FIGURE 16
The forecast results of themodel proposed in this paper in different forecast periods (2 h, 4 h, 6 h). (A) Forecast result chart, (B) Forecast scatter plot.

TABLE 8 Evaluation index values of the forecast model proposed in this
paper in different forecast periods.

Forecast period (h) MAE RMSE SMAPE

2 87846.89 13204.91 24.39

4 10078.42 15342.53 28.85

6 11760.03 17500.07 34.26
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considering the influencing factors, MAE, RMSE and SMAPE
decreased by 21.88%, 38.59% and 16.57%, respectively, and
were more consistent with the current social background.

(4) The measured data of interaction changes between epidemic
and non-epidemic periods in a city in China were selected to
test the forecast effect of the model in epidemic and non-
epidemic periods. Compared with other forecasting models,
the model proposed in this paper achieves better and more
stable forecast results in both epidemic and non-epidemic
periods, with MAE, RMSE and SMAPE all reduced by more
than 20%, it showed that the forecasting model is consistent in
improving the forecast effect of data with different
characteristics. In addition, real-time demand-side response
is carried out based on the forecast results of multiple
foresight periods, which can alleviate the problem of large
load variation during the epidemic to a certain extent.

In addition, how to more reasonably unify the time granularity
of the feature series and load series, and how to more effectively
dimensionless the data to improve the sensitivity to the epidemic
situation are the focus of the next research when the hour-level
epidemic related data cannot be obtained. In future work, the
electric vehicle charging load forecasting method proposed in this
paper will be applied to the smart Internet of vehicles system in the
city in combination with the GPS road network system and
regional special event characteristics, and the real-time updated
multi-time scale forecasting results will provide reference for the
demand-side response under the background of epidemic
prevention and control.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

TX: Conceptualization, Formal Analysis, Resources,
Writing–original draft. YZ: Data curation, Investigation,
Writing–original draft. GZ: Funding acquisition, Investigation,
Writing–review and editing. KZ: Methodology, Software,
Writing–review and editing. HL: Project administration,
Validation, Writing–review and editing. XH: Supervision,
Validation, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. The authors
gratefully acknowledge the financial support provided by Natural
Science Basic Research Program of Shaanxi Province (2022JQ-534).

Conflict of interest

Author YZ was employed by LTD. Ultra high voltage company.
Author HL was employed by Electric Power Research Institute

of State Grid Shaanxi Electric Power Company.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abbas, F., Feng, D. H., Habib, S., Rasool, A., and Numan, M. (2019). An improved
optimal forecasting algorithm for comprehensive electric vehicle charging allocation.
ENERGY Technol. 7 (10). doi:10.1002/ente.201900436

Atif, Y., Ding, J., and Jeusfeld, M. A. (2016). Internet of things approach to cloud-based
smart car parking. Procedia Comput. Sci. 98, 193–198. doi:10.1016/j.procs.2016.09.031

Bayrak,A. T., Aktas,A.A., Susuz,O., Tunalı, O., et al. (2020). “Churnpredictionwith sequential
data using long short termmemory,” in 2020 4th International symposium on multidisciplinary
studies and innovative technologies, 1–4. doi:10.1109/ISMSIT50672.2020.9254679

Bian, H. H., Wang, Q., Xu, G. Z., and Zhao, X. (2022). Load forecasting of hybrid deep
learning model considering accumulated temperature effect. ENERGY Rep. 8 (1),
205–215. doi:10.1016/j.egyr.2021.11.082

Chen, Y. W., and Chang, J. M. (2016). Fair demand response with electric vehicles for the
cloud based energymanagement service. IEEE Trans. Smart Grid 9, 458–468. doi:10.1109/tsg.
2016.2609738

Dabbaghjamanesh, M., Moeini, A., and Kavousi-Fard, A. (2021). “Reinforcement
learning-based load forecasting of electric vehicle charging station using Q-learning
technique,” in IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 17 (6),
4229–4237. doi:10.1109/tii.2020.2990397

