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Calculation of the velocities
induced by the trailing vorticity
in the rotor plane of a
horizontal-axis turbine or
propeller

David H. Wood*

Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, Canada

Lifting line (LL) analysis of propellers and horizontal-axis turbines requires the
axial and circumferential velocities induced by the vortex system representing
the blades and the trailing vorticity. If the blades are straight and radial,
the induced velocities along the LLs are due only to the trailing vorticity.
Accurate two-term approximations for these velocities have been developed
from the exact Kawada–Hardin (KH) equations for the velocity field of a
doubly infinite helical vortex of constant pitch and radius, Wood et al. (Ocean
Engineering, 2021, 235). This paper describes a straightforward extension of the
approximations to give the induced velocities anywhere in the equivalent of
the rotor plane for a doubly infinite helix. The third term in the approximation
of the KH equations is derived and compared to an alternative third term due
to Okulov (Journal of Fluid Mechanics, 2004, 521, 319–342). Both three-term
approximations produce a small improvement in accuracy over the two-term
approximations for a range of operating conditions for turbines and propellers.
Okulov’s third term is superior. To determine the induced velocities for a singly
infinite trailing vortex behind a rotor, an additional equation is derived from the
Biot–Savart law. Numerical examples show that the resulting equations provide
accurate estimates for the induced velocities over the rotor plane. The main
application of the analysis is to account for blade sweep and coning by including
the angle between the vortex origin and the control point at which the velocities
are required, often the center of each blade element.

KEYWORDS

wind turbine aerodynamics, blade element, momentum (BEM) theory, vortex dynamics,
helical vortex, Kawada–Hardin equations, Biot–Savart law

1 Introduction

This study extends the analysis by Wood et al. (2021) of the velocities induced at the
blades by the helical trailing vortices for lifting line (LL) analysis of horizontal-axis turbines
and propellers. Wood et al. (2021) considered only identical, straight, equispaced blades
that lie in the radial plane of rotation. The vortices were assumed to have constant pitch

Abbreviations: BEMT, blade element/momentum theory; BS, Biot–Savart; KH, Kawada–Hardin; LL,
lifting line; O, Okulov; W, Wrench.
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and radius as this is the only case with closed-form expressions
for the induced velocities. The restriction of constant pitch is not
significant as Wood and Hammam (2022) showed that the pitch
is constant throughout the wake of optimal rotors as it is the
ratio of torque to thrust. The restriction of constant radius is
possibly more significant, but at least, the constant radius analysis
captures the important features of circumferential periodicity for
identical, equispaced blades. Some further comments on the effects
of wake expansion and radial velocity are made in Subsection 2.1.
Wood et al. (2021) surveyed the approximate methods to compute
the velocities along a straight LL based on the exact Kawada–Hardin
(KH) equations described in Section 2.1. There are, however,
situations that involve the induced velocities throughout the rotor
plane rather than just along straight LLs. An example is a swept
rotor, with the LL curved in the plane of rotation, which has been
the subject of a significant amount of recent research, e.g., Fritz et al.
(2022), Li et al. (2022b), and Gemaque et al. (2022). The first two
studied swept wind turbine blades using different approximations
for the induced velocities. Fritz et al. (2022) used a restricted
version of the analysis developed here, whereas Li et al. (2022b)
used a vortex-cylinder model of the wake. It is suggested that the
present analysis is simpler and more general. Gemaque et al. (2022)
investigated blade sweep for a hydrokinetic turbine without explicit
incorporation of the spatial dependence of the induced velocities.
In other words, they used Prandtl’s well-known tip loss factor
in their blade element/momentum theory (BEMT) calculations.
Bergmann et al. (2021) analyzed propeller performance also using
BEMT and Prandtl’s tip loss factor. A possibly more important
example is a coned rotor (Li et al., 2022a). Most modern large blades
have pre-bend; the tips are upwind of the hub at a low wind turbine.
As the wind speed and aerodynamic loads increase, the blades
deflect downwind out of the radial plane of rotation due to their
inherent flexibility. No study of coned rotors has considered the
effect on the induced velocities of any axial displacement between
the start of a trailing vortex and the control point where the induced
velocity is required.

Figure 1 shows a doubly infinite helical vortex whose velocity
field is given by the KH equations. When the angle θ in the figure
is zero, the velocity induced along the LL by the singly infinite blue
vortex shed at radius t, also along the LL, is one-half the doubly
infinite value and so follows immediately from the KH equations.
The present analysis accounts for a non-zero θ between the start of
each trailing helical vortex and the control point, often the center of
a blade element. Note that the terms “trailing” and “singly infinite”
are synonymous. It will be shown that non-zero θ requiresmore than
the KH equations. Initially, the blades are assumed to remain in the
plane of rotation, and the extension to coned blades will be outlined
subsequently as a small extension of the analysis.

The next section describes the KH equations and their two-
term approximations for the velocities along the LLs and the
new extension to the whole rotor plane. Then, the third-order
approximations are derived and compared to those due to Okulov
(2004) and Okulov and Sørensen (2020), which they called
“remainders.” The testing of the accuracy of the approximations is
described in Section 3; the remainders are generally more accurate
than the third-order corrections. As mentioned above, a major
complication is that the KH equations apply to a doubly infinite
helical vortex, whereas the velocities at x = 0 are needed for the

trailing blue vortex in Figure 1. When θ = 0, the singly infinite
induced velocities are one-half the doubly infinite ones; it is shown
at the start of Section 4 that the doubly infinite results for non-
zero θ give the sum of the induced velocities at ±θ for a trailing
vortex, and a further relation between these velocities is needed.
Section 4 continues by using the Biot–Savart law to derive an
approximate further relation for the difference in the velocities
at ±θ. Section 5 describes numerical tests of the singly infinite
equations. Section 6 discusses the results, shows how the analysis
can be extended to coned rotors, and contains the conclusions.
Appendix A describes the derivation of the sums needed for
the θ− dependent approximations, and Appendix B shows the
three terms in the approximation integration to zero over the
region of planar symmetry as a check on the consistency of the
derivation. Appendix C presents the analytic remainders added
to the numerical integral of the Biot–Savart law for the singly
infinite helices.