Dai, Q., Cai, T., Duan, S. X., and Zhao, F. (2014). Stochastic modeling and forecasting
of load demand for electric bus battery-swap station. Bus. Battery-Swap Stn. 29 (4),
1909–1917. doi:10.1109/tpwrd.2014.2308990

Feng, J. W., Yang, J. Y., Li, Y. L., Wang, H. X., Ji, H. C., Yang, W. Y., et al. (2021). Load
forecasting of electric vehicle charging station based on grey theory and neural network.
ENERGY Rep. 7 (6), 487–492. doi:10.1016/j.egyr.2021.08.015

Ge, L. J., Xian, Y. M.,Wang, Z. G., Gao, B., Chi, F., and Sun, K. (2021). Short-term load
forecasting of regional distribution network based on generalized regression neural
network optimized by grey wolf optimization algorithm. CSEE J. POWER ENERGY Syst.
7 (5), 1093–1101. doi:10.17775/CSEEJPES.2020.00390

Hochreiter, S., and Schmidhuber, J. (1997). Long short-termmemory.Neural comput.
9, 1735–1780. doi:10.1162/neco.1997.9.8.1735

Iversen, E. B., Mø ller, J. K., Morales, J. M., Madsen, H., et al. (2017). Inhomogeneous
Markov models for describing driving patterns. IEEE Trans. Smart Grid 8 (2), 581–588.
doi:10.1109/TSG.2016.2520661

Iwafune, Y., Ogimoto, K., Kobayashi, Y., and Murai, K. (2020). Driving simulator for
electric vehicles using the Markov chain Monte Carlo method and evaluation of the
demand response effect in residential houses. IEEE Access 8, 47654–47663. doi:10.1109/
access.2020.2978867

Leou, R. C., Su, C. L., and Lu, C. N. (2014). Stochastic analyses of electric vehicle
charging impacts on distribution network. IEEE Trans. Power Syst. 29 (3), 1055–1063.
doi:10.1109/tpwrs.2013.2291556

Li, L.,Wei, J., Li, C. B., Cao, Y. J., Song, J. Y., Fang, B. L., et al. (2015). Prediction of loadmodel
based on artificial neural network. Trans. China Electrotech. Soc. 30 (8), 225–230. (in Chinese).

Frontiers in Energy Research frontiersin.org17

Xie et al. 10.3389/fenrg.2024.1341246

https://doi.org/10.1002/ente.201900436
https://doi.org/10.1016/j.procs.2016.09.031
https://doi.org/10.1109/ISMSIT50672.2020.9254679
https://doi.org/10.1016/j.egyr.2021.11.082
https://doi.org/10.1109/tsg.2016.2609738
https://doi.org/10.1109/tsg.2016.2609738
https://doi.org/10.1109/tii.2020.2990397
https://doi.org/10.1109/tpwrd.2014.2308990
https://doi.org/10.1016/j.egyr.2021.08.015
https://doi.org/10.17775/CSEEJPES.2020.00390
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TSG.2016.2520661
https://doi.org/10.1109/access.2020.2978867
https://doi.org/10.1109/access.2020.2978867
https://doi.org/10.1109/tpwrs.2013.2291556
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1341246


Li, P. H., and Pye, S. (2018). Assessing the benefits of demand-side flexibility in
residential and transport sectors from an integrated energy systems perspective. Appl.
ENERGY 228, 965–979. doi:10.1016/j.apenergy.2018.06.153

Lin, S.,Wang,H., Qi, L. H., Feng,H. Y, Su, Y., et al. (2021). Short-term load forecasting based
on conditional generative adversarial network. Automation Electr. Power Syst. 45 (11), 52–60.
(in Chinese).

Liu, J. (2020). “Statistical analysis on the change of economic condition in China
under the influence of COVID-19,” in 2020 International conference on big data
economy and information management, 95–100.