2 The equations for the velocities
induced by doubly infinite helices

2.1 The exact equations

Cylindrical polar coordinates are used: (x, r,θ), where x is
in the axial or streamwise direction, r is the radius, and θ is
the circumferential angle. The respective velocity components are
(u,v,w). A doubly infinite helical vortex of constant pitch p, defined
by dx/dθ = p for any point on the vortex, passes through (0, t,0), as
shown in Figure 1.The vortex radius remains t throughout the wake.
u at any point (0, r,θ) along straight and radial LLs is given by the
KH equations, Kawada (1936), Kawada (1939), and Hardin (1982),
as described, for example, in Wood et al. (2021):

u (r,θ) = u (r) + u′ (r,θ) =

{{{{{{{
{{{{{{{
{

Γ
2πp
− Γt
πp2 S1 if r < t,

− Γt
πp2 S3 if r > t.

(1)

Here, Γ is the vortex strength, and the overline indicates a
circumferentially averaged value. Similarly, the circumferential
velocity, w, is given by

w (r,θ) = w (r) +w′ (r,θ) =

{{{{{{
{{{{{{
{

Γt
πpr

S1 if r < t,

Γ
2πr
+ Γt
πpr

S3 if r > t.

(2)

Note that the mean velocity only appears for r < t in Eq. 1 and for
r > t in (2). Thus, only the vortices above a blade element contribute
to its mean axial velocity, and only those below it, to the mean
circumferential velocity. Furthermore, the perturbation velocities
determined by S1 and S3 are directly related by “helical symmetry”:
pu′(r,θ) = −rw′(r,θ), which simplifies their computation. It is
noted that helical symmetry also relates u(r,θ) to w(r,θ), but its
demonstration relies on Kelvin’s theorem for the strength of the
vortices trailing from the top and bottom of each blade element and
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FIGURE 1
A doubly infinite helical vortex of constant pitch (p, not shown) and radius (t) extends from +∞ to −∞. The negative x−axis and vortex for negative x are
shown as dashed lines. The first aim of the present work is to extend the analysis that gives the induced velocities in the green plane for any radius (r),
but θ = 0 only to any (r, θ ). θ = 0 is defined by the intersection of the vortex and the green plane. The induced velocities, (u,v,w), are in the (x, r, θ )
directions.

is not needed here. As noted above, Eqs (1) and (2) apply to a doubly
infinite vortex. The series S1 and S3 in the notation of Hardin (1982)
are given by

S1 =
∞

∑
m=1

mK′m (mt/p) Im (mr/p)cos (mθ) (3)

and

S3 =
∞

∑
m=1

mI′m (mt/p)Km (mr/p)cos (mθ) . (4)

Here, Im(.) and Km(.) are modified Bessel functions in standard
notation. m denotes the order and the prime a derivative with
respect to the argument. In practice, the derivatives are evaluated
using the standard results I′m(.) = (Im−1(.) + Im+1(.))/2 and K′m(.) =
−(Km−1(.) +Km+1(.))/2.

S1 and S3 completely determine both u and w, which are the
focus of this study.The induced radial velocity, v, is generally ignored
in BEMT, but this may not be justified for coned and swept rotors
if the radial flow over the blade elements alters the element’s lift
and drag. v may also be important for any rotor with significant
expansion of the wake as u and v have the same magnitude for
any swept or unswept rotor and any wake expansion (Limacher
and Wood, 2021). There are two main problems in extending the
present analysis to v. The first is that a significant v implies a
significant variation in the vortex radius, t, for which no analytic
solutions are known. Second, the series for v when t is constant,
S2 and S4 in the notation of Hardin (1982), involve products of
I′m(.) and K′m(.) and would need extra analysis to produce the rotor
plane approximations. v is not considered further in this study. Note
that the terms involving S1 and S3 give the perturbations from the
streamtube averages. The perturbations must integrate to zero over
the azimuthal region of symmetry, 2π/N, where N is the number of

blades. This constraint will be used later to check the approximate
equations for u′ and w′.

Clearly, Γ must be known to convert S1 and S3 into induced
velocities. In the BEMT, Γ is the difference in the bound circulation
of the elements on either side of the trailing vortex whose induced
velocity is being calculated. Γ is easily determined from the element
lift and drag, but this determination is outside the scope of the
present work. All other parameters for the induced velocities are
set by the rotor geometry, except for p. It can be calculated from
the blade element thrust and torque, or equivalently, from u and w
immediately behind the blades (Wood and Hammam, 2022).

Wood et al. (2021) analyzedmethods to find u andw at x = θ = 0
due to a vortex also starting at x = θ = 0. This restricted the analysis
to straight, radial blades. Removing this restriction is the purpose of
the present analysis, which is made easier by the dependence of S1
and S3 on θ being separate from that on the coordinates and length
parameters. Thus, each term in the Kapteyn-like series of products
of Bessel functions and their derivatives in S1 and S3 can be summed
over the N blades before summing the series in m, as explained
by Wood et al. (2021). The circumferential summation is exact only
if the blades are identical and equispaced, which can hold for
swept and straight blades and will be assumed here. Summing over
the N blades introduces what Wood et al. (2021) called “Kawada”
cancellation: the original 2π azimuthal periodicity of a single trailing
vortex becomes a 2π/N periodicity of N identical vortices, and this
cancels a fraction of (N− 1)/N of the terms in the sums.

With Kawada cancellation, S1 and S3 reduce to

S1 = N
∞

∑
m=1

mNK′mN (mNt/p) ImN (mNr/p)cos (mNθ) (5)

and
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TABLE 1 Correspondence of the present symbols to Wrench (1957).

Present Wrench (1957)

N g

m n

n m

r/p y

t/p y0

S3 = N
∞

∑
m=1

mNI′mN (mNt/p)KmN (mNr/p)cos (mNθ) . (6)

All further references to S1 and S3 are to these equations forN blades
which, obviously, include N = 1 as a special case.

Kawada cancellation removes two-thirds of the terms if N = 3,
but the exact series for the induced velocities remains numerically
challenging, partly because the number of terms required for a
specified accuracy increases without bound as r→ t. Wood et al.
(2021) described the considerable historical effort to develop
accurate approximate equations. The next section describes those of
Wrench (1957), which were shown by Wood et al. (2021) to be the
most accurate two-term approximations.

2.2 Wrench’s approximate equations

Wrench used the asymptotic expansion of Im(.) by Lehmer
(1944) and his own, a similar expansion of Km(.). Eq. 19 of
Wrench (1957) gives the m−th term in S1 for θ = 0, in the present
notation, as

mNK′mN (mNt/p) ImN (mNr/p)

∼ −AUm
W(1+

(t/p)2

2mNc3t
)exp(

ψ1 ((r/p)
2)

mNc3r
−
ψ1 ((t/p)

2)

mNc3t
), (7)

where the parentheses show only the first two terms that Wrench
retained in each expansion. In (7),

A =
p
2t
√
ct
cr
, where ct = √1+ (t/p)2,cr = √1+ (r/p)2, and

UW = [
t(cr − 1)
r(ct − 1)

exp(cr − ct)]
N

. (8)

The function ψ1 is defined as

ψ1 (z
2) = (3z2 − 2)/24 (9)

for any z, from Wrench’s Eq. 11. For readers interested in the
details of the derivation of the induced velocities, Table 1 relates the
variables used in the present analysis to Wrench’s equations.

Wrench expanded the exponential term in (7) to the leading
order in ψ1 to yield

mNK′mN (mNt/p) ImN (mNr/p)

∼ −AUm
W(1+

(t/p)2

2mNc3t
)(1+

3(r/p)2 − 2
24mNc3r

−
3(t/p)2 − 2
24mNc3t

)

∼ −AUm
W(1+

B
mN
), (10)

where

B = 1
24
[
9(t/p)2 + 2

c3t
+

3(r/p)2 − 2
c3r
]. (11)

Note that A and B are independent ofm and, for future purposes, θ.
The approximation for each term in S3 was developed analogously
from Eq. 20 of Wrench (1957):

mNI′mN (mNt/p)KmN (mNr/p)

∼ AU−mW (1−
(t/p)2

2mNc3t
)exp(

ψ1 ((t/p)
2)

mNc3t
−
ψ1 ((r/p)

2)
mNc3r

)

∼ AU−mW (1−
(t/p)2

2mNc3t
)(1+

3(t/p)2 − 2
24mNc3t

−
3(r/p)2 − 2
24mNc3r

)

∼ AU−mW (1−
B
mN
). (12)

For both S1, with UW < 1, and S3, with UW > 1, the summation
over 1 ≤m <∞ is easy for the A− term as it is a geometric series.
Added to the sum of the second term derived in Appendix A,
Wrench’s approximations become

S1,W = −A[
NUW

1−UW
+B log(1+

UW

1−UW
)] (13)

for r < t and

S3,W = A[
N

UW − 1
−B log(1+ 1

UW − 1
)] (14)

for r > t, which are Eqs 15, 16 of Wood et al. (2021). It is clear from
Eqs 13, 14 that S1,W and S3,W become singular as r→ t and Uw→ 1.
This is the situation mentioned above, which causes the unbounded
increase in the number of terms in the Kapteyn series that must be
summed to achieve a specified accuracy. A major advantage of the
approximate solutions is that they remain accurate for any UW ≠ 1
(Wood et al., 2021).

Including θ in the approximations is straightforward.The second
line of Eq. 10 becomes

mNK′mN (mNt/p) ImN (mNr/p)cos (mNθ)

∼ −AUm
W(1+

B
mN
)cos (mNθ) , (15)

and the same factor of cos(mNθ) multiplies the right sides
of (12). The results in Appendix A allow the generalization of
Eqs 13, 14 to be

S1,W =−A[N
UW (cos (Nθ) −UW)

1+U2
W − 2UW cos (Nθ)

−B
2

log(1+U2
W − 2UW cos (Nθ))] (16)

for r < t and
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S3,W =A[N
UW cos (Nθ) − 1

1+U2
W − 2UW cos (Nθ)

+B
2

log(
1+U2

W − 2UW cos (Nθ)

U2
W

)] (17)

for r > t. It will be shown in Section 3 that the second term, which
will be called the “B− term” despite it containingA, is typically small
compared to the A− term. Both terms become singular as r→ t and
UW→ 1, but only when θ = 0. This singularity is associated with the
complex nature of the flow in the immediate vicinity of the vortex,
e.g., Boersma and Wood (1999) and Okulov and Sørensen (2020),
and does not appear to detract from the usefulness of the equations
for computing the induced velocities for LL analysis.