National Health Commission of the People’s Republic of China (2022). Office of
Health emergency. Available at: http://www.nhc.gov.cn (Accessed on August 10, 2022).

Peng, H. C., Long, F. H., and Ding, C. (2005). Feature selection based on mutual
information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE
Trans. Pattern Analysis Mach. Intell. 27 (8), 1226–1238. doi:10.1109/tpami.2005.159

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G.,
Turnbaugh, P. J., et al. (2011). Detecting novel associations in large data sets.
Science 334 (6062), 1518–1524. doi:10.1126/science.1205438

Salah, F., Ilg, J., Flath, C., Basse, H., and Dinther, C. V. (2015). Impact of electric
vehicles on distribution substations: a Swiss case study. Apply Energy 137, 88–96. doi:10.
1016/j.apenergy.2014.09.091

Shaanxi Provincial Development and Reform Commission (2022). Energy bureau
electricity division. Available at: http://sndrc.shaanxi.gov.cn (Accessed on August 10,
2022).

State-owned Assets Supervision (2022). State-owned Assets supervision and
administration commission of hubei provincial people’s government. Hubei Provincial
Communications Group. Available at: http://gzw.hubei.gov.cn (Accessed on August 10,
2022).

State-owned Assets Supervision and Administration Commission of the State Council
(2022). State-owned Assets supervision and administration commission of the state
Council. State Grid Co., Ltd. Available at: http://www.sasac.gov.cn (Accessed on August
10, 2022).

Sun, H., Yang, F., Gao, Z. N., Hu, S. B., Wang, Z. H., Liu, J. S., et al. (2022). Short-term
load forecasting based on mutual information and Bi-directional long short-term
memory network considering fluctuation in importance values of features.
Automation Electr. Power Syst. 46 (08), 95–103. (in Chinese).

The State Council of the People’s Republic of China The state Council of the people’s
Republic of China. People’s Daily. Available at: http://www.gov.cn (Accessed on August
10, 2022).

Wang, H. X., Yuan, J. H., Chen, Z., Ma, Y. M., Dong, H. N., Yuan, S., et al. (2022).
Review and prospect of key techniques for vehicle-station-network integrated operation
in smart city. Trans. China Electrotech. Soc. 37(1): 112–132. (in Chinese).

Wen, L. L., Zhou, K. L., Yang, S. L., and Lu, X. (2019). Optimal load dispatch of
community microgrid with deep learning based solar power and load forecasting.
Energy, 171: 1053–1065. doi:10.1016/j.energy.2019.01.075

Xi’an Municipal People’s Government (2022). Xi’an epidemic prevention and control
headquarters. Available at: http://www.xa.gov.cn (Accessed on August 10, 2022).

Xie, J. J., Zhong, Y. J., Xiao, T., Wang, Z., Zhang, J., Wang, T., et al. (2022). A multi-
information fusion model for short term load forecasting of an architectural complex
considering spatio-temporal characteristics. Energy and Build., 277. doi:10.1016/j.
enbuild.2022.112566

Xie, M., Deng, J. L., Ji, X., Liu, M. B., et al. (2017). Cooling load forecasting method
based on support vector machine optimized with entropy and variable accuracy
roughness set. Power Syst. Technol. 41 (1), 210–214. (in Chinese).

Zakernezhad, H., Nazar, M. S., Shafie-khah, M., and Catalão, J. P. (2022). Optimal
scheduling of an active distribution system considering distributed energy resources,
demand response aggregators and electrical energy storage. Appl. Energy 314, 118865.
doi:10.1016/j.apenergy.2022.118865

Zhang, C., Hu, H. W., Ji, J., Liu, K., Xia, X., Nazir, M. S., et al. (2023). An evolutionary
stacked generalization model based on deep learning and improved grasshopper
optimization algorithm for predicting the remaining useful life of PEMFC. Appl.
Energy, 330. (PA). doi:10.1016/j.apenergy.2022.120333

Zhang, G., Liu, H. C., Zhang, J. B., Yan, Y., Zhang, L., Wu, C., et al. (2019). Wind
power prediction based on variational mode decomposition multi-frequency
combinations. J. Mod. Power Syst. Clean Energy 7 (2), 281–288. doi:10.1007/s40565-
018-0471-8

Zhang, J. A., Liu, C. Y., and Ge, L. J. (2022). Short-term load forecasting model of
electric vehicle charging load based on MCCNN-TCN. ENERGIES 7 (6).