2.3 Higher-order terms in Wrench’s
expansion

The next term in Wrench’s expansion has not been derived
previously in the open literature. It is now given for S1, and the very
similar result for S3 will be quoted. Extending (10) gives

mNK′mN (mNt/p) ImN (mNr/p)

∼ −AUm
W(1+

(t/p)2

2mNc3t
+
(t/p)2 (4− (t/p)2)

8(mNc3t )
2 )

exp[

[

2

∑
n=1
(
ψn ((r/p)

2)

(mNc3r )
n + (−1)

nψn ((t/p)
2)

(mNc3t )
n )]

]

∼ −AUm
W(1+

B
mN
+

CW

m2N2). (18)

Since

ψ2 (z
2) = z2 (z2 − 4)/16 (19)

for any z, from Eq. 11 of Wrench (1957), CW is obtained as

CW =
1
16
[ 1
c6r
(

9(r/p)4

8
−

25(r/p)2

6
+ 1

18
)

+ 1
c3r c

3
t
(

3(r/p)2(t/p)2

4
+
(r/p)2

6
−
(t/p)2

2
− 1

9
)

− 1
c6t
(

15(t/p)4

8
−

9(t/p)2

2
− 1

18
)]. (20)

Using the results from Appendix A, S1,W becomes

S1,W = −A[N
UW (cos (Nθ) −UW)

1+U2
W − 2UW cos (Nθ)

− B
2

log(1+U2
W − 2UW cos (Nθ))

+
CW

2N
{Li2 (UWeiNθ) + Li2 (UWe−iNθ)}] (21)

for r < t, and the extended S3,W for r > t is

S3,W = −A[N
UW cos (Nθ) − 1

1+U2
W − 2UW cos (Nθ)

+ B
2

log(
1+U2

W − 2UW cos (Nθ)

U2
W

)

+
CW

2N
{Li2 (eiNθ/UW) + Li2 (e−iNθ/UW)}]. (22)

Li2(.) in these equations is the dilogarithm function, described in
chapter 25 of DLMF (2023). As mentioned above, S1 and S3 give
the perturbations from the circumferential average velocities in the
rotor plane. Because A,B, and C are not related, the A−, B−, and C−
termsmust individually integrate to zero over [0,2π/N]. Appendix B
shows this to be the case for all three, which provides a check on the
derivation of the θ−dependent terms.

2.4 Higher-order terms due to Okulov

Okulov (2004) and Okulov and Sørensen (2020) used an
alternative strategy to the asymptotic expansion of the Bessel
functions in S1 and S3.They separated “the key terms from the series”
and developed remainders to improve the accuracy. Wood et al.
(2021) showed the key terms are identical to Wrench’s two-term
approximations in Eqs 13, 14 for θ = 0, and, by implication, to (16)
and (17) for non-zero θ. Following the recommendation of Okulov
and Sørensen (2020) to use only the first term in their Eq. (A6a), the
alternative C− term, C1,O, for S1 in the present notation is

C1,O = (K
′
1 (t/p) I1 (r/p) +AUO (1+B))cos (θ) , (23)

where UO = UW for N = 1. Using (15), the leading term in C1,O is

C1,O ∼ −AUOC cos (θ) , (24)

and for S3,O is

C3,O ∼ AC cos (θ)/UO. (25)

In the numerical experiments described in Section 3, the
approximations, S1,O and S3,O, are given in Eqs (21) and (22),
respectively, with the C− term replaced by either (24) or (25).

3 Numerical tests of the approximate
doubly infinite equations

Wood et al. (2021) documented the range of pitch values for a
number of simulations and experiments on wind and hydrokinetic
turbines and propellers, which led them to choose representative
values of p = 0.1,1 and N = 4 for their numerical tests to determine
the accuracy of the approximate equations for θ = 0. The accuracy
depends on N, but the dependence on p is stronger; decreasing p,
which corresponds to increasing the tip speed ratio for turbines,
increases the accuracy. Because of the close similarity between
S1 and S3, only the former is considered here for N = 3. S1
was calculated directly from Eq. 5 by summing to a maximum
value of m =mmax, chosen to give an accuracy of 10–8 using
Eq. 18 of Wood et al. (2021), which assumes θ = 0. Since the
Kapteyn series will converge more rapidly for θ ≠ 0, using an
upper limit of mmax∀ θ should be safe. S1,A is the A− term in the
approximation, that is, the first term in (21), and S1,W includes all
three terms.

The results shown in Figure 2 correspond to a tip speed ratio
of approximately 7, and t = 1 and r = 0.99 represent the tip vortex
and the center of the blade element at the tip, respectively, when
the number of elements per blade is around 50. Since S1 and S3
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FIGURE 2
S1, S1,W, and S1,A for p = 0.1, r = 0.99, and t = 1.

are even in θ, 200 equispaced points over the positive region of
symmetry, θ = [0,π], were computed, but only every fifth point
is plotted in the main figure. The inset amplifies the region near
θ = 0 for all points in that region. For these conditions, mmax = 59,
indicating the considerable computational burden of summing the
exact equations. Wrench’s approximation is very accurate; the r.m.s
difference between S1 and S1,W over the 200 points calculated
for 0 ≤ θ ≤ π/N was almost within the tolerance of calculating S1.
Using the A− term only gives reasonable accuracy at p = 0.1. For
θ = 0, S1 = −0.43172,S1,A = −0.42838, and S1,W = −0.43172; so using
the first term only in the approximation gives a modest error of
less than 1%.

It is inferred from these results that the C− term or Okulov’s
alternative is not significant at this p. Their behavior is shown in
Figure 3. Okulov’s third term, Eq. 24, is more accurate than CW
from (21), but both could be used to determine the accuracy of
using only two terms, i.e., Eqs 16, 17. Increasing p to p = 1 increases
the time required for the evaluation of the exact solution. For the
same N, t, and r, mmax becomes 519, and an accurate summation
was not possible. r was decreased to 0.98, for which mmax = 250.
The results are shown in Figures 4, 5. At θ = 0, S1,S1,W, and S1,A
were 1.7152, 1.7154, and 1.6933, respectively, all multiplied by 104.
The accuracy of the approximations is slightly worse than that at
p = 0.1, and Figure 5 shows that the two versions of the C− term
have become nearly equal. In particular, it is noted that the A−
term is a significantly poorer approximation to the exact solution at
its higher p.

Other combinations of N,p, t, and r were investigated but not
presented as the results shown are typical.The extension ofWrench’s
approximations for θ = 0 to any θ was found to be accurate for a
representative range of the parameters, and the accuracy can be
improved and/or assessed by the C− term or Okulov’s alternative.

4 The velocities induced by a singly
infinite vortex over the rotor plane

All the equations derived and tested so far apply to a
doubly infinite helical vortex. They give twice the velocities
induced by a singly infinite (trailing) vortex only when θ = 0.
For non-zero θ, it will be shown below that the doubly infinite
equations give u(r,θ) + u(r,−θ) and w(r,θ) +w(r,−θ) for a singly
infinite vortex, and a further relation between the velocities
is needed. Approximate relations for u(r,θ) − u(r,−θ) and
w(r,θ) −w(r,−θ) can be derived from the Biot–Savart (BS) law for a
line vortex.

Since the BS law provides a differentmethod for determining the
induced velocities, its relation to the KH equations, (1)–(4), is now
briefly considered.TheKH equations were derived from the velocity
potential of a flow containing a doubly infinite helical vortex. The
relationship with the BS law was analyzed by Morgan and Wrench
(1965) and, more accessibly, by Boersma and Yakubovich (1998),
whose Eq. 1 establishes the BS law as the “integral representation”
of the series involving S1 and S3; see also Eq. (2.6) of Boersma and
Wood (1999).

A straightforward application of the BS law gives

(u (r,θ) ,w (r,θ)) = Γ
4π
(Iu,BS, Iw,BS) =

Γ
4π
∫
∞

0

(iu (r,θ) , iw (r,θ))
d3 dβ,

(26)

where Γ is the vortex strength and β is the angle which is positive in
the direction of positive θ. Iu and Iw, called the “influence functions,”
depend only on the geometry of the vortex. The limits indicate
a singly infinite vortex so that β = [0,∞] for both θ and −θ. The
integrands contain
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FIGURE 3
Errors and third terms for the conditions in Figure 2.

FIGURE 4
S1, S1,W, and S1,A for p =0.1, r =0.1, and t = 1.

iu (r,θ) = t2 − rt cos (β− θ) and

iw (r,θ) = p (r− t cos (β− θ) − tβ sin (β− θ)) , (27)

and the distance d is given by

d2 (r,θ) = r2 + t2 − 2rt cos (β− θ) + p2β2. (28)

The relationship between the doubly and singly infinite velocities
can be seen from
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FIGURE 5
Errors and third terms for the conditions in Figure 4.

∫
∞

−∞

iu (r,θ)
d3 (r,θ)

dβ = ∫
∞

0

iu (r,θ)
d3 (r,θ)

dβ+∫
0

−∞

iu (r,θ)
d3 (r,θ)

dβ

= ∫
∞

0

iu (r,θ)
d3 (r,θ)

dβ+∫
∞

0

iu (r,−θ)
d3 (r,−θ)

dβ

= Iu,BS (r,θ) + Iu,BS (r,−θ) . (29)

It follows from (26) that

∫
piu (r,θ) + riw (r,θ)

d3 (r,θ)
dβ =

pβ

√t2 + r2 − 2rt cos (θ− β) + p2β2
. (30)

By this extended version of helical symmetry,w(r,θ) can be obtained
immediately from u(r,θ), so only the latter will be analyzed.
Despite (30), the integrals for a helical vortex do not have closed-
form solutions. Thus, the following approximation is made for the
difference in the influence functions:

ΔIu = Iu (r,θ) − Iu (r,−θ) ≈ ΔIu,1 = ∫
2θ

0

iu (r,θ)

(r2 + t2 − 2rt cos (β− θ) + z2)3/2
dβ,

(31)

where z = pθ. In words, the difference in the velocities is
approximately that induced by a sector of a vortex ring
of radius t located a distance pθ behind the control point.
The approximation is sketched and further explained in
Figure 6. In terms of β, measured from the intersection
of the blue vortex and the green plane, the sector
starts at (t,0) and ends at (t,2θ). The integral in (31)
has an analytic form that must be modified to give
the correct asymptotic behavior as r ↓ 0 for any t. In
that limit, the integrand in (26) becomes independent

of θ, and so ΔIu→ 0. The result obtained using
Mathematica is

ΔIu,1 =
2

√(r− t)2 + z2
[ r

2 − t2 + z2

(r+ t)2 + z2
E(θ

2
, −4rt
(r− t)2 + z2

)

−F(θ
2
, −4rt
(r− t)2 + z2

)]

+
4rt(r2 − t2 + z2) sin (θ)

(r4 + 2r2 (z2 − t2) + (t2 + z2)2)√r2 + t2 + z2 − 2rt cos (θ)

+ 2t2θ
(t2 + z2)3/2

, (32)

where E(., .) and F(., .) are the incomplete elliptic
integrals described in chapter 19 of DLMF (2023).
The extra subscript was added to ΔIu to denote the
use of the full form of the integrals. Two more
approximations with different additional subscripts are
described below.

As for the doubly infinite results in Section 3, the tests on the
accuracy of the approximations are restricted to r < t. A single
vortex (N = 1) only will be considered, but some comments on the
important cases of N > 1 are made below. The sum of the influence
functions is

ΣIu = Iu (r,θ) + Iu (r,−θ) ≈ ΣIu,W =
t
p2 S1,W (33)

when the C− terms are ignored on the grounds that they are
likely to be comparable to, or smaller than, the errors in using
(32) for most turbine applications. The extra subscript in Iu,W
indicates that it was determined from Eq. 16. For comparison, the
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FIGURE 6
Difference in velocities induced by the blue and red singly infinite vortices anywhere along radius r is approximately the velocity induced by the vortex
sector shown in dashed magenta. The sector of radius t spans [−θ, θ ] and is parallel to the green plane and distance pθ above it.