Zhang, T., Chen, X., Yu, Z., Zhu, X., and Shi, D. (2018). A Monte Carlo simulation
approach to evaluate service capacities of EV charging and battery swapping stations.
IEEE Trans. Industrial Inf. 14 (9), 3914–3923. doi:10.1109/tii.2018.2796498

Zhang, X., Chan, K. W., Li, H. R., Wang, H., Qiu, J., and Wang, G. (2021). Deep-
learning-based probabilistic forecasting of electric vehicle charging load with a novel
queuing model. IEEE Trans. Cybern. 51 (6), 3157–3170. doi:10.1109/tcyb.2020.2975134

Zhang, Y. G., Li, R. X., and Zhang, J. H. (2021). Optimization scheme of wind energy
prediction based on artificial intelligence. Environ. Sci. Pollut. Res. 28 (29),
39966–39981. doi:10.1007/s11356-021-13516-2

Zhong, J., He, L., Li, C., Cao, Y., Wang, J., Fang, B., et al. (2014). Coordinated control for
large-scale EV charging facilities and energy storage devices participating in frequency
regulation. Appl. Energy 123 (15), 253–262. doi:10.1016/j.apenergy.2014.02.074

Zhu, J. C., Yang, Z. L., Mourshed, M., Guo, Y., Zhou, Y., Chang, Y., et al. (2019).
Electric vehicle charging load forecasting: a comparative study of deep learning
approaches. ENERGIES 12 (24), 2692. doi:10.3390/en12142692

Frontiers in Energy Research frontiersin.org18

Xie et al. 10.3389/fenrg.2024.1341246

https://doi.org/10.1016/j.apenergy.2018.06.153
http://www.nhc.gov.cn
https://doi.org/10.1109/tpami.2005.159
https://doi.org/10.1126/science.1205438
https://doi.org/10.1016/j.apenergy.2014.09.091
https://doi.org/10.1016/j.apenergy.2014.09.091
http://sndrc.shaanxi.gov.cn
http://gzw.hubei.gov.cn
http://www.sasac.gov.cn
http://www.gov.cn
https://doi.org/10.1016/j.energy.2019.01.075
http://www.xa.gov.cn
https://doi.org/10.1016/j.enbuild.2022.112566
https://doi.org/10.1016/j.enbuild.2022.112566
https://doi.org/10.1016/j.apenergy.2022.118865
https://doi.org/10.1016/j.apenergy.2022.120333
https://doi.org/10.1007/s40565-018-0471-8
https://doi.org/10.1007/s40565-018-0471-8
https://doi.org/10.1109/tii.2018.2796498
https://doi.org/10.1109/tcyb.2020.2975134
https://doi.org/10.1007/s11356-021-13516-2
https://doi.org/10.1016/j.apenergy.2014.02.074
https://doi.org/10.3390/en12142692
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1341246


Nomenclature

BPNN Back Propagation Neural Network

ARMA Auto-Regressive and Moving Average

CNN Convolutional Neural Network

LSTM Long Short-Term Memor

MIC Maximal Information Coefficient

mRMR Maximum Relevance Minimum Redundancy

MI Mutual Information

Bi-LSTM Bidirectional Long Short-Term Memory

IPSO Improved Particle Swarm Optimization Algorithm

IPSO-LSTM Improved Particle Swarm Optimization-Long Short Term Memory

MAE Mean Absolute Error

RMSE Root Mean Square Error

SMAPE Symmetric Mean Absolute Percentage Error

TOU Time-of-use
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