“exact” values of Iu,BS(θ) and Iu,BS(−θ) were determined by the
numerical evaluation of the Biot–Savart integral for Iu in (26) using
MATLAB's integral function with the default error settings, over
β = [0,βmax], from which ΔIu,BS and ΣIu,BS follow. To the latter
was added an analytic remainder approximating the integrals over
[βmax,∞], as described in Appendix C. βmax = 1000π was used for
all results presented here. By varying βmax, this value was found
to result in 6-figure accuracy for the results presented in the
next section.

ΣIu,BS provides a check on the accuracy of ΣIu,W from (33). ΔIu,BS
will be used to show the errors in ΔIu,1 from Eq. 32, and further
approximations using the simplification of the incomplete elliptic
integrals described below. It is emphasized that the KH equations
were found to give nearly identical results to those from the BS
integration, but they are not considered further as they do not lead
to an equation for ΔIu.

Eq 33 is valid for all N, and it is unlikely that further
simplification is possible. Eq. 32, however, has to be summed over
N blades spaced 2π/N apart in a BEMT code, which raises three
important considerations. First, the incomplete elliptic integrals
are only partially periodic, as demonstrated by the small-modulus
approximations of formulas (62:9:5) and (62:9:6) of Oldham
et al. (2009):

F( θ
2
,m) ∼ θ

2
+ m

4
(θ− 1

2
sin (θ)) and E( θ

2
,m) ∼ θ

2
− m

4
(θ− 1

2
sin (θ)) .

(34)

Thus, summation over N blades will not allow simple
Kawada cancellation. Second, the integrals are computationally
expensive to evaluate, so the accuracy of using (34) was tested.
Surprisingly, the most accurate overall results came from ignoring
the terms inm, leaving only θ/2 for both F and E, which is very easy

for summing. Using (34), without any further modification to (32),
leads to the second approximation to ΔIu:

ΔIu,2 = 2tθ[[

[

t
(t2 + z2)3/2

− r+ t

((r+ t)2 + z2)√(r− t)2 + z2
]]

]

+
4rt(r2 − t2 + z2) sin (θ)

(r4 + 2r2 (z2 − t2) + (t2 + z2)2)√r2 + t2 + z2 − 2rt cos (θ)
,

(35)

which will be tested for accuracy along with ΔIu,1 from (32).
The third consideration is that the trigonometric term will

simplify by Kawada cancellation when summed over N blades,
but the presence of cos(θ) in the denominator makes the result
more complicated than that for the KH equations. Summing over N
blades is equivalent to using the trapezoidal rule to approximate the
integral of the periodic function:

∫
θ+2π

θ

sin (β)

√r2 + t2 + z2 − 2rt cos (β)
dβ

= 1

√ r2 + t2 + z2)
∫
θ+2π

θ

sin (β)

√1− a cos (β)
dβ = 0, (36)

where a = 2rt/(r2 + t2 + z2) satisfies 0 < a < 1 for a BEMT code. Note
that the integral is independent of θ, but generally, the trapezoidal
approximation is not, even though Kawada cancellation always
applies. In the limit of a = 0, however, the sum over N is zero for
any θ. Thus, the sum of the trigonometric term, which is common
to ΔIu,1 and ΔIu,2, tends to zero as r ↓ 0 for N > 1. When a = 1,
the integrand reduces to √2cos (β/2) for β < 2π and −√2cos (β/2)
for β > 2π, again giving a closed-form sum. The general form of
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the sum is complicated and does not converge monotonically to
zero at large N, probably because the complex variable form of the
second integrand in (36) is not analytic when a = 1 (Trefethen and
Weideman, 2014). When a < 1, the integrand is analytic, and the
sums for large N are consistent with the exponential convergence
of the trapezoidal rule for analytic functions that are periodic
(Trefethen and Weideman, 2014). Nevertheless, the sum for small
N when a = 1 appears to allow a simple approximation for a < 1 and
the small values of N in a BEMT code:

N−1

∑
i=0

sin(θ+ 2πi
N
)

√1− cos(θ+ 2πi
N
)
= √2

N−1

∑
i=0

cos(θ
2
+ πi
N
)

= √2[cos(θ
2
)− cot( π

2N
) sin(θ

2
)], (37)

provided Nθ ≤ 2π. This suggests approximating the sum
for any a as

N−1

∑
i=0

sin(θ+ 2πi
N
)

√1− a cos(θ+ 2πi
N
)
≈

sin (θ)

√1− a cos (θ)
−√2cot( π

2N
) sin(θ

2
),

(38)

which is exact for N = 1 as cot(π/2) = 0 and is accurate for other
values of N < 10 approximately over a wide range of θ. Eq 37 shows
that the sum becomes zero whenN = π/θ, which is large for small θ.
Thus, the sum of the non-analytic function when a = 1 is algebraic
rather than N times the exponential convergence of the trapezoidal
rule when a < 1 and N is sufficiently large.

The convergence of the sum in (38) for a < 1 inferred from
that of the trapezoidal rule shows that there are no sweep effects
on the induced velocities for an actuator disc that is approached
as N→∞, that is, much larger values than considered in the
previous paragraph. Periodicity also requires u(π) = u(−π), that
is, u(θ) → u(−θ) as θ→ π. This requirement is not satisfied by either
(32) or (35), but this error is unlikely to be significant for moderate
sweep and coning. As shown at the end of the next section, the error
can be easily corrected.

5 Numerical tests of the singly infinite
equations

Figure 7 plots the influence functions over θ = [0,π] for the
conditions of Figure 2, except that nowN = 1, andFigure 8 shows the
various ΔIu and ΣIu. As expected from the previous results,Wrench’s
approximation for ΣIu is very accurate at all θ. Both approximations
for Iu(θ) are accurate at small θ when Iu(θ) is large in magnitude.
Small θ is likely to occur frequently when the control point, r, is close
to the vortex at t. There is, however, a very large difference between
Iu(θ) and Iu(−θ), which remains close to zero for all θ. Only the exact
influence functions asymptote to equality as θ→ π, but the effect of
the error in the others is likely to be small. The error is due almost
entirely to the error at large θ in ΔIu,1 and ΔIu,2.

In Figure 9 for Iu and Figure 10 for ΔIu and ΣIu, r has been
reduced to 0.1, which places it in the hub region where θ for t = 1
is likely to be larger than for r = 0.99 in a BEMT implementation.
Now, Iu(θ) is nearly equal and opposite to Iu(−θ), and the typical
magnitude has decreased substantially. Both approximations for Iu

differ from the exact solution at θ = π, but the error may not be
significant.

It is possible that the errors in ΔIu are related to placing the
vortex sector at the arbitrary location of pθ behind the control point.
Changes to the position of the sector were investigated, but no
overall improvement in accuracywas found, so all the present results
were obtained using z = pθ.

A simple way to restore the periodicity to Iu is to replace θ with
sin(θ) in Eq. 35. This gives the third approximation:

ΔIu,3 = 2t sin (θ)[[

[

t

(t2 + z2)3/2
− r+ t

((r+ t)2 + z2)√(r− t)2 + z2

+
2r(r2 − t2 + z2)

(r4 + 2r2 (z2 − t2) + (t2 + z2)2)√r2 + t2 + z2 − 2rt cos (θ)

]]

]

.

(39)

This approximation is not shown in Figures 7–9 to ensure their
clarity. Figures 11, 12 plot the accuracy of Iu,i for i = 1,2,3 for
t = 1.0,p = 0.1, and r = 0.99 and 0.1, respectively. The “error”
is Iu,BS − Iu,i, where ΣIu,W is used for all i. Overall, the third
approximation is better than the second and is sometimes better
than the first. As expected from ΣIu,W being substantially more
accurate than ΔIu,i for any i, the errors in Iu,i(θ) and Iu,i(−θ) are equal
in magnitude and opposite in sign.

6 Discussion and conclusion

The main aim of this study was to extend the approximate
methods for computing the induced velocities along straight, radial
blades of horizontal-axis turbines and propellers, as described by
Wood et al. (2021), to thewhole rotor plane for blades that are swept.
This extension also provides accurate approximations of the induced
velocities for a swept or nonswept rotor anywhere in the plane of
rotation. The basis for the analysis is the approximations derived by
Wrench (1957) for the exact Kawada–Hardin (KH) equations for
the velocity field of a doubly infinite vortex of constant pitch and
radius. These equations involve infinite sums of products of Bessel
functions and their derivatives, which cannot be evaluated quickly
and accurately in many cases. The extension of the approximate
equations is straightforward because the generalized sums described
in Appendix A are not significantly more complicated than those
needed to determine the velocities along straight and radial blades.
Furthermore, blade element/momentum theory (BEMT) requires
the induced velocities in the axial and circumferential directions. For
all parts of the present analysis, there is a close connection between
them, so only the axial velocity was considered in detail.

Comparison to the exact solutions showed the extended
approximate equations are accurate. For some operating conditions,
sufficient accuracy may be obtained using the first or A− term.
Two different third-order or C− terms were used. The first extended
the expansion of the Bessel functions by Wrench (1957) to the
third order, and the second was the leading-order approximation
to the alternative treatment of Okulov (2004) and Okulov and
Sørensen (2020). The two expressions give similar results, but
Okulov’s expression is more accurate.
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FIGURE 7
Influence functions for u(θ) and u(−θ) for N = 1, r = 0.99, t = 1.0, and p = 0.1.

FIGURE 8
ΣIu and ΔIu for N = 1, r =0.99, t = 1.0, and p = 0.1.

The application of the analysis in a blade element/momentum
theory (BEMT) code must consider the differences between the
doubly infinite results from the KH equations and the singly infinite
vortices trailing from the junctions of the blade elements. For an
angle θ between the origin of the trailing vortex and the control
point, the KH equations give the sum of the velocities at ±θ. An
additional, approximate equation for the difference in the velocities
was derived from the Biot–Savart law. This equation contains
incomplete elliptic integrals, which are computationally expensive to

evaluate, so the first term in their low-modulus expansionwas tested.
This termwas found to lead to accurate values of the induced velocity
for small values of θ, but the accuracy reduced as θ approached π,
which may well be applicable for the velocity induced in the hub
region by the tip vortex.

The most interesting results from the previous section are
those in Figures 7, 8 for small |θ|, where u(θ) is much larger in
magnitude than u(−θ). This suggests that the induced velocities
when the blade is swept forward, whereby the tip is “ahead” of the
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FIGURE 9
Influence functions for u(θ) and u(−θ) for N = 1, r = 0.10, t = 1.0, and p =0.1.

FIGURE 10
ΣIu and ΔIu for N = 1, r =0.10, t = 1.0, and p = 0.1.

remainder of the blade, will be significantly different from those due
to sweepback. Furthermore, the large magnitudes of u(θ) occur for
small θ, suggesting that the LL representation of the blade may need
revising to account for finite blade chords.

This analysis was developed for a single, swept blade, but it
can be extended to multiple swept blades or to the more common
situation of coned blades. The present equations require the control

point to have the same axial (windward) location as the start of the
vortex, which is not the general situation for a coned rotor. The
difference can be accommodated as follows. A vortex that starts
behind (downwind of) a control point can be extended to the point’s
axial location. θ is now the angle between the extended vortex
and the point, and the present analysis is applied to the trailing
plus extended vortex. The velocity induced by the extension on
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FIGURE 11
Errors in the three approximations for Iu for N = 1, r = 0.99, t = 1.0, and p = 0.1.

FIGURE 12
Errors in the three approximations for Iu for N = 1, r = 0.1, t =1.0, and p = 0.1.

its own can be determined using a simple modification to Eqs 32,
35 and then subtracted. A corresponding subtraction of a vortex
segmentwould be the basis for computing the induced velocities
when the control point lies behind the start of the vortex.

The further development of the present equations for use in
a BEMT code for swept and coned rotors is currently underway.
The computationally efficient extension of the equations for ΔIu
for an arbitrary number of blades is being developed together with
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modifications to make ΔIu(2π/N) = 0 for any N. A major aim is to
determine the necessity of the present method of determining the
induced velocities in comparison to the much faster use of Prandtl’s
tip loss function.
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Appendix A: Summation of the cosine
series

This appendix provides a derivation of the sums that appear in
the A−, B−, and C− terms for S1 in the main text. The derivation for
the corresponding terms for S3 is so similar that it is not shown.

Starting with the infinite sum of the geometric series,

∞

∑
m=1

zm = z/(1− z) , (A1)

for any |z| < 1, substituting for z = UW exp(iNθ), and separating the
real and imaginary parts, gives

∞

∑
m=1

Um
W cos (mNθ) =

UW (cos (Nθ) −UW)
1+U2

W − 2UW cos (Nθ)
, (A2)

whose right side is the first term in Eq. 16, and

∞

∑
m=1

Um
W sin (mNθ) =

UW sin (Nθ)
1+U2

W − 2UW cos (Nθ)
. (A3)

Integrating (A3) with respect to Nθ gives

∞

∑
m=1

Um
W cos (mNθ)

m
= −1

2
log(1+U2

W − 2UW cos (Nθ)) . (A4)

For θ = 0, (A2) and (A4) lead to Eqs (13) and (14), respectively,
and for non-zero θ, to (16) and (17). A similar integration of
Equation (A2) results in

∞

∑
m=1

Um
W sin (mNθ)

m
= −Nθ

2
− tan−1(

(1+UW) tan (Nθ/2)
UW − 1

). (A5)

A further integration with respect to Nθ would give the sums in
the C− terms in the text, but the indefinite integral was long and
unwieldy, so an alternative treatment was developed.

From the definition of the polylogarithm function, Lis(z):

∞

∑
m=1

Um
W cos (mNθ)

ms = 1
2
[Lis (UWeiNθ) + Lis (UWe−iNθ)] , (A6)

as described in chapter 25 of DLMF (2023). Since Lis(z) is
available in languages such as Mathematica and MATLAB, it
should be possible to extend Wrench’s expansion to any order. The
present analysis, however, is restricted to s = 2. Li2(.) is called the
“dilogarithm.”

Appendix B: The circumferential
integrals for S1 and S3

As a check on the derivation of S1,W(Nθ), its integral over the 2π
region of periodicitywas determined.A similar analysiswas done for

the S3,W(Nθ), but the results are not shown in the interests of brevity.
Since A−, B−, and C− terms are not directly related, the integral of
each term in (16) must be zero. For the A− term in (16),

∫
π

−π

UW cos (Nθ) −U2
W

1+U2
W − 2UW cos (Nθ)

d (Nθ)

= −1
2
∫
π

−π
(1−

1−U2
W

1+U2
W − 2UW cos (Nθ)

)d (Nθ) . (B1)

Now UW < 1 for S1,W, so the indefinite integral is given by formula
(2.556.2) ofGradshteyn andRyzhik (2014). Over [−π,π], the integral
is zero.

For the B-term in S1,W, which is multiplied byA, it is convenient
to integrate over [0,2π]. It is necessary to show that the following
integral is zero:

∫
2π

0
log(1+U2

W − 2UW cos (Nθ))d (Nθ) , (B2)

which is by formula (4.224.15) of Gradshteyn and Ryzhik (2014).
Since

∫[Lis (UWeiNθ) + Lis (UWe−iNθ)]dNθ

= i
N
[Lis+1 (UWeiNθ) + Lis+1 (UWe−iNθ)] , (B3)

CW must integrate to zero over [0,2π].The same is obviously true for
Eqs (24) and (25).

Appendix C: The analytic remainders
for the Biot–Savart integrals

When pθ≫ (r+ t)2, d in (28) can be approximated as d ≈ pβ, and
the remainder, Ru(θ,βmax), is given by

Ru (θ,βmax) = ∫
∞

βmax

iu (r,θ)

d3/2 (r,θ)
dβ ≈ ∫

∞

βmax

iu (r,θ)

(pβ)3/2
dβ, (C1)

which was evaluated using Mathematica. The leading-order terms
for large pβ give

Ru (θ,βmax) +Ru (−θ,βmax) ≈
t2

p3β2
max

(C2)

and

Ru (θ,βmax) −Ru (−θ,βmax) ≈ 0, (C3)

independently of θ.
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Nomenclature

β Vortex angle

ΔIu Iu(θ) − Iu(−θ)

Γ Circulation

λ Tip speed ratio

ΣIu Iu(θ) + Iu(−θ)

θ Angle between the vortex and control point

A Leading term in the approximate solution for S1 and S3, Eq. 8

B Second term in the approximate solution for S1 and S3, Eq. 11

C Third term in the approximate solution for S1 and S3, Eqs 20, 23,
24

cr Term defined in Equation (8)

ct Term defined in Equation (8)

C1,O Okulov’s equation for C, Eqs (23) and (24)

CW Third term in Wrench’s expansion, Eq. 20

Iu Influence function for induced u

m Index for the summation of trigonometric terms

mmax Upper limit on m for s specified accuracy

N Number of blades

p Pitch of the helical vortex

r Radius of the point at which velocity is required

S1 Series defined by Eq. 5

S3 Series defined by Eq. 6

S1,W Wrench’s approximation to S1, Eq. 13

S3,W Wrench’s approximation to S3, Eq. 14

t Radius of the helical vortex

u′, w′ Azimuthally dependent axial and circumferential velocities,
respectively

u, w Axial and circumferential velocities, respectively

UW Term in Wrench’s approximation, Eq. 8

x Streamwise coordinate
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